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A b s t r a c t  

A collocation method for approximating integrals of rapidly oscillatory functions is analyzed. The method is efficient 
for integrals involving Bessel functions J,.(rx) with a large oscillation frequency parameter r, as well as for many other 
one- and multi-dimensional integrals of functions with rapid irregular oscillations. The analysis provides a convergence 
rate and it shows that the relative error of the method is even decreasing as the frequency of the oscillations increases. 
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1. Introduction 

In [2] a new method for the numerical integration o f  rapidly oscillatory integrals is presented and 
tested. The integrals are o f  the form 

f t, 

1 = / ~  g (x )S ( rx )dx ,  (1.1) 

where S is an oscillatory function and r is a large parameter and a and b are real and finite. 
Approximating I by usual numerical integration algorithms requires many function evaluations o f  g 
and S. Sometimes the evaluation o f  g is very expensive, and the computation becomes highly time 
consuming for very large values o f  r. The method in [2] is an extension o f  the collocation method 
presented in [1] for integrals o f  the type 

P b 

I = ] g(x)e iq(x~ dx, (1.2) 
J ,  
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with maxxc[,,.b]{[q'(x)l } > > ( b - a )  -~. The collocation method presented in [2] is applicable to a wide 
class of  oscillatory integrals with weight functions S satisfying certain differential conditions. For 
example, it is appropriate for computing integrals of  the form 

.fb g(X ) cos( rlx )Jv( r2x ) dx, (1.3) 

for large rl and r2 and integrals involving S(x) = J,2.(rx). It is demonstrated in [2] by numerical 
examples that the efficiency of the method does not deteriorate as the parameters r, r~ or r2 increase. 
Simple classification rules for a large class of  oscillatory functions S which satisfy the required 
conditions for the application of the method are also presented in [2]. 

An analysis of  the collocation method presented in [1], for integrals of  the form (1.2), is pre- 
sented in [3]. In the present paper we extend the analysis in [3] to the more general framework 
of  [2]. In the next section we review the collocation method of  [2]. It is presented as an nth-order 
collocation method, where n is the number of collocation points, or equivalently the dimension of 
the approximation space. In the present work we analyze an h-method version of  that method. The 
interval [a,b] is subdivided into subintervals of  length h, on each of which an nth-order collocation 
method is applied and the resulting approximations are aggregated. The error analysis presented in 
Section 3 deals with the case of  a f ixed order n and h ---, 0. The important result obtained here is 
that the relative error in the collocation approximation is even decreasing as the frequency of  the 
oscillations increases. 

2. The collocation scheme 

The method presented in [2] is designed to handle a wide class of  rapidly oscillatory integrals of  
the form 

I = w t (x ) f ( x )dx  =__ (w , f )  (x)dx, (2.1) 

where f ( x ) =  (f~(x) . . . . .  J~,(x)) t is an m-vector of  nonrapidly oscillatory functions and w(x) = 
(w~(x) . . . . .  w,,(x))' is an m-vector of  linearly independent rapidly oscillatory functions. It is assumed 
that lw t,,, satisfy a system of  ordinary differential equation of  the form I. ~ J i =  

w'(x) = A(x)w(x), (2.2) 

where A(x) is an m x m matrix of nonrapidly oscillatory functions. The integrals considered in [1] 
b 

satisfy (2.1)-(2.2) with m = 1, while integrals involving Bessel functions, as .f,~ 9(x)J~(rx)dx with 
large r, satisfy (2. i ) - (2 .2)  with m = 2. For the second case we take w(x) = (Jv-i(rx),J,.(rx)) t, which 
satisfies (2.2) with 

A ( x ) =  ( ( v -  l)/x - r  ) 
r - v / x  " (2.3) 

The idea in [2] is to represent the integrand in (2.1) as a derivative of  a known function. Namely, 
let v(x) = (v,(x) . . . . .  v,,(x)) t be an m-vector function such that 

(w, v)' = (w, f ) ,  (2.4) 
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then the integral I can be expressed as 

,h  

I = / (w, v)' (x) dx = wT(b)v(b) - wt (a)v(a) .  (2.5) 
J a  

It follows from (2.4) that v should satisfy a system of  ordinary differential equations 

Lv :- v' + Atv = f .  (2.6) 

The problem of evaluating I is thus transformed into the problem of  finding an approximation to 
a solution of (2.6), with no boundary conditions prescribed. 

