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1. Introduction

We are interested in solving the oscillatory integral

Iω[f ] =
∫ 1

−1
f(x)eiωg(x) dx,

where f ∈ C1[−1, 1] and g ∈ Cr[−1, 1] has a single stationary point of order r − 1 at zero:

0 = g′(0) = · · · = g(r−1)(0), g(r)(0) 6= 0 and g′(x) 6= 0 for x 6= 0. If the integral is over

another domain [a, b] with finitely many stationary points, then it can be written in terms

of integrals of the form Iω[f ].

Many methods have been developed recently for computing Iω[f ], with an emphasis on

the asymptotic decay as ω →∞. High asymptotic orders is achieved in Filon-type methods

[11] and moment-free Filon-type methods [29, 21] by interpolating the derivatives of f at the

stationary point and endpoints of the interval (i.e., zero and ±1). Alternatively, derivatives

can be avoided by allowing the interpolation points to approach the the critical points as ω

increases [12]. Interpolating at such points along with Chebyshev points ensures convergence

[17]. Unfortunately, it is unknown how to construct these methods in a numerically stable

manner with such a choice of points, or how to choose the interpolation points to optimize

the order of convergence.

Numerical steepest descent [10, 7] simultaneously achieves high asymptotic order and

numerical stability. We can remove the oscillations from the integrand by deforming the

contour of integration along the steepest descent path. A standard quadrature method can

then be used; in particular, generalized Laguerre quadrature. This method achieves roughly

twice the asymptotic order as the other high asymptotic order methods for the same number

of function evaluations. Unfortunately, it requires that the integral be analytic and have at

most exponential growth in the complex plane, and complicated singularities in the complex

plane can prevent convergence. In addition, the method we develop has the interesting

property that it converges even when ω is complex or small in magnitude — it becomes

equivalent to Clenshaw–Curtis quadrature [4, 27] at ω = 0 — whereas numerical steepest

descent can fall pray to Stokes’ phenomena [18] and the error blows up as ω → 0 for a fixed

number of sample points.

When g is free of stationary points (i.e., r = 1), The Levin collocation method [14] can be

computed in a stable fashion using a TSVD decomposition [15], however, it does not achieve

high asymptotic orders and the amount of computation does not decrease significantly as ω

increases. Levin-type methods [24] achieve high asymptotic order but are not numerically

stable. Differential gmres [20, 19] is stable and achieves high asymptotic order, but requires

derivatives. We could avoid derivatives by implementing differential gmres in the chebfun

system [2], which is very similar to the method we construct for the case without stationary

points. Unfortunately, its adaptivity is a significant hindrance to performance, and errors
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due to removable singularities prevent the use of such a method for integrals with stationary

points.

We will construct a methodQM
ω,n,m[f ] to approximate Iω[f ] which trades high asymptotic

order in exchange for numerical stability and fast computation. Moreover, it preserves the

most important property (from a computational perspective) of high asymptotic order: the

computational cost needed to achieve a certain accuracy decreases as ω increases. Indeed, if

n is sufficiently large, we obtain an effective asymptotic order of O
(
ω−m−1

)
— the method

decays at this rate to until an error on the order of machine epsilon is obtained — using only

O(mn log n) operations. In addition, we reuse the exact same values of f for every choice of

ω; thus, less computation is required if the same integral is evaluated with multiple values

of ω.

For the case without stationary points,QM
ω,n,m[f ] can be viewed as a way of computing the

Levin collocation method. Suppose u ∈ C1[−1, 1] is a particular solution to the differential

equation

Lu = f for L = D + iωg′, (1.1)

where D : C1[−1, 1] → C0[−1, 1] is the differentiation operator, so that Lu = u′ + iωg′u. It

follows that

Iω[f ] = Iω[Lu] =
∫ 1

−1
(ueiωg)′ dx = u(1)eiωg(1) − u(−1)eiωg(−1). (1.2)

Thus finding a particular solution to (1.1) allows us to calculate Iω[f ]. The idea behind the

Levin collocation method is to use collocation to approximate a particular solution to (1.1).

In other words, for a basis ψ1, . . . , ψn and sequence of collocation points x1, . . . , xn we find

a function u =
∑n
k=1 ckψk which satisfies

Lu(x1) = f(x1), . . . ,Lu(x1) = f(xn).

The method we construct uses gmres [26, 25] on the resulting linear system to compute the

coefficients c = (c1, . . . , cn)>. By multiplying the linear system on the right appropriately,

we obtain a shifted linear system. This allows us to reuse the same Arnoldi factorization for

every value of ω [6]. Moreover, the rate of convergence of the gmres algorithm increases as

ω increases; hence, we need fewer iterations of gmres when ω is large to achieve a similar
accuracy.

In Section 2 we set up the Levin collocation method in more detail and demonstrate its

numerical problems. In Section 3 we describe the gmres algorithm and use it to construct

QM
ω,n,m[f ]. We also detail the properties of shifted linear systems which our method exploits.

In Section 4 we prove convergence, using a connection between QM
ω,n,m[f ] and differential

gmres. In Section 5, we construct a method QM
ω,n,m[f ] for the case where g has stationary

points and demonstrate the effectiveness of the method by computing the Bessel function Jν
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for integer ν throughout the complex plane. Finally, in Section 6 we demonstrate numeri-

cally the loss of convergence as n → ∞. Despite these problems, the method still achieves

higher accuracy and takes less work than other methods for computing the Levin collocation

method.

