Skip to main content

    Chou-Long Huang

    Inwardly rectifying potassium channels play essential roles in renal physiology across phyla. Barium-sensitive K(+) conductances are found on the basolateral membrane of a variety of insect Malpighian (renal) tubules, including Drosophila... more
    Inwardly rectifying potassium channels play essential roles in renal physiology across phyla. Barium-sensitive K(+) conductances are found on the basolateral membrane of a variety of insect Malpighian (renal) tubules, including Drosophila melanogaster. We found that barium decreases the lumen-positive transepithelial potential difference in isolated perfused Drosophila tubules and decreases fluid secretion and transepithelial K(+) flux. In those insect species in which it has been studied, transcripts from multiple genes encoding inwardly rectifying K(+) channels are expressed in the renal (Malpighian) tubule. In Drosophila melanogaster, this includes transcripts of the Irk1, Irk2, and Irk3 genes. The role of each of these gene products in renal tubule function is unknown. We found that simultaneous knockdown of Irk1 and Irk2 in the principal cell of the fly tubule decreases transepithelial K(+) flux, with no additive effect of Irk3 knockdown, and decreases barium sensitivity of transepithelial K(+) flux by ∼50%. Knockdown of any of the three inwardly rectifying K(+) channels individually has no effect, nor does knocking down Irk3 simultaneously with Irk1 or Irk2. Irk1/Irk2 principal cell double-knockdown tubules remain sensitive to the kaliuretic effect of cAMP. Inhibition of the Na(+)/K(+)-ATPase with ouabain and Irk1/Irk2 double knockdown have additive effects on K(+) flux, and 75% of transepithelial K(+) transport is due to Irk1/Irk2 or ouabain-sensitive pathways. In conclusion, Irk1 and Irk2 play redundant roles in transepithelial ion transport in the Drosophila melanogaster renal tubule and are additive to Na(+)/K(+)-ATPase-dependent pathways.
    Hypokalemic periodic paralysis (hypoKPP) is characterized by episodic flaccid paralysis of muscle and acute hypokalemia during attacks. Familial forms of hypoKPP are predominantly caused by mutations of either voltage-gated Ca(2+) or... more
    Hypokalemic periodic paralysis (hypoKPP) is characterized by episodic flaccid paralysis of muscle and acute hypokalemia during attacks. Familial forms of hypoKPP are predominantly caused by mutations of either voltage-gated Ca(2+) or Na(+) channels. The pathogenic gene mutation in non-familial hypoKPP, consisting mainly of thyrotoxic periodic paralysis (TPP) and sporadic periodic paralysis (SPP), is largely unknown. Recently, mutations in KCNJ18, which encodes a skeletal muscle-specific inwardly rectifying K(+) channel Kir2.6, were reported in some TPP patients. Whether mutations of Kir2.6 occur in other patients with non-familial hypoKPP and how mutations of the channel predispose patients to paralysis are unknown. Here, we report one conserved heterozygous mutation in KCNJ18 in two TPP patients and two separate heterozygous mutations in two SPP patients. These mutations result in V168M, R43C, and A200P amino acid substitution of Kir2.6, respectively. Compared with the wild type ch...
    Cardiac hypertrophy occurs in up to 95% of patients with CKD and increases their risk for cardiovascular death. In the kidney, full-length membranous Klotho forms the coreceptor for fibroblast growth factor 23 (FGF23) to regulate... more
    Cardiac hypertrophy occurs in up to 95% of patients with CKD and increases their risk for cardiovascular death. In the kidney, full-length membranous Klotho forms the coreceptor for fibroblast growth factor 23 (FGF23) to regulate phosphate metabolism. The prevailing view is that the decreased level of Klotho in CKD causes cardiomyopathy through increases in serum FGF23 and/or phosphate levels. However, we reported recently that soluble Klotho protects against cardiac hypertrophy by inhibiting abnormal calcium signaling in the heart. Here, we tested whether this protective effect requires changes in FGF23 and/or phosphate levels. Heterozygous Klotho-deficient CKD mice exhibited aggravated cardiac hypertrophy compared with wild-type CKD mice. Cardiac magnetic resonance imaging studies revealed that Klotho-deficient CKD hearts had worse functional impairment than wild-type CKD hearts. Normalization of serum phosphate and FGF23 levels by dietary phosphate restriction did not abrogate th...