By the above assumptions, f and A are not rapidly oscillatory. Therefore, as we are going to 
prove here, the system (2.6) has a particular solution which is not rapidly oscillatory. It is suggested 
in [2] to find an approximation to this particular solution by collocation with 'nice' functions, e.g., 
polynomials, as follows. 

For i =  1 . . . . .  m let {u~il}~=l be some linearly independent basis functions on [a,b]. An n-point 
(nth-order) collocation approximation to the solution of (2.6) is defined as ~(x) = (Vl(X),...,'rm(X))t, 
where 

/7 

t-3i(x) = ~_ci .ku~' l(x) ,  i = l , . . . ,m,  (2.7) 
k - I  

f c Im 'n  where the coefficients ~ ~.kS,~l.k=l are determined by the collocation conditions 

L-v(xi) = f ( x j ) ,  j = 1 . . . . .  n, (2.8) 

where {xj}~= 1 are regularly distributed in [a,b]. Following (2.5), the corresponding n-point approx- 
imation to the integral (2.1) is given by 

I, =-- (w(b))t?,(b) - (w(a)) t -v(a) .  (2.9) 

We remark that the order n is going to be fixed throughout the paper. Therefore, to reduce 
notation complexity, we avoid indexing the nth-order approximation to the solution of (2.6) by n. 
It follows from (2.5) that the error 1 - I ,  is determined by the error in the approximate solution 
of (2.6) at the endpoints of  the interval, and this matter is pursued in the next section. Numerical 
examples demonstrating the application of the collocation method are given in [2]. The examples 
include S ( x )  = J, .(rx),  S ( x )  = J~2(rx) and S ( x )  = cos(rlx)J~.(r2x), and it is shown that the collocation 
method is easily applicable for all these cases, and is very efficient. 

3. Error analysis 

In the present work we fix the order n of the collocation and consider an h-method version as 
follows: The interval [a,b] is subdivided into E equal subintervals [tj_l , t j] ,  i ~<j~<f, ti = a + j h ,  of 
length h = (b - a ) / / .  On each subinterval we choose n collocation points 

sl jl = ti_~ + hsi, 1 <<.i<~n, 1 <<.j<~, 

where 0 = s~ <s2 <- • • <s ,  = 1 are reference points. The above nth-order collocation method is per- 
formed separately on each subinterval, using the monomial basis functions, namely, {u~il(x)= 



134 D. Levin/Journal of Computational and Applied Mathematics 78 (1997) 131-138 

xk-1}7,=1. Let v [ j ]  denote the resulting nth-order collocation approximation o n  [ l j _ l , t j ]  , I ~ j ~ L .  
Summing up the { approximations to the integrals on the individual intervals, we thus obtain an 
approximation of  order n to 1, which we denote as l,,h: 

l..h = [ (w( t j ) ) ' vUl ( t j )  - (w ( t j _ , ) ) ' v U l ( t j _ ,  )]. (3.1) 

The error analysis is carried out for a class of  integrals of  the form (2.1), where w(x)  satisfies 
the o.d.e, system 

w ' ( x )  -_ 5 j ( x ) w ( x ) .  (3.2) 

The major assumptions we make here are that B(x)  - (,4(x)) -I exists, is in C2"+l[a,b], and that 
w and the 2n + i derivatives of  B are bounded for 0 < e < ~ < 1. For example, for the case of  
integrals involving Bessel functions, we can write the matrix function A(x)  defined in (2.3) as 

A(x) = 1A(x), 
e 

where e = 1/r. For a > 0 and a large enough r the above conditions hold. 
In analyzing a numerical method for computing integrals of  rapidly oscillatory functions, it is 

important to note that in many cases the value of  the integral I itself tends to zero as the oscillations' 
frequency increases. It is important to have an error estimate which accounts for this fact. Under 
the conditions specified in Theorem 3.1 below, it is shown that we have 

fa 
b 

1 = w t ( x ) f ( x ) d x  = O(e) as t: ~ 0. (3.3) 

The main parameters governing the collocation method are h, the subintervals' length, n, the number 
of  collocation points at each subinterval, and the oscillation parameter e (or the 'frequency' l/e). 
The main result of  this paper is the following theorem which gives the convergence rate, for a f i x ed  
order n, as a function of  e and h. 