2. Levin collocation method

For a sequence of n points x = (x1, . . . , xn)> and f ∈ C0[−1, 1], we define f(x) as

the vector of f applied to each component of x: f(x) = (f(x1), . . . , f(xn))>. Then, for

a quasimatrix (a row vector whose columns are functions who belong to C0[−1, 1]) ψ =

(ψ1, . . . , ψn), we define

ψ(x) = (ψ1(x), . . . , ψn(x)) =

 ψ1(x1) . . . ψn(x1)
...

. . .
...

ψ1(xn) . . . ψn(xn)

 .
Thus, given a differentiable quasimatrix ψ and collocation points x, we can rephrase the

Levin collocation method as finding a function un = ψc such that Lun(x) = f(x). The

coefficients c are thus found by solving the linear system

Lψ(x)c = f(x), (2.1)

where applying a differential operator to a quasimatrix is equivalent to applying the operator

to each column. We then obtain a Levin collocation method:

QL
ω[f ] = un(1)eiωg(1) − un(−1)eiωg(−1) =

[
ψ(1)eiωg(1) −ψ(−1)eiωg(−1)

]
c

for

c = (Lψ(x))−1f(x).

The asymptotic order of Levin collocation methods is known, and a higher asymptotic

order is achieved when we collocate at the endpoints.

Theorem 2.1 [14, 24] Suppose that the columns of ψ are independent of ω and form a

Chebyshev set and g′ does not vanish. If g ∈ C2[−1, 1] and f ∈ C1[−1, 1], then

QL
ω[f ] = O

(
ω−1

)
, ω →∞.

If g ∈ C3[−1, 1], f ∈ C2[−1, 1], x1 = −1 and xn = 1, then

QL
ω[f ] = O

(
ω−2

)
, ω →∞.
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The obvious choice for the columns of ψ are the Chebyshev polynomials of the first kind

[1] — i.e., ψT = (T0, . . . , Tn−1) — with x equal to the Chebyshev–Lobatto points

xT =



−1
cosπn−2

n−1

cosπn−3
n−1

...
cosπ 2

n−1

cosπ 1
n−1

1


.

This choice of nodes includes the endpoints, which ensure that a higher asymptotic order

is achieved. We define the discrete inverse Chebyshev transform as T −1 = ψT(xT), which

is equivalent to the Chebyshev–Vandermonde matrix. T −1c maps the coefficients c of a

Chebyshev series to the values the series takes at xT. The Chebyshev transform is then

T , which maps f = f(xT) to the coefficients of the nth degree Chebyshev series which

interpolates f at xT. Both T and T −1 applied to a vector can be evaluated in O(n log n)

operations using the fast cosine transform.

Let D map the coefficients in a Chebyshev series to those of its derivatives, i.e., ψT′ =

ψTD. We can define D by Dc = (d1, . . . , dn)>, where (cf. [9])

dn = 0,

dn−1 = 2ncn,

dk = dk+2 + 2(k + 1)ck+1, k = n− 2, n− 3, . . . , 2,

d1 =
d3

2
+ c2.

It follows that

u′n(xT) = ψT′(xT)c = ψT(xT)Dc = T −1Dc,

and the linear system (2.1) is now

Lc = f for L = LψT(xT) = T −1D + iωGT −1 and G = diag (g′(xT)). (2.2)

Applying D to a vector clearly takes O(n) operations; thence, applying L to a vector takes

O(n log n) operations.

Definition 2.2 We use curly capitals for differential linear operators and the Chebyshev

transform, capitals for matrices operating on function values and bold capitals for matrices

operating on Chebyshev series’ coefficients. I denotes the identity operator in all spaces.

Finally, in the definition of operators, any constant ω denotes ωI.
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Figure 1: The error in approximating
∫ 1
−1

1
x2+1

eiω sin(x+ 1
4) dx by QT

ω,n[f ] for ω = 0.1 (left,
plain), 1 (left, dotted), 3 (left, dashed), 10 (both, thick), 30 (right, plain), 50 (right, dotted) and
100 (right, dashed).

Definition 2.3 The interpolation operator e(x) is defined by e(x)>f = ψT(x)T f , i.e.,

e(x)>f is the polynomial which interpolates the data f at the points xT. Thus e(xT) = I,

or in particular, e(−1) = e1 and e(1) = en (which motivates the choice of notation).We use

the barycentric formula [3] for intermediate values of x.

Note that un(x) = ψT(x)c = e(x)>T −1c = e(x)>T −1L−1f . We thus obtain the Levin–

Chebyshev collocation method:

Algorithm 2.4 Levin–Chebyshev collocation method

Given a function f ∈ C0[−1, 1], g ∈ C1[−1, 1] and integer n, compute QT
ω,n[f ] as follows:

1: Let f = f(xT);

2: Construct L = T −1D + iωGT −1 in matrix form;

3: Define

QT
ω,n[f ] = un(1)eiωg(1) − un(−1)eiωg(−1) =

(
eiωg(1)e(1)> − eiωg(−1)e(−1)>

)
T −1L−1f .