    The anti-aging protein Klotho is a type 1 membrane protein produced predominantly in the distal convoluted tubule. The ectodomain of Klotho is cleaved and secreted into the urine to regulate several ion channels and transporters. Secreted... more
    The anti-aging protein Klotho is a type 1 membrane protein produced predominantly in the distal convoluted tubule. The ectodomain of Klotho is cleaved and secreted into the urine to regulate several ion channels and transporters. Secreted Klotho (sKL) up-regulates the TRPV5 calcium channel from the cell exterior by removing sialic acids from N-glycan of the channel and inhibiting its endocytosis. Because TRPV5 and Klotho coexpress in the distal convoluted tubule, we investigated whether Klotho regulates TRPV5 action from inside the cell. Whole-cell TRPV5-mediated channel activity was recorded in HEK cells coexpressing TRPV5 and sKL or membranous Klotho (mKL). Transfection of sKL, but not mKL, produced detectable Klotho protein in cell culture media. As for sKL, mKL increased TRPV5 current density. The role of sialidase activity of mKL acting inside is supported by findings that mutations of putative sialidase activity sites in sKL and mKL abrogated the regulation of TRPV5 but that t...
    Aldosterone-producing adenoma (APA) has been linked to mutations in the KCNJ5 gene encoding the inward-rectifying potassium (K(+)) Kir3.4 channel. These mutations abolish the K(+) selectivity of Kir3.4 and, consequently, cause sodium... more
    Aldosterone-producing adenoma (APA) has been linked to mutations in the KCNJ5 gene encoding the inward-rectifying potassium (K(+)) Kir3.4 channel. These mutations abolish the K(+) selectivity of Kir3.4 and, consequently, cause sodium (Na(+)) leak, depolarized membrane potential, and nonsuppressible aldosterone secretion. Our objective was to investigate KCNJ5 mutations in patients with sporadic APA and the role of endogenous Kir3.4 in human adrenocortical cells. We screened the KCNJ5 gene from the adrenal adenomas of 69 Chinese patients with sporadic APA and functionally characterized novel Kir3.4 mutations. Thirty-seven percent (26 of 69) of our APA patients carried heterozygous somatic mutations in the KCNJ5 gene. Besides the most common G151R and L168R mutations, we identified a previously uncharacterized E145Q mutation and 2 novel mutations (R115W and E246G) in 6 patients. The E145Q mutant conducted a barium-insensitive Na(+)-leak current. The R115W and E246G mutants preserved b...
    ROMK potassium channels are present in the cortical collecting ducts (CCDs) of the kidney and serve as the exit pathways for K+ secretion in this nephron segment. Dietary K+ restriction reduces the abundance of ROMK in the kidney. We have... more
    ROMK potassium channels are present in the cortical collecting ducts (CCDs) of the kidney and serve as the exit pathways for K+ secretion in this nephron segment. Dietary K+ restriction reduces the abundance of ROMK in the kidney. We have previously shown that ROMK undergoes endocytosis via clathrin-coated vesicles in Xenopus laevis oocytes and in cultured cells. Here, we examined the effect of dietary K+ restriction on endocytosis of ROMK in CCDs using double-labeling immunofluorescent staining and confocal microscopic imaging in whole kidney sections as well as in individually isolated tubules. We found that ROMK abundance in kidney cortex and CCDs was reduced in rats fed a K+-restricted diet compared with rats fed the control K+ diet. In the control animals, ROMK staining was preferentially localized to the apical membrane of CCDs. Compared with control tubules, ROMK staining in CCDs was markedly shifted toward intracellular locations in animals fed a K+-deficient diet for 48 h. ...
    Inward rectifier K+ channels, which modulate electrical activity in many cell types, are regulated by protein kinases, guanine-nucleotide-binding proteins (G proteins) and probably actin cytoskeleton. Generation of phosphatidylinositol... more
    Inward rectifier K+ channels, which modulate electrical activity in many cell types, are regulated by protein kinases, guanine-nucleotide-binding proteins (G proteins) and probably actin cytoskeleton. Generation of phosphatidylinositol 4,5-bisphosphate (PIP2) by ATP-dependent lipid kinases is known to activate inward rectifier K+ channels in cardiac membrane patches. Here we report that several cloned inward rectifier K+ channels directly bind PIP2, and that this binding correlates with channel activity. Application of ATP or PIP2 liposomes activates the cloned channels. Stabilized by lipid phosphatase inhibitors, PIP2 antibodies potently inhibit each channel with a unique rate (GIRK1/4 approximately GIRK2 > IRK1 approximately ROMK. Consistent with the faster dissociation of PIP2 from the GIRK channels, the carboxy terminus of GIRK1 binds 3H-PIP2 liposomes more weakly than does that of IRK1 or ROMK1. Mutation of a conserved arginine to glutamine at position 188 reduces the abilit...
