Fast Computation of Highly Oscillatory ODE Problems: Applications in High-Frequency Communication Circuits
<p>Test Problem 1, (<b>Left</b>) <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mo>|</mo> </mrow> <msub> <mi>L</mi> <mo>∞</mo> </msub> <mrow> <mo>|</mo> <mo>|</mo> </mrow> </mrow> </semantics></math>, (<b>Right</b>) CPU time (in seconds) by the RBF method.</p> "> Figure 2
<p>Test Problem 2, (<b>Left</b>) <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mo>|</mo> </mrow> <msub> <mi>L</mi> <mo>∞</mo> </msub> <mrow> <mo>|</mo> <mo>|</mo> </mrow> </mrow> </semantics></math>, (<b>Right</b>) CPU time (in seconds) of the proposed method.</p> "> Figure 3
<p>Test Problem 3, (<b>Left</b>) oscillatory behavior of the analytical solution, and (<b>Right</b>) <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mo>|</mo> </mrow> <msub> <mi>L</mi> <mo>∞</mo> </msub> <mrow> <mo>|</mo> <mo>|</mo> </mrow> </mrow> </semantics></math> obtained by the LCM.</p> "> Figure 4
<p>Test Problem 4, (<b>Left</b>) CPU time (in seconds) for fixed shape <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and varying <span class="html-italic">m</span>, (<b>Right</b>) analytical solution by MAPLE 16.</p> ">
Abstract
:1. Introduction
2. Numerical Procedures
2.1. Procedure Based on RBF Interpolation
2.2. Levin Collocation Method
2.3. Nonlinear Highly Oscillatory ODEs
- i.
- The error bound of the RBF method with Levin approach to approximate the oscillatory integral is given byfor m collocation points.
- ii.
- For computation of by the same method at , the error bound is given by
3. Numerical Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | Description |
MQ RBF | Multiquadric radial basis functions |
Infinity error norm | |
IVP | Initial value problem |
m | Collocation points |
N | Time levels |
Frequency parameter | |
LCM | Levin collocation method |
RK4 | Runge–Kutta method of order 4 |
AF4 | Adam–Bashforth method for four points |
References
- Condon, M.; Iserles, A.; Nørsett, S.P. Differential equations with general highly oscillatory forcing terms. Proc. Roy. Soc. A Math. Phy. Eng. Sci. 2014, 470, 20130490. [Google Scholar] [CrossRef]
- Condon, M.; Deaño, A.; Iserles, A. On highly oscillatory problems arising in electronic engineering. Esaim Math. Mod. Nume. Anal. 2009, 43, 785–804. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S. Communications Systems, 4th ed.; John Wiley: New York, NY, USA, 2001. [Google Scholar]
- Weisman, C.J. The Essential Guide to RF and Wireless, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 2002. [Google Scholar]
- Zill, D.G. A First Course in Differential Equations with Modeling Applications; Cengage Learning: San Francisco, CA, USA, 2012. [Google Scholar]
- Gilat, A.; Subramaniam, V. Numerical Methods for Engineers and Scientists; Don Fowley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Podisuk, M.; Chundang, U.; Sanprasert, W. Single step formulas and multi-step formulas of the integration method for solving the initial value problem of ordinary differential equation. Appl. Math. Comput. 2007, 190, 1438–1444. [Google Scholar] [CrossRef]
- Condon, M.; Deaño, A.; Iserles, A. On systems of differential equations with extrinsic oscillation. Dis. Cont. Dy. Sys.-A 2010, 28, 1345–1367. [Google Scholar] [CrossRef] [Green Version]
- Iserles, A. On the numerical analysis of rapid oscillation. Group Theo. Num. Anal. 2005, 39, 149–163. [Google Scholar]
- Bunder, J.E.; Roberts, A.J. Numerical integration of ordinary differential equations with rapidly oscillatory factors. J. Comp. Appl. Math. 2015, 282, 54–70. [Google Scholar] [CrossRef]
- Al-Fhaid, A.S.; Zaman, S. Meshless and wavelets based complex quadrature of highly oscillatory integrals and the integrals with stationary points. Eng. Analy. Bound. Elem. 2013, 37, 1136–1144. [Google Scholar]
- Zaman, S. New quadrature rules for highly oscillatory integrals with stationary points. J. Comput. Appl. Math. 2015, 278, 75–89. [Google Scholar]