In this algorithm, we needed to compute L−1f . For fixed n, L is well-conditioned for

sufficiently large ω, however, the condition number does increase as n→∞. We demonstrate

this issue in Figure 1, where the integral

Iω[f ] =
∫ 1

−1

1

x2 + 1
eiω sin(x+ 1

4) dx,

is approximated by QT
ω,n[f ] and L−1f is computed using Gaussian elimination. The numer-

ical instability at low frequencies of the algorithm is evident.
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3. GMRES

In [15], L−1f was computed using TSVD, resulting in the delaminating quadrature

method. Indeed, numerical experiments suggest that the error caused by numerical insta-

bility is reduced if an algorithm based on LAPack is used. As an alternative, we will use

gmres, which will not suffer from the same problems with stability as Gaussian elimination.

Moreover, this approach has the remarkable property that the method converges faster when

ω is large. In other words, for a fixed value n, less work is required for large ω to compute

L−1f .

We now describe the gmres algorithm. The Krylov subspace is defined as follows:

Definition 3.1 For f ∈ Cn and M ∈ Cn×n, the Krylov subspace is

Km[M,f ] = span
{
f ,Mf , . . . ,Mm−1f

}
.

Assume that f is not identically zero and that Km[M,f ] has dimension m. Then Arnoldi

iteration generates n×m matrices Qm = (q1, . . . , qm) and (m+ 1)×m Hessenberg matrices

Hm =



h1,1 h1,2 · · · h1,m

h2,1 h2,2
. . .

...
. . . . . . hm−1,m

hm,m−1 hm,m
hm+1,m


with the following properties:

• (q1, . . . , qm) form an orthonormal basis of Km[M,f ];

• q1 = f/ ‖f‖ and MQm = Qm+1Hm.

The algorithm typically used is essentially the Gram–Schmidt process — see [28] for

details of the algorithm — applied to the matrix (q1, . . . , qm,Mqm). Thus Arnoldi iteration

does not require M in matrix form; rather, it only requires the ability to apply M to a

fixed vector. The benefit in our case is that the operator M can be applied to a vector in

O(n log n), where applying the operator in matrix form would take O
(
n2
)

operations. An

alternative to this algorithm is Arnoldi–Householder iteration, cf. [25]. This version ensures

that the columns of Qm remain orthonormal for large n, as opposed to the Gram–Schmidt

process which eventually loses orthogonality. In this case,

q1 = −e−i arg e>1f
f

‖f‖
.

In this paper, we use the Gram–Schmidt version for simplicity.
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gmres is an algorithm which finds an element vm ∈ Km[M,f ] such that ‖Mvm − f‖ is

minimal. Since the columns of Qm span Km[M,f ], we can write vm = Qmdm, hence

‖Mvm − f‖ = ‖MQmdm − ‖f‖ q1‖ = ‖Qm+1(Hmdm − ‖f‖ e1)‖ = ‖Hmdm − ‖f‖ e1‖ .

Thus we need only find the least squares solution which minimizes ‖Hmdm − ‖f‖ e1‖. Thus

the standard gmres algorithm is as follows:

Algorithm 3.2 [26] gmres

Given a vector f ∈ Cn and operator M ∈ Cn×n, compute vm as follows:

1: Compute Qm and Hm using Arnoldi iteration on M and f ;

2: Use least squares to find dm ∈ Cm which minimizes the norm

‖Hmdm − ‖f‖ e1‖ ;

3: Define
vm = Qmdm.

In [8], it was noted that gmres performs especially well for shifted linear operators of

the form
M = M0 + iω,

where M0 ∈ Cn×n is independent of ω. This is explained via the following theorems, which

imply that we we can reuse the Arnoldi process applied to the case ω = 0 for all other

values of ω, the resulting least squares system is well-conditioned and gmres obtains a high

asymptotic order for ω →∞.

Theorem 3.3 [6] Suppose that Arnoldi iteration with M0 ∈ Cn×n and f ∈ Cn×n returns

Q̃m and H̃m. Then Arnoldi iteration applied to the operator M = M0+iω returns Qm = Q̃m
and the Hessenberg matrix

Hm,ω = H̃m + iωIm+1,m for the (m+ 1)×m matrix Im+1,m =


1

. . .
1

 .

Corollary 3.4 [19] Any condition number κ(Hm,ω)→ 1 as ω →∞.

Corollary 3.5 [19]

‖Mvm − f‖ = O
(
ω−m

)
as ω →∞.
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To take advantage of these results, we must premultiply L so that it takes the form

M0 + iω. Since we still are assuming that g′ does not vanish, this is trivial: we use the
operator

M = LT G−1 = DG−1 + iω, (3.1)

where D is the Chebyshev differentiation matrix

D = T −1DT .
We then want to solve

Mv = f . (3.2)

The coefficients c are equal to T G−1v, hence now

un(x) = e(x)>c = e(x)>T −1T G−1v = e(x)>G−1v.

Applying gmres to solve (3.2) results in the following algorithm:

Algorithm 3.6 gmres–Levin collocation method

Given a function f ∈ C0[−1, 1] and g ∈ C1[−1, 1] such that g′ does not vanish, compute

QM
ω,n,m[f ] as follows:

1: Precompute Qm and H̃m using Arnoldi iteration with DG−1 and f = f
(
xT
)
;

2: Construct Hm,ω = H̃m + iωIm+1,m;

3: Use least squares to find dm ∈ Cm which minimizes the norm

‖Hm,ωdm − ‖f‖ e1‖ ;

4: For vm = Qmdm, define

QM
ω,n,m[f ] =

(
eiωg(1)e(1)> − eiωg(−1)e(−1)>

)
G−1vm

=
eiωg(1)

g′(1)
e>n vm −

eiωg(−1)

g′(−1)
e>1 vm.