Theorem 3.1. Let  f E CZ"+l[a,b], B(x)  - ( cA(x ) )  -I exists, BE C 2"~ I[a,b], and its 2n+  1 derivatives 
are bounded, uniformly in e, f o r  eE(O,~).  Then 

11 - I,.~1 < c82h n-I, (3.4) 

Jor c. E (0, fl], fl > 0, where c does not depend on e and h. 

The proof of  Theorem 3.1 follows from the following two lemmas. The first lemma is concerned 
with the existence of  a 'nonoscillatory' solution of  (2.6), namely, a solution which has sufficiently 
many derivatives bounded uniformly for e E (0,~t). The second lemma deals with the error in the 
collocation approximation to that solution. 
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Lemma 3.2. Le t  f and  A sat is fy  the condi t ions  o f  Theorem 3.1. Then there exis ts  a solut ion v(x)  

o f  (2.6), 

Lv = v' + A t v  = f ,  

which satisfies 

[iD'v(x)ll < ct: on [a,b], i = 0 . . . .  ,n,  (3.5) 

where Div (x )  = (di /dx i)v(x). 

P r o o f .  Rewriting the equation as 

v = ~,Bt(f  - v'), 

let us define a sequence of  successive approximations to the solution 

Utk'll(X) = ¢ ( B ( x ) ) t ( f ( x )  - DuE~l(x)), k >~0, (3.6) 

starting with u I°l - 0. Differentiating (3.6) and using the assumption that 2n + 1 derivatives o f  B 
are bounded uniformly in e., we find out that 

IIO'ut J(x)ll - -  o 0 : )  o n  [a,b], i = 0 . . . .  , n ,  k = l , . . . , n  + 1. ( 3 . 7 )  

Therefore, u 1"+~1 satisfies the desired condition, but it is not a solution of  (2.6). We observe that 
u I"+ll satisfies Lu ln+ll = f + D(u [n+q -u tn] ) .  From the relation 

u ik' II(x) - ulkl(x) = c (B (x ) ) t (D(u  Lkl - ulk-I1)(x)), k/>0, 

it follows that 

[ [ D ( u  ["+'1 - ut"J)(x)l I = 

Now we define v(x) to be the solution of  the o.d.e system (2.6) with the initial conditions v(a)  = 
ul"+ll(a). The difference d ( x )  = v(x)  - ut"+ll(x) satisfies 

L d ( x )  = D(u ["l - u["+ll)(x) -= gl°l(x), (3.8) 

with zero initial conditions, where 9 I°1 c C"[a,b].  By standard o.d.e, theory, the solution of  Lq = g 
in [a,b], with g E C°[a,b] and initial condition q(a)  = 0, satisfies 

[Iq(x)ll ~<cllgll~, (3.9) 

for any t: E (0, ~), where [[gll  - maxxzla, bl IIg(x)l[. Here we have II t°lll  = "+ ') ,  hence lid(x)[[ = 
O0; "~1). Differentiating (3.8) it follows that d '  satisfies L d ' =  g l~l with g[q = D9 t°l - l / eA 'd .  We 
have gI~l c C"- t [a ,b ]  and [[giqll~ = O(~"), which by (3.3) implies that lid'(x)[[ = O(e,"). Repeating 
the differentiation process we get 

IlO'd(x)ll = O ( e , " - * " ) ,  i = 0 . . . .  ,n. (3.10) 

The result (3.4) now follows from (3.7) and (3.10). 
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The estimate (3.3) results from Lemma 3.2 by representing the integral (2.1) as 

/) 1 = ( w , v ) ' ( x ) d x  = wt(b)v(b) - wt(a)v(a). (3.11) 

The result of  Lemma 3.2 certainly holds for any subinterval [tj_~,tj], l ~ j < ~ l .  To examine the 
error in the nth-order approximation to the integral we express it in terms of that special solution v 
found in Lemma 3.2: 

! 

I - In, h = ~_, w(tj)t(v(tj) - (vlJl(tj))) - w(tj_l )t(v(tj-i ) - vlJl(tj-i )). (3.12) 
j - I  

Therefore, it is enough to bound the error in the local collocation approximation v [jl to v at the end 
points of  each subinterval. The next lemma establishes the error in the local collocation approximation 
v ljl at the collocation points in [t~_~,ti], which include the endpoints. 

