Methods for Estimating the Detection and Quantification Limits of Key Substances in Beer Maturation with Electronic Noses
<p>A schematic illustration of the formation and breakdown of fermentation by-products in the beer-making process. The figure is adapted from [<a href="#B48-sensors-24-03520" class="html-bibr">48</a>].</p> "> Figure 2
<p>The concentration development of total vicinal diketones (VDK) (<b>A</b>) [<a href="#B49-sensors-24-03520" class="html-bibr">49</a>] and 2-Phenylethanol (<b>B</b>) [<a href="#B50-sensors-24-03520" class="html-bibr">50</a>] during the beer fermentation process depending on the temperature and time.</p> "> Figure 3
<p>A diagram illustrating the determination of the LOD and the LOQ in accordance with the IUPAC’s definition, utilizing blank determination. Normal distribution and homoscedasticity are assumed.</p> "> Figure 4
<p>The normalized resistance over the concentration for sensor 24 for ethyl acetate. The calibration curve was calculated using OLS regression. Error bars correspond to the mean and standard deviation of the measurements per concentration level. The adjusted LOD is the LOD corrected by the difference between the intercept of the calibration curve and the mean sensor value of the blank.</p> "> Figure 5
<p>The calculated PC1 of sensor 24 over the concentration of ethyl acetate. Error bars correspond to the mean and standard deviation of the measurements per concentration level. The three different LOD values are shown, which were calculated using the respective method and standard deviation estimation.</p> "> Figure 6
<p>The predicted over tactual concentration for (<b>A</b>) the PLSR and (<b>B</b>) the PCR for ethyl acetate. Error bars correspond to the mean and standard deviation of the measurements per concentration level. Two different LOD values are shown, which were calculated using the annotated standard deviation estimation.</p> ">
Abstract
:1. Introduction
2. Background and Theory
2.1. Beer Fermentation and Aroma-Active Volatile Compounds
2.2. Limit of Detection
2.3. Application Limits for Multidimensional Signals
2.4. Limit of Quantification
3. Materials and Methods
3.1. Experimental
3.1.1. Sample Preparation
3.1.2. Measurement
3.1.3. Data Preprocessing
3.1.4. Calculating the LOD and the LOQ
4. Results and Discussion
4.1. Comparison of Different Approaches
4.2. Interday and Intraday Precision
4.3. Comparisons of LODs and LOQs with Beer Composition and Feasibility for Beer-Brewing Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boqué, R.; Faber, N.M.; Rius, F. Detection limits in classical multivariate calibration models. Anal. Chim. Acta 2000, 423, 41–49. [Google Scholar] [CrossRef]
- Allegrini, F.; Olivieri, A.C. IUPAC-consistent approach to the limit of detection in partial least-squares calibration. Anal. Chem. 2014, 86, 7858–7866. [Google Scholar] [CrossRef] [PubMed]
- Alsaedi, B.S.; McGraw, C.M.; Schaerf, T.M.; Dillingham, P.W. Multivariate limit of detection for non-linear sensor arrays. Chemom. Intell. Lab. Syst. 2020, 201, 104016. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- John, A.T.; Murugappan, K.; Nisbet, D.R.; Tricoli, A. An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring. Sensors 2021, 21, 2271. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic Nose and Its Applications: A Survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef]
- Seesaard, T.; Goel, N.; Kumar, M.; Wongchoosuk, C. Advances in gas sensors and electronic nose technologies for agricultural cycle applications. Comput. Electron. Agric. 2022, 193, 106673. [Google Scholar] [CrossRef]