Q.E.D.

We now demonstrate QM
ω,n,m[f ] in Figure 2 on the example from Figure 1. Here we

fix n = 40, and investigate the behaviour as m increases. For the low frequencies (.1,1

and 3), we achieve a significantly more accurate approximation than in Figure 1. Note

that Algorithm 3.6 requires O(mn log n) operations, whereas Algorithm 2.4 with Gaussian

elimination requires O
(
n3
)

operations. Thus for all frequencies we achieve roughly machine

precision with less computation.
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Figure 2: The error in approximating
∫ 1
−1

1
x2+1

eiω sin(x+ 1
4) dx by QM

ω,40,m[f ] for ω = 0.1 (left,
plain), 1 (left, dotted), 3 (left, dashed), 10 (both, thick), 30 (right, plain), 50 (right, dotted) and
100 (right, dashed).

In the following theorem we prove the asymptotic order of this method as ω →∞. This

was the motivation for using Chebyshev–Lobatto points, rather than the standard Cheby-

shev points: interpolation at the endpoints increases the asymptotic order from O
(
ω−1

)
to

O
(
ω−2

)
.

Theorem 3.7

Iω[f ]−QM
ω,n,m[f ] = O

(
ω−2

)
as ω →∞.

Proof : From (1.2), (2.2) and (3.1) we find that

QM
ω,n,m[f ] = Iω[Le(x)>G−1vm] = Iω[e(x)>LT G−1vm] = Iω[e(x)>Mvm];

hence,

Iω[f ]−QM
ω,n,m[f ] = Iω[e(x)>(f −Mvm)] + Iω[f − e(x)>f ].

Corollary 2.1 in [24] states that if pω, p
′
ω = O

(
ω−α

)
and 0 = pω(±1) = · · · = p

(s−1)
ω (±1),

then

Iω[pω] = O
(
ω−s−α−1

)
.

Thus, with pω = f − e(x)>f , α = 0 and s = 1 we find that Iω[f − e(x)>f ] = O
(
ω−2

)
.

Furthermore, from Corollary 3.5 we know that f −Mvm = O
(
ω−m

)
; hence, with s = 0 and

since e(x)>(f−Mvm), e(x)>D(f−Mvm) = O
(
ω−m

)
, Iω[e(x)>(f−Mvm)] = O

(
ω−m−1

)
,

which completes the proof.

Q.E.D.
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The proof of this theorem explains the behaviour of the error in Figure 2. The error

behaves like O
(
ω−m

)
, ω → ∞, until the error is dominated by Iω[f − e(x)>f ], i.e., the

error in interpolating f at n Chebyshev–Lobatto points. Thus if n is large enough that f is

resolved to machine precision, then the effective asymptotic order is O
(
ω−m

)
.

4. Differential GMRES and convergence

There is an alternate way to view the method we have just constructed. In [19], a

particular solution to (1.1) was found by applying gmres not to a discretization of the

differential equation, but, rather, to the differential equation itself. In other words, for

f, g ∈ C∞[−1, 1] and

M = D 1

g′
+ iω,

we find a function vm in the Krylov subspace

Km[M, f ] = span
{
f,Mf, . . . ,Mm−1f

}
that minimizes some seminorm

‖Mvm − f‖ .
The algorithm is essentially the same as Algorithm 3.2, where now an infinite-dimensional

Arnoldi iteration uses a semi-inner product 〈·, ·〉 to produce a quasimatrix QMm = (q1, . . . , qm)

and Hessenberg matrix Hm ∈ C(m+1)×m such that (assuming ‖f‖ is nonzero)

q1 =
f

‖f‖
and MQMm = QMm+1Hm.

Then we determine dMm by minimizing the finite-dimensional norm∥∥∥Hmd
M
m − ‖f‖ e1

∥∥∥,
resulting in the method

QMω,m[f ] =
eiωg(1)

g′(1)
QMm (1)dMm −

eiωg(−1)

g′(−1)
QMm (−1)dMm .

When g′(x) = x, the gmres–Levin collocation method can be thought of as replacing f by

its n-degree Chebyshev polynomial e(x)>f , and apply differential gmres to e(x)>f :

QM
ω,n,m[f ] = QMω,m[e(x)>f ].

This connection will allow us to prove convergence. Note that these convergence proofs

only hold in the idealized case where there is no round-off error, see Section 6 for problems

associated with letting n increase. The first result is for the convergence of differential
gmres:
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Theorem 4.1 [19] Suppose there exists a simply connected open set U in the complex

plane containing zero such that

w(t) =
f(g−1(t))

g′(g−1(t))
eiωt

can be analytically continued throughout U + [−1, 1]. If there exists a sequence of balls

{B1, B2, . . .} ⊂ U such that ‖w‖L∞[Bk+[−1,1]] → 0 as k →∞, then

‖Mvm − f‖T → 0 as m→∞.
.

When ω is real, we obtain a simpler condition: for ε > 0 and a curve p(t) such that

p(0) = −ε and Im p(t)→ +∞, if

f(g−1(t))

g′(g−1(t))

can be analytically continued along p(t) + [−1 − ε, 1 + ε] with at most exponential growth,

then
‖Mvm − f‖T → 0 as m→∞

for sufficiently large ω.