    Inward-rectifying potassium (Kir) channels allow more inward than outward potassium flux when channels are open in mammalian cells. At physiological resting membrane potentials, however, they predominantly mediate outward potassium flux... more
    Inward-rectifying potassium (Kir) channels allow more inward than outward potassium flux when channels are open in mammalian cells. At physiological resting membrane potentials, however, they predominantly mediate outward potassium flux and play important roles in regulating the resting membrane potential in diverse cell types and potassium secretion in the kidneys. Mutations of Kir channels cause human hereditary diseases collectively called Kir channelopathies, many of which are characterized by disorders of sodium and potassium homeostasis. Studies on these genetic Kir channelopathies have shed light on novel pathophysiological mechanisms, including renal sodium and potassium handling, potassium shifting in skeletal muscles, and aldosterone production in the adrenal glands. Here, we review several recent advances in Kir channels and their clinical implications in sodium and potassium homeostasis.
    SPAK kinase consists of a full-length (FL-) and an alternatively spliced kidney-specific (KS-) isoform. SPAK regulates the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). The relative abundance and role of FL- versus... more
    SPAK kinase consists of a full-length (FL-) and an alternatively spliced kidney-specific (KS-) isoform. SPAK regulates the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). The relative abundance and role of FL- versus KS-SPAK in regulating Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) in thick ascending limb (TAL) is not completely understood. Here, we report that FL-SPAK mRNA was the most abundant in medullary TAL (mTAL), followed by cortical TAL (cTAL) and DCT. KS-SPAK mRNA abundance was relatively lower than FL-SPAK. The ratio of FL-SPAK to KS-SPAK in mTAL, cTAL, and DCT were 12.3, 12.5, and 10.2, respectively. To examine the role of SPAK in the regulation of sodium transport in TAL, we used in vitro microperfusion of mTAL and cTAL isolated from wild-type (WT) and SPAK knockout mice (SPAK-KO) that lack both FL- and KS-SPAK. The rate of sodium absorption in cTAL and mTAL of SPAK-KO mice were 34.5% and 12.5% of WT tubules, respectively. The mRNA levels of related OSR1 kina...
    We have recently reported that direct interaction between phosphatidylinositol bisphosphate (PIP(2)) and the COOH-terminal cytoplasmic domain of ROMK1 is important for opening of the channel. We identified arginine-188 of ROMK1 as a... more
    We have recently reported that direct interaction between phosphatidylinositol bisphosphate (PIP(2)) and the COOH-terminal cytoplasmic domain of ROMK1 is important for opening of the channel. We identified arginine-188 of ROMK1 as a critical residue for this interaction. Here, we further report that substitution of a neutral amino acid for lysine-181, arginine-217, or lysine-218 decreases single-channel open probability for the full-conductance state and increases the frequency of opening at a subconductance state. Compared with wild-type ROMK1 channels, these substitution mutants also display an increased sensitivity to the block by anti-PIP(2) antibodies and to inhibition by intracellular protons. These results indicate that, like arginine-188, lysine-181, arginine-217, and lysine-218 are also involved in interactions with PIP(2) and are critical for ROMK1 to open at full conductance. Using synthetic phosphoinositides containing phosphates at different positions in the head group,...
    The transient receptor potential channel TRPV5 constitutes the apical entry pathway for transepithelial Ca2+ transport. We showed that TRPV5 was inhibited by both physiological intra- and extracellular acid pH. Inhibition of TRPV5 by... more
    The transient receptor potential channel TRPV5 constitutes the apical entry pathway for transepithelial Ca2+ transport. We showed that TRPV5 was inhibited by both physiological intra- and extracellular acid pH. Inhibition of TRPV5 by internal protons was enhanced by extracellular acidification. Similarly, inhibition by external protons was enhanced by intracellular acidification. Mutation of either an extra- or an intracellular pH sensor blunted the cross-inhibition by internal and external protons. Both internal and external protons regulated the selectivity filter gate. Using the substituted cysteine accessibility method, we found that intracellular acidification of TRPV5 caused a conformational change of the pore helix consistent with clockwise rotation along its long axis. Thus, rotation of pore helix caused by internal protons facilitates closing of TRPV5 by external protons. This regulation by protons likely contributes to pathogenesis of disturbances of Ca2+ transport in many diseased states. Rotation of pore helix may be a common mechanism for cross-regulation of ion channels by extra- and intracellular signals.