L e m m a  3.3. Under the assumptions o f  Theorem 3.1, let v [jl denote the nth-order collocation 
approximation on [tj_l,tj], i <~j <~[, satisfying 

LtJJl(s~ jj) =.f(s~Jl), i =  1 . . . . .  n (3.13) 

and let v be the solution o f  (2.6) ensured by Lemma 3.2. Then 

]lv(sf jj ) - vtJl(s~J])[[ <~ c~:2h "-l,  (3.14) 

where c does not depend on c and h. 

Proof. Let {)-k}~-~ be the Lagrange basic functions for interpolation by a polynomial of  degree n - 1  
at the points {s~AiT=~. With these we can represent the collocation polynomial approximation on the 
interval [tj_l,tj] as viii(x) = ~ = ~  vt/](s~J])2k(x). Since )~k(S[ jl) = fi.k, the collocation equations 
defining v tjl take the form 

Dv[Jl(slJl ) + l(A(slJJ ) )tvtJl(sl jl) = .f(s~ jl), 
F,, 

This is a system for the vector of unknowns 

"~[j] = (1)[j](slJl) . . . . .  i d j T ( s l / ] ) ) t  

which can be written in the form 

(L  + ! A)'vtJ] =.7, 

i = 1 . . . . .  n. (3.15) 

(3.16) 

where f = ( f (s l  ~]) . . . .  ,f(s[nJJ)) t. The matrices L and A are of  size nm x nm, which can be written 
as block matrices: 

L m L = { ~.,~},.k=~, L,.k = .,:.~(s~Jl)l,,×,,, 

i " = A = d ag{A,},=,, A, (.4(s~J])) t. 
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Now we consider the particular solution v of  (2.6) ensured by Lemma 3.2. Let q be the polynomial 
~ f - t J l l n  then the vector of  values ~ = (v(s] jl), . . . ,  1)(s~ jl))t satisfies of  degree n - 1 interpolating v at tai j~,=~, 

the system of equations: 

where ~ = (rl . . . . .  r . ) t  where 

r~ -- v'(s} jl) - q'(slil). 1 <~i<~n. 

From the theory of  polynomial interpolation we have that 

I1~11 < ch °- '  IID%II~. (3.18) 

The vector ~ = F - ~ l J ]  satisfies the system 

(t:L + A)~ = t:7. (3.19) 

Since A is block diagonal, with invertible blocks, it follows that for an e, small enough we can write 
= ~,(~:L + A ) - ~ .  By the conditions on the invertibility of  A we conclude that 

II~!l ~<c~: max I1~11. (3.20) 
I <~i <~n 

The result (3.14) now results from (3.20), (3.18) and (3.5). ½ 

Proof  of Theorem 3.1. The proof is derived by expressing the error I - l,.h in the form (3.12) 
and using the result of  Lemma 3.3. The parameter /3 in Theorem 3.1 is the maximal /3 < z¢ so that 
(t:L ,- A) -t exists for r,E(0,/3]. ~! 

Remark 3.4. The choice of  the end points of  each subinterval as collocation points is not just a 
technical necessity for the proof. Due to this choice we obtain an O(e, z) term in (3.4) instead of  just 
an O(c,). 

Remark 3.5. The factor c in the error estimate (3.4) depends on the order n. This dependence is 
influenced by the bounds on the derivatives of  f and B f  and by the bound on the derivatives in 
polynomial approximation. In case the derivatives of  f and B f  are uniformly bounded in n, and 
the collocation points are equidistant, we get c = O(n - I"-~)  in (3.4). 

Remark 3.6. In the numerical examples in [2], the collocation points are equidistant. Better approx- 
imation results were obtained by choosing the collocation points as the extended Chebyshev points 
in each subinterval. 

Remark 3.7. For ~: small enough, and in the case that the derivatives of  f and B are available, or 
not too expensive to compute, the proof of  Lemma 3.2 suggests another approximation approach. 
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Using the recursive relation (3.6) we can construct an approximation u Ekl to the solution o f  (2.6), 
and approximate I as 

I .~ [k =-- (W, Ulkl)'(X) d x  = wt (b )u lk l (b )  - wt(a)uEkl(a).  (3.21) 

It follows that 

I1 - [kl -- O( e)+' ). (3.22) 
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