The following lemma proves that the error in the finite dimensional gmres algorithm

approaches the error for differential gmres as n→∞.

Lemma 4.2 Suppose that f ∈ Cm+2[−1, 1] and g ∈ C∞[−1, 1]. Then

lim sup
n→∞

‖Mvm − f‖ ≤ ‖Mvm − f‖T .

Proof : We use the notation that Qm denotes the orthonormal basis returned by Arnoldi

iteration with M and f and vm the resulting gmres approximation. Let QMm = (q1, . . . , qm)

be a quasimatrix whose columns form an orthonormal basis for Km[M, f ], which is produced

by Arnoldi iteration with the Chebyshev inner product. We can then write vm = QMm d
M
m .

From the definition of gmres we know that

‖Mvm − f‖ ≤
∥∥∥MQmd

M
m − f

∥∥∥ .
But ∥∥∥MQmd

M
m − f

∥∥∥ =
∥∥∥e(x)>MQmd

M
m − e(x)>f

∥∥∥
T

≤
∥∥∥e(x)>MQmd

M
m −MQMm d

M
m

∥∥∥
T

+
∥∥∥MQMm d

M
m − f

∥∥∥
T

+
∥∥∥f − e(x)>f

∥∥∥
T
. (4.1)
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From the theory of polynomial interpolation, we know that, as n→∞,

e(x)>f → f(x),

e(x)>Mf →Mf(x),

...

e(x)>Mmf →Mmf(x).

It follows immediately that the last norm in (4.1) goes to zero. We now show that the first

norm goes to zero, or in other words e(x)>MQm →MQm. Since ‖f‖ → ‖f‖T , it is evident

that

e(x)>Mkq1 = e(x)>Mk f

‖f‖
→ M

kf

‖f‖T
=Mkq1 for k = 0, . . . ,m.

Now assume that

e(x)>Mkqj →Mkqj for k = 0, . . . ,m− j + 1.

From the Arnoldi algorithm [25] we know that qj+1 is equal to the normalization of (using

∗ to denote the conjugate transpose)

Mqj − (q∗1Mqj)q1 − · · · − (q∗jMqj)qj

But

e(x)>Mk
[
Mqj − (q∗1Mqj)q1 − · · · − (q∗jMqj)qj

]
→Mk

[
Mqj − 〈q1,Mqj〉T q1 − · · · − 〈qj ,Mqj〉T qj

] for k = 0, . . . ,m− j.

Normalizing both sides shows us that

e(x)>Mkqj+1 →Mkqj+1 for k = 0, . . . ,m− j.

Thence e(x)>MQm →MQMm . It follows that

lim sup
n→∞

‖Mvm − f‖ ≤
∥∥∥MQMm d

M
m − f

∥∥∥
T

= ‖Mvm − f‖T .

Q.E.D.

Combining the preceding two lemmas we obtain a proof of convergence:

Theorem 4.3 Assuming the conditions of Theorem 4.1 apply, we can choose integers nm
such that

QM
ω,nm,m[f ]→ Iω[f ] as m→∞.

12



Proof : Note that

1√
2

∣∣∣QM
ω,n,m[f ]− Iω[f ]

∣∣∣ =
1√
2

∣∣∣Iω[e(x)>Mvm − f ]
∣∣∣

≤
∥∥∥e(x)>Mvm − f

∥∥∥
2
≤
∥∥∥e(x)>Mvm − f

∥∥∥
T

≤ ‖Mvm − f‖+
∥∥∥e(x)>f − f

∥∥∥
T

≤ ‖Mvm − f‖T +
∥∥∥e(x)>f − f

∥∥∥
T

+ em,n,

where em,n = |‖Mvm − f‖T − ‖Mvm − f‖| . Due to Theorem 4.1, we can choose m large

enough so that ‖Mvm − f‖T < ε. We can also choose n = nm large enough so that∥∥∥e(x)>f − f
∥∥∥
T

and em,nm are also less than ε, which completes the proof. Q.E.D.

5. Stationary points

We now consider the case where g′ vanishes at zero. In the following discussion, we

assume that g itself also vanishes at zero. This is justified, as

∫ 1

−1
feiωg dx = eiωg(0)

∫ 1

−1
feiω[g−g(0)] dx.

To motivate the method, we first approach the problem in the differential gmres context.

Thus we want to multiply L = D + iωg′ on the right so it takes the form M =M0 + iω for

some linear operatorM0 : C∞[−1, 1]→ C∞[−1, 1]. In this case, the operator D 1
g′ introduces

a singularity, hence fails the requirement thatM0 must map C∞[−1, 1] to C∞[−1, 1]. Instead,

we will premultiply the operator so that the resulting singularity is removable.

Suppose we can find functions φω,0, . . . , φω,r−2 ∈ C∞[−1, 1] such that

DjLφk(0) = δk,j , j = 0, . . . , r − 2,

where δk,j is the Kronecker delta and each Lφk is independent of ω (which we emphasize by

dropping the dependence on ω in the notation). We can then define the operator

Rv = v(0)Lφ0 + · · ·+ v(r−2)(0)Lφr−2.

When g(x) = xr, our choice of φω,k will satisfy Lφk = xk

k! , and hence this reduces to the first

r − 1 terms of the Taylor series of v.