- Sekhar, P.K.; Brosha, E.L.; Mukundan, R.; Garzon, F. Chemical Sensors for Environmental Monitoring and Homeland Security. Electrochem. Soc. Interface 2010, 19, 35–40. [Google Scholar] [CrossRef]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Khorramifar, A.; Karami, H.; Lvova, L.; Kolouri, A.; Łazuka, E.; Piłat-Rożek, M.; Łagód, G.; Ramos, J.; Lozano, J.; Kaveh, M.; et al. Environmental Engineering Applications of Electronic Nose Systems Based on MOX Gas Sensors. Sensors 2023, 23, 5716. [Google Scholar] [CrossRef]
- Bhowmik, B. Chemical sensors for e-nose: An effective route for disease diagnosis. In Nanotechnology-Based E-Noses: Fundamentals and Emerging Applications; Gupta, R.K., Ed.; Elsevier Science & Technology: San Diego, CA, USA, 2023; pp. 395–413. ISBN 978-0-323-91157-3. [Google Scholar]
- Wilson, A.D.; Forse, L.B. Potential for Early Noninvasive COVID-19 Detection Using Electronic-Nose Technologies and Disease-Specific VOC Metabolic Biomarkers. Sensors 2023, 23, 2887. [Google Scholar] [CrossRef] [PubMed]
- Wörner, J.; Moelleken, M.; Dissemond, J.; Pein-Hackelbusch, M. Supporting wound infection diagnosis: Advancements and challenges with electronic noses. Front. Sens. 2023, 4, 1250756. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, Y.; Kim, T.; Eom, T.H.; Kim, S.Y.; Jang, H.W. Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat 2019, 1, 289–316. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Song, Z.; Ye, W.; Fan, Z. Smart gas sensor arrays powered by artificial intelligence. J. Semicond. 2019, 40, 111601. [Google Scholar] [CrossRef]
- Mitrovics, J. Auswerteverfahren für Gassensorarrays. Ph.D. Thesis, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, 2004. [Google Scholar]
- Wilson, A.D. Review of Electronic-nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment. Procedia Technol. 2012, 1, 453–463. [Google Scholar] [CrossRef]
- Jurs, P.C.; Bakken, G.A.; McClelland, H.E. Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 2000, 100, 2649–2678. [Google Scholar] [CrossRef]
- Frank Röck, U.W. Elektronische Nase und Signalgewinnung. In Informationsfusion in der Mess- und Sensortechnik; Sommer, K.-D., Puente León, F., Eds.; Scientific Publisher: Singapore, 2007; pp. 260–278. ISBN 3-86644-053-7. [Google Scholar]
- Peveler, W.J.; Yazdani, M.; Rotello, V.M. Selectivity and Specificity: Pros and Cons in Sensing. ACS Sens. 2016, 1, 1282–1285. [Google Scholar] [CrossRef]
- Subandri, M.A.; Sarno, R. E-Nose sensor array optimization based on volatile compound concentration data. J. Phys. Conf. Ser. 2019, 1201, 12003. [Google Scholar] [CrossRef]
- Burgués, J.; Jiménez-Soto, J.M.; Marco, S. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models. Anal. Chim. Acta 2018, 1013, 13–25. [Google Scholar] [CrossRef]
- Kang, N.K.; Jun, T.S.; La, D.-D.; Oh, J.H.; Cho, Y.W.; Kim, Y.S. Evaluation of the limit-of-detection capability of carbon black-polymer composite sensors for volatile breath biomarkers. Sens. Actuators B Chem. 2010, 147, 55–60. [Google Scholar] [CrossRef]
- Parastar, H.; Kirsanov, D. Analytical Figures of Merit for Multisensor Arrays. ACS Sens. 2020, 5, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Oleneva, E.; Khaydukova, M.; Ashina, J.; Yaroshenko, I.; Jahatspanian, I.; Legin, A.; Kirsanov, D. A Simple Procedure to Assess Limit of Detection for Multisensor Systems. Sensors 2019, 19, 1359. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Rahman, M.M. Estimation of Limit of Detection (LOD), Limit of Quantification (LOQ) and Machine Standardization by Gas Chromatography. Ann. Bangladesh Agric. 2015, 19, 55–65. [Google Scholar]
- Sanchez, J. Estimating Detection Limits in Chromatography from Calibration Data: Ordinary Least Squares Regression vs. Weighted Least Squares. Separations 2018, 5, 49. [Google Scholar] [CrossRef]