    Gordon's syndrome, also known as pseudohypoaldosteronism type II (PHA II) or familial hypertension with hyperkalemia, is an autosomal-dominant disease characterized... more
    Gordon's syndrome, also known as pseudohypoaldosteronism type II (PHA II) or familial hypertension with hyperkalemia, is an autosomal-dominant disease characterized by hypertension, hyperkalemia, hyperchloremic metabolic acidosis, and normal glomerular filtration rate. Recent positional cloning has linked mutations of WNK1 and WNK4 to Gordon's syndrome. With-no-lysine [K] (WNK) kinases are a new family of large serine-threonine protein kinases with an atypical placement of the catalytic lysine. Here, we review the pathogenesis of PHA II based on current understanding of the actions of WNK1 and WNK4 on Na+ and K+ handling in the renal distal tubule.
    Klotho is an aging-suppression protein predominantly expressed in kidney, parathyroid glands, and choroids plexus of the brain. The extracellular domain of Klotho, a type-1 membrane protein, is secreted into urine and blood and may... more
    Klotho is an aging-suppression protein predominantly expressed in kidney, parathyroid glands, and choroids plexus of the brain. The extracellular domain of Klotho, a type-1 membrane protein, is secreted into urine and blood and may function as an endocrine or paracrine hormone. The functional role of Klotho in the kidney remains largely unknown. Recent studies reported that treatment by the extracellular domain of Klotho (KLe) increases cell-surface abundance of transient receptor potential vanilloid type isoform 5, an epithelial Ca(2+) channel critical for Ca(2+) reabsorption in the kidney. Whether Klotho regulates surface expression of other channels in the kidney is not known. Here, we report that KLe treatment increases the cell-membrane abundance of the renal K(+) channel renal outer medullary potassium channel 1 (ROMK1) by removing terminal sialic acids from N-glycan of the channel. Removal of sialic acids exposes underlying disaccharide galactose-N-acetylglucosamine, a ligand for a ubiquitous galactoside-binding lectin galectin-1. Binding to galectin-1 at the extracellular surface prevents clathrin-mediated endocytosis of ROMK1 and leads to accumulation of functional channel on the plasma membrane. Intravenous administration of KLe increases the level of Klotho in urine and increases urinary excretion of K(+). These results suggest that Klotho may have a broader function in the regulation of ion transport in the kidney.
    The apical potassium (K+) channels mediate K+ recycling in thick ascending limb (TAL) and K+ secretion in cortical collecting duct (CCD). Recently, the cDNAs for a family of renal K+ channels, ROMK1, -2 and -3, were identified. Based on... more
    The apical potassium (K+) channels mediate K+ recycling in thick ascending limb (TAL) and K+ secretion in cortical collecting duct (CCD). Recently, the cDNAs for a family of renal K+ channels, ROMK1, -2 and -3, were identified. Based on the biophysical properties and mRNA distribution, it is believed that these ROMK cDNAs encode the apical K+ channels of TAL and CCD. However, the information for cellular and subcellular localization of the ROMK proteins in these tubules is still not available. Paraffin or frozen kidney sections from adult Sprague-Dawley rats were stained by polyclonal antibodies against the N- and C-terminal domain of ROMK. Immunoreactive staining was visualized by color development from horseradish peroxidase reaction. Membrane homogenates from kidney were analyzed by Western blot analysis. The polyclonal antibodies against cytoplasmic epitope of ROMK recognized a approximately 42 kD protein in the membrane homogenates from kidney, but not from liver. Staining by immunocytochemistry revealed that ROMK channels were localized to the apical membranes of the distal nephron in cortex and outer medulla, including thick ascending limb and collecting tubule. ROMK staining was absent in glomerulus, proximal tubule and inner medulla. Double staining of the tissue section with both ROMK-specific and H+-ATPase-specific antibodies revealed labeling of ROMK in the principal cells of the collecting tubules. These results further strengthen the idea that ROMK channels play important roles in the recycling of K+ in TAL and the secretion of K+ in CCD.