Now consider the operator

Pv =
v −Rv
g′

+ iω(v(0)φω,0 + . . .+ v(r−2)(0)φω,r−2),

13



For any v ∈ C∞[−1, 1], (v −Rv)/g′ has a removable singularity at zero, thus

Mv = LPv = D
[
v −Rv
g′

]
+ iωg′

v −Rv
g′

+ iω(v(0)Lφ0 + . . .+ v(r−2)(0)Lφr−2)

= D
[
v −Rv
g′

]
+ iωv (5.1)

does indeed map C∞[−1, 1] to C∞[−1, 1]. As before, solving Mv = f allows us to compute

Iω[f ]:

Iω[f ] = Iω[Mv] = Iω[LPv] = Pv(1)eiωg(1) − Pv(−1)eiωg(−1).

The remaining question is how to construct the functions φk. One choice is found in

[21], which we generalize here to be valid in the complex plane. Define

r√g (x) = g(r)(0)
1
rx

(
g(x)

g(r)(0)xr

) 1
r

, x 6= 0,

r√g (0) = 0.

The notation is justified since

r√g (x)r = g(r)(0)xr
g(x)

g(r)(0)xr
= g(x).

Since g(x) = g(r)(0)
r! xr +O

(
xr+1

)
, g(x)

g(r)(0)xr
> 0 near zero, hence r√g is an analytic function

in [−1, 1] as long as g(x) only vanishes at zero. When g(x) > 0 for x > 0, r√g can be viewed

as an analytic continuation of g(x)1/r from (0, 1] to [−1, 1].

We now define

φ̃ω,k(x) = e−iωg(x)
∫ r√g (x)

0
tkeiωtr dt.

For all k and r, the moment in this expression can be determined from the definition of the

derivative of the incomplete Gamma function, cf. [1], giving us:

∫ x

0
tkeiωtr dt =

(−iωxr)
−1−k
r x1+k

r

[
Γ

(
1 + k

r

)
− Γ

(
1 + k

r
,−iωxr

)]
.

(All branch cuts are the standard choices). Alternatively, when r = 2 we only need the first

moment, which can be expressed in terms of the error function:

∫ x

0
eiωt2 dt =

1 + i

2

√
π

2ω
erf e

3π
4 i√ω x. [1]

14



Differentiating we obtain

r√g ′(x) = g(r)(0)
1
r

( g(x)

g(r)(0)xr

) 1
r

+
1

r
x

(
g(x)

g(r)(0)xr

) 1
r−1 (

g′(x)

g(r)(0)xr
− r g(x)

g(r)(0)xr−1

)
=

1

rg
r√g g′.

It follows that

Lφ̃k = φ̃′ω,k + iωg′φ̃ω,k

= e−iωg

[
−iωg′

∫ r√g

0
tkeiωtr dt+ r√g k r√g ′eiω r√g r + iωg′

∫ r√g

0
tkeiωtr dt

]

= r√g k+1 g
′

rg
,

which is, as desired, independent of ω. A straightforward calculation shows that DjLφ̃k(0) =

0 for j < k, and DjLφ̃j(0) 6= 0. Thus we can define φω,k as follows:

φω,r−2 =
φ̃ω,r−2

Dr−2Lφ̃r−2(0)
,

φω,r−3 =
1

Dr−3Lφ̃r−3(0)

[
φ̃ω,r−3 − φ̃(r−2)

ω,r−3(0)φr−2

]
,

φω,r−4 =
1

Dr−4Lφ̃r−4(0)

[
φ̃ω,r−4 − φ̃(r−3)

ω,r−4(0)φω,r−3 − φ̃(r−2)
ω,r−4(0)φr−2

]
,

...

φω,0 =
1

Lφ̃0(0)

φ̃ω,0 − r−2∑
k=1

φ̃
(k)
ω,0(0)φω,k

 .
With this in hand, we can define a differential gmres algorithm for integrals with sta-

tionary points:

Algorithm 5.1 Differential gmres with stationary points

Given f, g ∈ C∞[−1, 1] such that g′(0) = g′′(0) = . . . = g(r−1)(0), g(r)(0) 6= 0, g′(x) 6= 0

and g(x)−g(0) 6= 0 for 0 < |x| ≤ 1, and a semi-inner product 〈·, ·〉 defined over Km[M, f ],

compute QMω,m[f ] as follows:

1: If g(0) 6= 0, then run the algorithm with g − g(0) in place of g to determine QMω,m[f ],

and return

eiωg(0)QMω,m[f ]; otherwise,
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2: Run Arnoldi iteration on M0 = D 1
g′ [I −R] and f ;

3: Define Hm,ω = H̃m + iωIm+1,m;

4: Use least squares to find dMm ∈ Cm which minimizes the norm∥∥∥Hm,ωd
M
m − ‖f‖ e1

∥∥∥ ;

5: Define v = QMm d
M
m and

QMω,m[f ] = eiωg(1)Pv(1)− eiωg(−1)Pv(−1)

= eiωg(1)v(1)−Rv(1)

g′(1)
− eiωg(−1)v(−1)−Rv(−1)

g′(−1)

+iωµ>ω

 v(0)
...

v(r−2)(0)


for

µω =

 φω,0(1)eiωg(1) − φω,0(−1)eiωg(−1)

...
φω,r−2(1)eiωg(1) − φω,r−2(−1)eiωg(−1)

.