- Ostra, M.; Ubide, C.; Vidal, M.; Zuriarrain, J. Detection limit estimator for multivariate calibration by an extension of the IUPAC recommendations for univariate methods. Analyst 2008, 133, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Viejo, C.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Santos, J.P.; Lozano, J. Real time detection of beer defects with a hand held electronic nose. In Proceedings of the 2015 10th Spanish Conference on Electron Devices (CDE), Aranjuez, Madrid, Spain, 11–13 February 2015; pp. 1–4, ISBN 978-1-4799-8108-3. [Google Scholar]
- Ghasemi-Varnamkhasti, M.; Mohtasebi, S.S.; Siadat, M.; Lozano, J.; Ahmadi, H.; Razavi, S.H.; Dicko, A. Aging fingerprint characterization of beer using electronic nose. Sens. Actuators B Chem. 2011, 159, 51–59. [Google Scholar] [CrossRef]
- Andrés-Iglesias, C.; Montero, O.; Sancho, D.; Blanco, C.A. New trends in beer flavour compound analysis. J. Sci. Food Agric. 2015, 95, 1571–1576. [Google Scholar] [CrossRef]
- European Brewery Convention. Fermentation and Maturation; Fachverlag Hans Carl: Nürnberg, Germany, 2000; ISBN 3418007759. [Google Scholar]
- Trelea, I.C.; Landaud, S.; Latrille, E.; Corrieu, G. Prediction of Confidence Limits for Diacetyl Concentration during Beer Fermentation. J. Am. Soc. Brew. Chem. 2002, 60, 77–87. [Google Scholar] [CrossRef]
- Kurz, T.; Fellner, M.; Becker, T.; Delgado, A. Observation and Control of the Beer Fermentation Using Cognitive Methods. J. Inst. Brew. 2001, 107, 241–252. [Google Scholar] [CrossRef]
- Tritz, F.; Fosso, P.; Brandstetter, T.; Rühe, J. Development of a mobile detection system for the quantitative determination of vicinal diketones from green beer [Poster]. In Proceedings of the EBC Congress, Madrid, Spain, 29 May–1 June 2022; Available online: https://acs.digitellinc.com/p/s/development-of-a-mobile-detection-system-in-handheld-format-for-the-quantitative-determination-of-vicinal-diketones-from-green-beer-465131 (accessed on 1 March 2024).
- Querol, A.; Fleet, G. Yeasts in Food and Beverages: With 30 Tables; Springer: Berlin, Germany, 2006; ISBN 978-3-540-28388-1. [Google Scholar]
- Krogerus, K.; Gibson, B.R. 125 th Anniversary Review: Diacetyl and its control during brewery fermentation. J. Inst. Brew. 2013, 119, 86–97. [Google Scholar] [CrossRef]
- Brányik, T.; Vicente, A.A.; Dostálek, P.; Teixeira, J.A. A Review of Flavour Formation in Continuous Beer Fermentations*. J. Inst. Brew. 2008, 114, 3–13. [Google Scholar] [CrossRef]
- Sakamoto, K.; Konings, W.N. Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 2003, 89, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Nagahisa, K.; Shimizu, H.; Shioya, S. Simultaneous control of apparent extract and volatile compounds concentrations in low-malt beer fermentation. Appl. Microbiol. Biotechnol. 2006, 73, 549–558. [Google Scholar] [CrossRef]
- Geiger, E.; Piendl, A. Technological Influences on the Formation of 2-Phenylethanol during Fermentation. Proc. Annu. Meet.-Am. Soc. Brew. Chem. 1975, 33, 48–54. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-active volatile compounds in beer: Production, regulation and control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef]
- Gee, D.A.; Ramirez, W.F. A flavour model for beer fermentation. J. Inst. Brew. 1994, 100, 321–329. [Google Scholar] [CrossRef]
- Kobayashi, M.; Shimizu, H.; Shioya, S. Beer volatile compounds and their application to low-malt beer fermentation. J. Biosci. Bioeng. 2008, 106, 317–323. [Google Scholar] [CrossRef]
- Scheuren, H.; Baldus, M.; Methner, F.-J.; Dillenburger, M. Evaporation behaviour of DMS in an aqueous solution at infinite dilution—A review. J. Inst. Brew. 2016, 122, 181–190. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung. Sudhausanlagen in Brauereien, Brewhouse Plants—Minimum Specifications; Deutsches Institut für Normung: Berlin, Germany, 2021. [Google Scholar]