    WNK kinases stimulate endocytosis of ROMK channels to regulate renal K+ handling. Phosphatidylinositol 3-kinase (PI3K)-activating hormones, such as insulin and IGF 1, phosphorylate WNK1, but how this affects the regulation of ROMK... more
    WNK kinases stimulate endocytosis of ROMK channels to regulate renal K+ handling. Phosphatidylinositol 3-kinase (PI3K)-activating hormones, such as insulin and IGF 1, phosphorylate WNK1, but how this affects the regulation of ROMK abundance is unknown. Here, serum starvation of ROMK-transfected HEK cells led to an increase of ROMK current density; subsequent addition of insulin or IGF1 inhibited ROMK currents in a PI3K-dependent manner. Serum and insulin also increased phosphorylation of the downstream kinases Akt1 and SGK1 as well as WNK1. A biotinylation assay suggested that insulin and IGF1 inhibit ROMK by enhancing its endocytosis, a process that WNK1 may mediate. Knockdown of WNK1 with siRNA or expression of a phospho-deficient WNK1 mutant (T58A) both prevented insulin-induced inhibition of ROMK currents, suggesting that phosphorylation at Threonine-58 of WNK1 is important to mediate the inhibition of ROMK by PI3K-activating hormones or growth factors. In vitro and in vivo kinase assays supported the notion that Akt1 and SGK1 can phosphorylate WNK1 at this site, and we established that Akt1 and SGK1 synergistically inhibit ROMK through WNK1. We used dominant-negative intersectin and dynamin constructs to show that SGK1-mediated phosphorylation of WNK1 inhibits ROMK by promoting its endocytosis. Taken together, these results suggest that PI3K-activating hormones inhibit ROMK by enhancing its endocytosis via a mechanism that involves phosphorylation of WNK1 by Akt1 and SGK1.
    WNK1 (with-no-lysine[K]-1) is a protein kinase of which mutations cause a familial hypertension and hyperkalemia syndrome known as pseudohypoaldosteronism type 2 (PHA2). Kidney-specific (KS) WNK1 is an alternatively spliced form of WNK1... more
    WNK1 (with-no-lysine[K]-1) is a protein kinase of which mutations cause a familial hypertension and hyperkalemia syndrome known as pseudohypoaldosteronism type 2 (PHA2). Kidney-specific (KS) WNK1 is an alternatively spliced form of WNK1 kinase missing most of the kinase domain. KS-WNK1 downregulates the Na(+)-Cl(-) cotransporter NCC by antagonizing the effect of full-length WNK1 when expressed in Xenopus oocytes. The physiological role of KS-WNK1 in the regulation of NCC and potentially other Na(+) transporters in vivo is unknown. Here, we report that mice overexpressing KS-WNK1 in the kidney exhibited renal Na(+) wasting, elevated plasma levels of angiotensin II and aldosterone yet lower blood pressure relative to wild-type littermates. Immunofluorescent staining revealed reduced surface expression of total and phosphorylated NCC and the Na(+)-K(+)-2Cl(-) cotransporter NKCC2 in the distal convoluted tubule and the thick ascending limb of Henle's loop, respectively. Conversely, mice with targeted deletion of exon 4A (the first exon for KS-WNK1) exhibited Na(+) retention, elevated blood pressure on a high-Na(+) diet and increased surface expression of total and phosphorylated NCC and NKCC2 in respective nephron segments. Thus, KS-WNK1 is a negative regulator of NCC and NKCC2 in vivo and plays an important role in the control of Na(+) homeostasis and blood pressure. These results have important implications to the pathogenesis of PHA2 with WNK1 mutations.
    The present review summarizes recent literature and discusses the potential roles of WNKs in the pathogenesis of essential hypertension. WNKs (with-no-lysine [K]) are a recently discovered family of serine-threonine protein kinases with... more
    The present review summarizes recent literature and discusses the potential roles of WNKs in the pathogenesis of essential hypertension. WNKs (with-no-lysine [K]) are a recently discovered family of serine-threonine protein kinases with unusual protein kinase domains. The role of WNK kinases in the control of blood pressure was first revealed by the findings that mutations of two members, WNK1 and WNK4, cause Gordon's syndrome. Laboratory studies have revealed that WNK kinases play important roles in the regulation of sodium and potassium transport. Animal models have been created to unravel the pathophysiology of sodium transport disorders caused by mutations of the WNK4 gene. Potassium deficiency causes sodium retention and increases hypertension prevalence. The expression of WNK1 is upregulated by potassium deficiency, raising the possibility that WNK1 may contribute to salt-sensitive essential hypertension associated with potassium deficiency. Associations of polymorphisms of WNK genes with essential hypertension in the general population have been reported. Mutations of WNK1 and WNK4 cause hypertension at least partly by increasing renal sodium retention. The role of WNK kinases in salt-sensitive hypertension within general hypertension is suggested, but future work is required to firmly establish the connection.