There is a significant problem with this algorithm, even if we assume that derivatives

of f and g are easily computable. The removable singularity introduced is a numerical and

logistical nightmare. Using the L2 inner product computed with an adaptive quadrature

scheme will fail, as near the removable singularity round-off error explodes. If we instead use

a semi-inner product based on Gaussian or Clenshaw–Curtis quadrature with a fixed number

of sample points, we are still left with the problem of computing QMm and its derivatives at

zero. This can be accomplished with L’Hopital’s rule, but is too cumbersome to be practical.

To avoid these issues, we will convert the problem to a finite-dimensional version à la

Section 2 and Section 3. We assume the first r derivatives of g are still available, and

construct φω,0, . . . , φω,r−2 as we did before.

Note that, for v ∈ Cn, we define R by

(Re(x)>v)(xT) = (Lφ0(xT)e(0)> + . . .+ Lφr−2(xT)e(0)>Dr−2)v

= Rv.

At first glance, a finite-dimensional version of (5.1) seems clear:

M =
?
DG−1[I −R] + iω.
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Indeed, when n is even, this is the definition we use. When n is odd, however, G becomes

singular, as the ((n+ 1)/2, (n+ 1)/2) entry of G is zero. Thus we must utilize L’Hopital’s

rule to determine the ((n+ 1)/2, (n+ 1)/2) entry of Mv. Define

G̃ = diag (g′(−1), . . . , g′(e>n
2−1x

T), 1, g′(e>n
2 +1x

T) . . . , g′(1)).

Then, for v = v(xT),

Mv(xT) ≈
(
DG̃−1[I −R] + iω

)
v

is valid for every entry except the (n+ 1)/2 entry. At zero, we utilize L’Hopital’s rule:

v(0)−Rv(0)

g′
=
Dr−1(v(0)−Rv(0))

g(r)(0)
≈ 1

g(r)(0)
Dr−1(I −R)v.

Thus

Mv(xT) ≈Mv

for

M = D

[
G̃−1 +

1

g(r)(0)
e(0)e(0)>Dr−1

]
(I −R) + iω,

where we use e(0) to denote e(n+1)/2. This motivates the following algorithm:

Algorithm 5.2 gmres–Levin collocation method for stationary points

Given f ∈ C0[−1, 1] and g ∈ Cr[−1, 1] such that g′(0) = g′′(0) = . . . = g(r−1)(0),

g(r)(0) 6= 0, g′(x) 6= 0 and g(x)−g(0) 6= 0 for 0 < |x| ≤ 1, compute QM
ω,n,m[f ] as follows:

1: If g(0) 6= 0, then run the algorithm with g − g(0) in place of g to determine QM
ω,n,m[f ],

and return

eiωg(0)QM
ω,n,m[f ]; otherwise,

2: Define

M0 =

DG
−1(I −R) if n is even,

D
[
G̃−1 + 1

g(r)(0)
e(0)e(0)>Dr−1

]
(I −R) otherwise;

3: Precompute Qm and H̃m using Arnoldi iteration with M0 and f = f
(
xT
)
;

4: Define Hm,ω = H̃n + iωIn+1,n;

5: Use least squares to find dm ∈ Cm which minimizes the norm

‖Hm,ωdm − ‖f‖ e1‖ ;
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6: For vm = Qmdm and µω as defined in Algorithm 5.1, define

QM
ω,n,m[f ] =

(
−eiωg(−1)

g′(−1)
, 0, . . . , 0,

eiωg(1)

g′(1)

)
(I −R)vm + iωµ>ω


e(0)>

e(0)>D
...

e(0)>Dr−2

vm.

Q.E.D.

As before we only need to compute the Arnoldi iteration and evaluate the integrand

once for all values of ω. There is now, however, the additional work of computing µω, which

depends on computing the incomplete Gamma function or error function. Both of these can

be computed efficiently, using methods described in [5, 16].

Assuming that QMω,m[f ]→ Iω[f ], similar logic to Section 4 should prove the convergence

of this method. Unfortunately, a convergence prove for QMω,m[f ] is unknown, and we leave it

as an open problem.

Computing Bessel functions

We will employ this the method to compute the Bessel function throughout the complex

plane. When ν is an integer, we have the integral representation

Jν(z) =
1

π

∫ π

0
cos(νt− z sin t) dt [1]

=
1

2

∫ 1

−1
cos

(
νπ
x+ 1

2
− z sin π

x+ 1

2

)
dx

=
1

4

∫ 1

−1

[
ei(νπ x+1

2 −z sinπ x+1
2 ) + e−i(νπ x+1

2 −z sinπ x+1
2 )
]

dx

=
eiz−iνπ/2

4
I−z[fν ] +

e−iz+iνπ/2

4
Iz[fν ],

where fν(x) = e−iνπ x2 and

Iz[f ] =
∫ 1

−1
f(x)eiz(1−sinπ x+1

2 ) dx.

Thus we approximate Jν(z) by

JMν,n,m(z) =
eiz−iνπ/2

4
QM
−z,n,m[fν ] +

e−iz+iνπ/2

4
QM
z,n,m[fν ],
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Figure 3: Error in approximating J1(z) by JM1,25,m(z) for complex z and four choices of m. The
error is the absolute error when |J1(z)| < 1 and the relative error otherwise.

Note that for fixed ν, n and m, the Arnoldi process need only be performed once to compute

JMν,n,m(z) for all values of z throughout the complex plane, though we do need to compute

the error function for each additional choice of z.