- Annemüller, G.; Manger, H.-J.; Lietz, P. Die Hefe in der Brauerei: Hefemanagement, Kulturhefe—Hefereinzucht, Hefepropagation im Bierherstellungsprozess, 3rd ed.; VLB: Berlin, Germany, 2013; ISBN 978-3-921690-76-5. [Google Scholar]
- Pajunen, E.; Enari, T.-M. Accelerated lagering and maturation. In Monograph V. E.B.C. Fermentation and Storage Symposium; The Convention: Zoeterwoude, The Netherlands, 1978; pp. 181–191. [Google Scholar]
- Hegarty, P.K.; Parsons, R.; Bamforth, C.W.; Molzahn, S.W. Phenyl ethanol—A factor determining lager character. In European Brewery Convention: Proceedings of the 25th Congress; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Sensorik Kompakt. In der Produktentwicklung und Qualitätssicherung; Busch-Stockfisch, M., Ed.; Behr’s Verlag: Hamburg, Germany, 2002; ISBN 978-3-95468-301-7. [Google Scholar]
- Saison, D.; de Schutter, D.P.; Uyttenhove, B.; Delvaux, F.; Delvaux, F.R. Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds. Food Chem. 2009, 114, 1206–1215. [Google Scholar] [CrossRef]
- Harrison, G.A.F. The flavour of beer—A review. J. Inst. Brew. 1970, 76, 486–495. [Google Scholar] [CrossRef]
- Grigsby, J.H.; Palamand, S.R. A Colorimetric Procedure for the Measurement of Dimethyl Sulfide in Water, Wort, and Beer. J. Am. Soc. Brew. Chem. 1977, 35, 43–48. [Google Scholar] [CrossRef]
- Brown, D.; Clapperton, J.; MeilGaard, M.; Moll, M. Flavor Thresholds of Added Substances. J. Am. Soc. Brew. Chem. 1978, 36, 73–80. [Google Scholar] [CrossRef]
- Dillingham, P.W.; Alsaedi, B.S.O.; Granados-Focil, S.; Radu, A.; McGraw, C.M. Establishing Meaningful Limits of Detection for Ion-Selective Electrodes and Other Nonlinear Sensors. ACS Sens. 2020, 5, 250–257. [Google Scholar] [CrossRef]
- Currie, L.A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities: IUPAC Recommendations 1995. Pure Appl. Chem. 1995, 67, 1699–1723. [Google Scholar] [CrossRef]
- MacDougall, D.; Amore, F.J.; Cox, G.V.; Crosby, D.G.; Estes, F.L.; Freeman, D.H.; Gibbs, W.E.; Gordon, G.E.; Keith, L.H.; Crummett, W.B.; et al. Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal. Chem. 1980, 52, 2242–2249. [Google Scholar] [CrossRef]
- ISO 11843-1; Capability of Detection-Part 1: Terms and Definitions; International Organization for Standardization: Geneve, Switzerland, 1997.
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Validation of Analytical Procedures: Q2 (R2); International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use: Geneva, Switzerland, 2022. [Google Scholar]
- Analytical Methods Committee. Recommendations for the definition, estimation and use of the detection limit. Analyst 1987, 112, 199. [Google Scholar] [CrossRef]
- Henry, W. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Philos. Trans. R. Soc. 1803, 93, 29–274. [Google Scholar] [CrossRef]
- Currie, L.A. Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal. Chem. 1968, 40, 586–593. [Google Scholar] [CrossRef]
- Miller, J.; Miller, J. Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Pearson: London, UK, 2010; ISBN 978-0-273-73042-2. [Google Scholar]
- Feng, Y.; Tian, X.; Chen, Y.; Wang, Z.; Xia, J.; Qian, J.; Zhuang, Y.; Chu, J. Real-time and on-line monitoring of ethanol fermentation process by viable cell sensor and electronic nose. Bioresour. Bioprocess. 2021, 8, 37. [Google Scholar] [CrossRef]
- Bernal, E. Limit of Detection and Limit of Quantification Determination in Gas Chromatography. In Advances in Gas Chromatography; Guo, X., Ed.; IntechOpen: Rijeka, Croatia, 2014; ISBN 978-953-51-1227-3. [Google Scholar]
- Mocak, J.; Bond, A.M.; Mitchell, S.; Scollary, G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (Technical Report). Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar] [CrossRef]