    This review summarizes recent advances in the understanding of the mechanism of regulation of renal ion transport by WNK kinases. There are four mammalian WNK [with-no-lysine (K)] kinases: WNK1-WNK4. Mutations of WNK1 and WNK4 in humans... more
    This review summarizes recent advances in the understanding of the mechanism of regulation of renal ion transport by WNK kinases. There are four mammalian WNK [with-no-lysine (K)] kinases: WNK1-WNK4. Mutations of WNK1 and WNK4 in humans cause hypertension and hyperkalemia at least partly by altering renal sodium and potassium transport. WNK1 and WNK4 stimulate endocytosis of ROMK1 by recruiting an endocytic scaffold protein, intersectin. The recruitment is independent of the kinase activity and occurs between the PXXP motif of WNKs and the SH3 domain of intersectin. Regulation of cation-chloride-coupled cotransporters, Na+-K+-2Cl(-) cotransporter (NKCC) 1 and NKCC2 [and the Na-Cl co-transporter (NCC), under some conditions] by WNKs requires kinase activity. WNK1 and WNK4 bind with and phosphorylate two Ste20-related protein kinases, OSR1 and SPAK, which in turn bind with and phosphorylate NKCCs and NCC to increase their activity. Binding of OSR1/SPAK to upstream activators (WNKs) and downstream substrates (NKCCs and NCC) are both mediated by a docking site in the C-terminus of OSR1/SPAK and RFX[V/I] motifs present in WNKs or in NKCCs and NCC. WNKs regulate ion transport via both catalytic and noncatalytic mechanisms. We discuss hypotheses that WNKs, contrasting with aldosterone, play important roles in dissociating sodium reabsorption from potassium secretion.
    TRPV5 and TRPV6 channels are expressed in distal renal tubules and play important roles in the transcellular Ca(2+) reabsorption in kidney. They are regulated by multiple intracellular factors including protein kinases A and C, membrane... more
    TRPV5 and TRPV6 channels are expressed in distal renal tubules and play important roles in the transcellular Ca(2+) reabsorption in kidney. They are regulated by multiple intracellular factors including protein kinases A and C, membrane phospholipid PIP2, protons, and divalent ions Ca(2+) and Mg(2+). Here, we report that fluid flow that generates shear force within the physiological range of distal tubular fluid flow activated TRPV5 and TRPV6 channels expressed in HEK cells. Flow-induced activation of channel activity was reversible and did not desensitize over 2min. Fluid flow stimulated TRPV5 and 6-mediated Ca(2+) entry and increased intracellular Ca(2+) concentration. N-glycosylation-deficient TRPV5 channel was relatively insensitive to fluid flow. In cells coexpressing TRPV5 (or TRPV6) and Slo1-encoded maxi-K channels, fluid flow induced membrane hyperpolarization, which could be prevented by the maxi-K blocker iberiotoxin or TRPV5 and 6 blocker La(3+). In contrast, fluid flow did not cause membrane hyperpolarization in cells coexpressing ROMK1 and TRPV5 or 6 channel. These results reveal a new mechanism for the regulation of TRPV5 and TRPV6 channels. Activation of TRPV5 and TRPV6 by fluid flow may play a role in the regulation of flow-stimulated K(+) secretion via maxi-K channels in distal renal tubules and in the mechanism of pathogenesis of thiazide-induced hypocalciuria.