Figure 3 demonstrates the method for approximating J1(z). Note that we are only using

25 function evaluations, and the method converges to machine precision throughout the

complex plane.

Because numerical methods for approximating Bessel functions have been developed

and refined considerably, other methods should be faster, see [16] for a list of publications.

Such methods are typically based on a combination of asymptotic expansions, recurrence

relationships and contour integration in the complex plane [9].

Remark : As a rough idea of the speed of JMν,n,m(z), if the Arnoldi iteration is precomputed
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Figure 4: The error in approximating
∫ 1
−1

1
x+2 eiωx dx by QMω,m[f ] (plain) and QM

ω,n,m[f ], for
n = 50 (plain), 100 (dotted), 200 (dashed) and 400 (thick), for four choices of ω.

then the method takes about 0.01 seconds on my 2005 PowerBook G4 in Mathematica

6.0 for each additional z, using the built-in routine to compute the error functions. For

comparison, the built-in routine for computing J1 typically takes about 0.001 seconds.

6. Numerical problems for large degree polynomials

We will now briefly investigate how the method breaks down as n becomes large. In

Figure 4, we approximate the integral

∫ 1

−1

1

x+ 2
eiωx dx

using QM
ω,n,m[f ]. It can clearly be seen in this figure that the number of Arnoldi iterations

required increases as n increases. On the other hand, in the infinite-dimensional case (i.e.,

n =∞), differential gmres converges nicely.

This phenomenon can be explained heuristically by round-off error in the DCT. As

touched on in Section 4, the method can be considered as replacing f by the polynomial

pn = e(x)>f , and applying the differential gmres method to p. But as n becomes large,
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the nth Chebyshev coefficient of pn will not go to zero, but rather to something on the

order of machine epsilon. As n → ∞, Tn blows up in the complex plane, and in the limit,

Theorem 4.1 will not apply.

It should be emphasized that these errors are not caused by the fact that the derivatives

of pn do not accurately approximate the derivatives of f . Successfully evaluating Iω[pn]

is sufficient to approximate Iω[f ], and the former does not depend on f itself. Replacing

Chebyshev series by another approximant which does not blow up in the complex plane

for large n should hopefully resolve the issue. An alternative being investigate is to use a

Chebyshev–Padé approximation, as rationals decay in the complex plane.

We remark that, even with these problems, the gmres–Levin collation method (Al-

gorithm 3.6) with n = m is still significantly more accurate than the Levin–Chebyshev

collocation method (Algorithm 2.4) with Gaussian elimination. Furthermore, it only takes

O
(
n2 log n

)
operations; hence, it is more efficient than either Gaussian elimination or the

TSVD approach of [15].

7. Conclusion

We have constructed a numerically stable method for computing highly oscillatory inte-

grals with or without stationary points, which does not require knowledge of the derivatives

of f . We retain the most important computational property of the asymptotic methods:

high frequency requires less work. Applying this algorithm to the computation of Bessel

functions resulted in a scheme which, in some sense, converges everywhere in the complex

plane.

In the future, we hope to generalize these results for computing multivariate integrals

with stationary points over general domains. A multivariate oscillatory integral without

stationary points over a domain Ω can be expressed as an oscillatory integral with an expo-

nential oscillator over the boundary of Ω [23]. If we tried to combine the results of Section 5

with this approach, we would obtain an integral over the boundary in terms of the incom-

plete Gamma function. Thus to generalize the method for bivariate integrals, we would need

to be able to compute highly oscillatory univariate integrals whose kernel is the incomplete

Gamma function. How to accomplish this requires investigation.

We could apply this method to other oscillatory kernels. A Levin collocation method has

been constructed for oscillatory integrals whose kernel satisfies an ODE [13, 22]. Generalizing

Algorithm 3.6 for the case where the domain of integration does not contain a turning point

of the ODE would be straightforward. Perhaps a generalization of Algorithm 5.2 can be

constructed for kernels with turning points. For kernels which satisfy second order ODEs,

we would most likely have to replace the incomplete Gamma function with a special function

that satisfies

φ′′ + ω2xrφ = xk k = 0, . . . , r − 1.
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When r = 1, these are known as Scorer’s functions [18].

References

[1] Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, National Bureau

of Standards Appl. Math. Series, #55, U.S. Govt. Printing Office, Washington,

D.C., 1970.

[2] Battles, Z. and Trefethen, L.N., An extension of Matlab to continuous functions and

operators, SIAM J. Sci. Comput. 25 (2004), 1743–1770.

[3] Berrut, J.-P. and Trefethen, L.N., Barycentric lagrange interpolation, SIAM Review 46

(2004), 501–517.

[4] Clenshaw, C. W. and Curtis, A. R., A method for numerical integration on an

automatic computer, Numer. Math. 2 (1960), 197–205.

[5] Cody, W. J., An Overview of Software Development, Lecture Notes in Mathematics,

506, Numerical Analysis, Dundee G.A. Watson (ed.), Springer-Verlag, Berlin, 1976.

[6] Datta, B.N. and Saad, Y., Arnoldi methods for large Sylvester-like observer matrix

equations and an associated algorithm for partial pole assignment, Linear Algebra

Appl 154–156 (1991), 225–244.

[7] Deaño, A. and Huybrechs, D., Complex Gaussian quadrature of oscillatory integrals,

Numer. Math., to appear.
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