- Long, G.L.; Winefordner, J.D. Limit of detection. A closer look at the IUPAC definition. Anal. Chem. 1983, 55, 712–724. [Google Scholar]
- Olivieri, A.C.; Faber, N.M.; Ferré, J.; Boqué, R.; Kalivas, J.H.; Mark, H. Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report). Pure Appl. Chem. 2006, 78, 633–661. [Google Scholar] [CrossRef]
- Del Río Bocio, F.J.; Riu, J.; Boqué, R.; Rius, F.X. Limits of detection in linear regression with errors in the concentration. J. Chemom. 2003, 17, 413–421. [Google Scholar] [CrossRef]
- Zorn, M.E.; Gibbons, R.D.; Sonzogni, W.C. Evaluation of Approximate Methods for Calculating the Limit of Detection and Limit of Quantification. Environ. Sci. Technol. 1999, 33, 2291–2295. [Google Scholar] [CrossRef]
- Olivieri, A.C. Practical guidelines for reporting results in single- and multi-component analytical calibration: A tutorial. Anal. Chim. Acta 2015, 868, 10–22. [Google Scholar] [CrossRef]
- Taoping, L.; Lihua, G.; Mou, W.; Chen, S.; Di, W.; Hao, D.; Jingdong, C.; Weiwei, W. Review on Algorithm Design in Electronic Noses: Challenges, Status and Trends. Intell. Comput. 2023, 2, 0012. [Google Scholar] [CrossRef]
- Güntner, A.T.; Koren, V.; Chikkadi, K.; Righettoni, M.; Pratsinis, S.E. E-Nose Sensing of Low-ppb Formaldehyde in Gas Mixtures at High Relative Humidity for Breath Screening of Lung Cancer? ACS Sens. 2016, 1, 528–535. [Google Scholar] [CrossRef]
- Qin, P.; Okur, S.; Jiang, Y.; Heinke, L. A MOF-based electronic nose for carbon dioxide sensing with enhanced affinity and selectivity by ionic-liquid embedment. J. Mater. Chem. A 2022, 10, 25347–25355. [Google Scholar] [CrossRef]
- Berna, A.Z.; Trowell, S.; Cynkar, W.; Cozzolino, D. Comparison of metal oxide-based electronic nose and mass spectrometry-based electronic nose for the prediction of red wine spoilage. J. Agric. Food Chem. 2008, 56, 3238–3244. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, P.; Meléndez, F.; Suárez, J.I.; Herrero, J.L.; Rodríguez, S.; Lozano, J. Electronic Nose with Digital Gas Sensors Connected via Bluetooth to a Smartphone for Air Quality Measurements. Sensors 2020, 20, 786. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wan, P.; Jia, M.; Hu, J.; Guan, Y.; Feng, L. A novel electronic nose based on porous In2O3 microtubes sensor array for the discrimination of VOCs. Biosens. Bioelectron. 2015, 64, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Wang, J.; Wang, Y. Early discrimination and growth tracking of Aspergillus spp. contamination in rice kernels using electronic nose. Food Chem. 2019, 292, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Kurita, T. Principal Component Analysis (PCA). Int. J. Comput. Vis. 2020, 1–4. [Google Scholar] [CrossRef]
- Burgués, J.; Marco, S. Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors. Anal. Chim. Acta 2018, 1019, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Multivariate decision and detection limits. Anal. Chim. Acta 1993, 277, 205–214. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Ortiz, M.; Sarabia, L.; Herrero, A.; Sánchez, M.; Sanz, M.; Rueda, M.; Giménez, D.; Meléndez, M. Capability of detection of an analytical method evaluating false positive and false negative (ISO 11843) with partial least squares. Chemom. Intell. Lab. Syst. 2003, 69, 21–33. [Google Scholar] [CrossRef]
- International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline: Validation of Analytical Procedures: Text and Methodology Q2(R1); International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use: Geneva, Switzerland, 2005. [Google Scholar]
- Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Emerald 2004, 24, 181–198. [Google Scholar] [CrossRef]