    Kidney-specific WNK1 (KS-WNK1) is a variant of full-length WNK1. Previous studies have reported that KS-WNK1 is predominantly expressed in the distal convoluted tubule (DCT) where it regulates sodium-chloride cotransporter. The role of... more
    Kidney-specific WNK1 (KS-WNK1) is a variant of full-length WNK1. Previous studies have reported that KS-WNK1 is predominantly expressed in the distal convoluted tubule (DCT) where it regulates sodium-chloride cotransporter. The role of KS-WNK1 in other nephron segments is less clear. Here, we measured the expression of KS-WNK1 transcript in microdissected renal tubules and found that KS-WNK1 was most abundant in the DCT, followed by cortical thick ascending limb (cTAL), connecting tubule, and cortical collecting duct. A high K(+) diet enhanced the expression of KS-WNK1 in the DCT and cTAL, selectively. It has been reported that a high-K diet suppresses Na(+) reabsorption in TAL. To understand the role of KS-WNK1 in Na(+) transport in cTAL and the regulation by dietary K(+), we examined Na(+) reabsorption using in vitro microperfusion in cTAL isolated from KS-WNK1-knockout mice and wild-type littermates fed either a control-K(+) or high-K(+) diet. Furosemide-sensitive Na(+) reabsorption in cTAL was higher in KS-WNK1-knockout (KO) mice than in wild-type. A high-K(+) diet inhibited Na(+) reabsorption in cTAL from wild-type mice, but the inhibition was eliminated in KS-WNK1-KO mice. We further examined the role of KS-WNK1 using transgenic mice that overexpress KS-WNK1. Na(+) reabsorption in cTAL was lower in transgenic than in wild-type mice. In whole animal clearance studies, a high-K(+) diet increased daily urine volume and urinary Na(+) and K(+) excretion in wild-type mice, which was blunted in KS-WNK1-KO mice. Thus KS-WNK1 inhibits Na(+) reabsorption in cTAL and mediates the inhibition of Na(+) reabsorption in the segment by a high-K diet.
    Epithelial ion transport is essential to renal homeostatic function, and it is dysregulated in several diseases, such as hypertension. An understanding of the insect renal (Malpighian) tubule yields insights into conserved epithelial ion... more
    Epithelial ion transport is essential to renal homeostatic function, and it is dysregulated in several diseases, such as hypertension. An understanding of the insect renal (Malpighian) tubule yields insights into conserved epithelial ion transport processes in higher organisms and also has implications for the control of insect infectious disease vectors. Here, we examine the role of the Na(+)-K(+)-2Cl(-) (NKCC) cotransporter Ncc69 in Drosophila tubule function. Ncc69 mutant tubules have decreased rates of fluid secretion and K(+) flux, and these phenotypes were rescued by expression of wild-type Ncc69 in the principal cells of the tubule. Na(+) flux was unaltered in Ncc69 mutants, suggesting Na(+) recycling across the basolateral membrane. In unstimulated tubules, the principal role of the Na(+)-K(+)-ATPase is to generate a favorable electrochemical gradient for Ncc69 activity: while the Na(+)-K(+)-ATPase inhibitor ouabain decreased K(+) flux in wild-type tubules, it had no effect in Ncc69 mutant tubules. However, in the presence of cAMP, which stimulates diuresis, additional Na(+)-K(+)-ATPase-dependent K(+) transport pathways are recruited. In studying the effects of capa-1 on wild-type and Ncc69 mutant tubules, we found a novel antidiuretic role for this hormone that is dependent on intact Ncc69, as it was abolished in Ncc69 mutant tubules. Thus, Ncc69 plays an important role in transepithelial ion and fluid transport in the fly renal tubule and is a target for regulation in antidiuretic states.
    We present a case of an 82-year-old woman with elevated parathyroid hormone (PTH) levels, hypocalciuria, hypercalcemia, and stage 3 chronic kidney disease. Hypocalciuria initially was attributed to chronic kidney disease, and... more
    We present a case of an 82-year-old woman with elevated parathyroid hormone (PTH) levels, hypocalciuria, hypercalcemia, and stage 3 chronic kidney disease. Hypocalciuria initially was attributed to chronic kidney disease, and hypercalcemia was attributed to primary hyperparathyroidism. Subsequent laboratory studies showed autoantibodies in the patient's serum directed against the calcium-sensing receptor (CaSR). Functional testing in a CaSR-transfected human embryonic kidney-293 cell line showed that the patient's antibodies inhibited CaSR-mediated intracellular signaling that ordinarily would have been stimulated by extracellular calcium ions. Her serum calcium and PTH levels were normalized by treatment with the calcimimetic cinacalcet. We advise consideration of the presence of inhibitory autoantibodies directed at the CaSR in patients with hypercalcemic hyperparathyroidism and unexplained hypocalciuria or with confounding conditions affecting interpretation of urinary calcium measurement. A calcimimetic is an effective treatment for the hypercalcemia and elevated PTH levels in acquired hypocalciuric hypercalcemia caused by inhibitory anti-CaSR autoantibodies.