- Levin, D. Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 1996, 67, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Levin, D. Analysis of a collocation method for integrating rapidly oscillatory functions. J. Comput. Appl. Math. 1997, 78, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Olver, S. Numerical approximation of vector-valued highly oscillatory integrals. Bit Numer. Math. 2007, 47, 637–655. [Google Scholar] [CrossRef] [Green Version]
- Zaman, S.; Siraj-ui Islam. Efficient numerical methods for Bessel type of oscillatory integrals. J. Comp. Appl. Math. 2017, 315, 161–174. [Google Scholar] [CrossRef]
- Zaman, S.; Hussain, I.; Singh, D. Fast computation of integrals with fourier-type oscillator involving stationary point. Mathematics 2019, 7, 1160. [Google Scholar] [CrossRef] [Green Version]
- Iserles, A.; Nørsett, S.P. On the computation of highly oscillatory multivariate integrals with stationary points. Bit Numer. Math. 2006, 46, 549–566. [Google Scholar] [CrossRef]
- Xiang, S. Efficient Filon-type methods for f(x)eiωg(x)dx. Numer. Math. 2007, 105, 633–658. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, H. Fast integration of highly oscillatory integrals with exotic oscillators. Math. Comput. 2010, 79, 829–844. [Google Scholar] [CrossRef]
- Asheim, A.; Huybrechs, D. Asymptotic analysis of numerical steepest descent with path approximations. Found. Comput. Math. 2010, 10, 647–671. [Google Scholar] [CrossRef]
- Asheim, A. Applying the numerical method of steepest descent on multivariate oscillatory integrals in scattering theory. arXiv 2013, arXiv:1302.1019. [Google Scholar]
- Filon, L.N.G. On a quadrature formula for trigonometric integrals. Proc. Roy. Soc. Edinb. 1928, 49, 38–47. [Google Scholar] [CrossRef]
- Olver, S. Fast and numerically stable computation of oscillatory integrals with stationary points. Bit Numer. Math. 2010, 50, 149–171. [Google Scholar] [CrossRef] [Green Version]
- Iserles, A.; Nørsett, S.P. On quadrature methods for highly oscillatory integrals and their implementation. Bit Numer. Math. 2004, 44, 755–772. [Google Scholar] [CrossRef] [Green Version]
- Kurtoglu, D.K.; Hasçelik, A.I.; Milovanović, G.V. A method for efficient computation of integrals with oscillatory and singular integrand. Num. Algo. 2020, 85, 1155–1173. [Google Scholar] [CrossRef]
- Hascelik, A.I. Suitable Gauss and Filon-type methods for oscillatory integrals with an algebraic singularity. Appl. Numer. Math. 2009, 59, 101–118. [Google Scholar] [CrossRef]
- Conte, D.; Ambrosio, R.; Arienzo, M.P.; Paternoster, B. Multivalue mixed collocation methods. Appl. Math. Comp. 2021, 409, 126–346. [Google Scholar] [CrossRef]
- Aziz, I.; Khan, W. Quadrature rules for numerical integration based on Haar wavelets and hybrid functions. Comp. Math. Appl. 2011, 61, 2770–2781. [Google Scholar] [CrossRef] [Green Version]
- Khanamiryan, M. Quadrature methods for highly oscillatory linear and nonlinear systems of ordinary differential equations: Part I. Bit Num. Math. 2008, 48, 743–761. [Google Scholar] [CrossRef]
t | AF4 | RK4 | RBF |
---|---|---|---|
0 | − | − | − |
− | |||
− | |||
− | |||
t | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
---|---|---|---|---|---|
t | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
---|---|---|---|---|---|
[1] |
2 | 5 | 10 | |
---|---|---|---|
1 | |||
10 | |||
100 | |||
500 | |||
1000 |
2 | 5 | 10 | |
---|---|---|---|
1 |
2 | 5 | 10 | |
---|---|---|---|
1 | |||
10 | |||
100 | |||
500 | |||
1000 |
2 | 5 | 10 | |
---|---|---|---|
1 |
Methods | |||||
---|---|---|---|---|---|
LCM | |||||
Multivalue CM [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaman, S.; Khan, L.U.; Hussain, I.; Mihet-Popa, L. Fast Computation of Highly Oscillatory ODE Problems: Applications in High-Frequency Communication Circuits. Symmetry 2022, 14, 115. https://doi.org/10.3390/sym14010115
Zaman S, Khan LU, Hussain I, Mihet-Popa L. Fast Computation of Highly Oscillatory ODE Problems: Applications in High-Frequency Communication Circuits. Symmetry. 2022; 14(1):115. https://doi.org/10.3390/sym14010115
Chicago/Turabian StyleZaman, Sakhi, Latif Ullah Khan, Irshad Hussain, and Lucian Mihet-Popa. 2022. "Fast Computation of Highly Oscillatory ODE Problems: Applications in High-Frequency Communication Circuits" Symmetry 14, no. 1: 115. https://doi.org/10.3390/sym14010115