- Wasilewski, T.; Migoń, D.; Gębicki, J.; Kamysz, W. Critical review of electronic nose and tongue instruments prospects in pharmaceutical analysis. Anal. Chim. Acta 2019, 1077, 14–29. [Google Scholar] [CrossRef]
- Montville, D.; Voigtman, E. Statistical properties of limit of detection test statistics. Talanta 2003, 59, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Sanagi, M.M.; Ling, S.L.; Nasir, Z.; Hermawan, D.; Wan Ibrahim, W.A.; Naim, A.A. Comparison of Signal-to-Noise, Blank Determination, and Linear Regression Methods for the Estimation of Detection and Quantification Limits for Volatile Organic Compounds by Gas Chromatography. J. AOAC Int. 2009, 92, 1833–1838. [Google Scholar] [CrossRef]
- Poggialini, F.; Legnaioli, S.; Campanella, B.; Cocciaro, B.; Lorenzetti, G.; Raneri, S.; Palleschi, V. Calculating the Limits of Detection in Laser-Induced Breakdown Spectroscopy: Not as Easy as It Might Seem. Appl. Sci. 2023, 13, 3642. [Google Scholar] [CrossRef]
- Das, S.; Chakraborty, S.; Parkash, O.; Kumar, D.; Bandyopadhyay, S.; Samudrala, S.K.; Sen, A.; Maiti, H.S. Vanadium doped tin dioxide as a novel sulfur dioxide sensor. Talanta 2008, 75, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Berger, F.; Fromm, M.; Chambaudet, A.; Planade, R. Tin dioxide-based gas sensors for SO2 detection: A chemical interpretation of the increase in sensitivity obtained after a primary detection. Sens. Actuators B Chem. 1997, 45, 175–181. [Google Scholar] [CrossRef]
- Deshmukh, S.; Bandyopadhyay, R.; Bhattacharyya, N.; Pandey, R.A.; Jana, A. Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring—An overview. Talanta 2015, 144, 329–340. [Google Scholar] [CrossRef]
- Chai, H.; Zheng, Z.; Liu, K.; Xu, J.; Wu, K.; Luo, Y.; Liao, H.; Debliquy, M.; Zhang, C. Stability of Metal Oxide Semiconductor Gas Sensors: A Review. IEEE Sens. J. 2022, 22, 5470–5481. [Google Scholar] [CrossRef]
Compound | Flavor in Beer | OTV in Bottom-Fermented Beer in ppm | Concentration in Beer in ppm |
---|---|---|---|
Diacetyl | ‘butterscotch’, buttery | 0.10–0.17 1,3,4 | 0.01–0.12 3,9 |
Isobutanol | alcoholic | 10–100 5 | 4–24 4,6 |
2-Phenylethanol | rosy, sweetish | 5–125 4,6 | 4–51 6 |
Ethyl acetate | solvent-like, fruity, sweet | 25–30 2,4,5 | 8–32 4,6 |
Acetaldehyde | ‘grassy’, green leaves | 10–15 6 | 2–20 4,6 |
Dimethyl sulfide | herbaceous, celery-like | 0.09–0.60 4,7,8 | 0.01–0.14 7 |
LOD Equation | Description | Employed Standard Deviation | References |
---|---|---|---|
- Calculates the sensor value that must be exceeded - Can only determine concentrations as LODs that have been measured | [27,63] | ||
- Leverages the linear relationship between the concentration and the corresponding signal to determine concentrations as LODs that have not necessarily been directly measured | [58,67,68] | ||
- The curve deviation estimates , for example, the . - Calibration samples need to be sufficiently representative of the test samples → residuals are comparable to instrumental noise - [23] found that for individual eNose sensors, the residual differences remain consistent throughout the measured range, thus suggesting that the serves as a reliable estimate for noise | (or intercept, slope) | [64,66,67,69] | |
- Incorporates leverage to account for additional uncertainties associated with the calibration curve based on the chosen concentration levels | [72] |
PCA I 1 | PCA II 2 | PCA II 2 | PCR | PCR | PLSR | PLSR | ||
---|---|---|---|---|---|---|---|---|
Standard Deviation | RMSE | RMSE | RMSE | |||||
Diacetyl | LOD | <0.10 | 0.14 | 0.17 | 0.07 | 0.07 | 0.02 | 0.02 |
Isobutanol | LOD | <500 | 1200 | 1600 | 300 | 460 | 210 | 320 |
2-Phenylethanol | LOD | <200 | 210 | 170 | 60 | 70 | 60 | 50 |
Ethyl acetate | LOD | <2500 | 4200 | 4600 | 1300 | 1400 | 1200 | 1300 |
Acetaldehyde | LOD | <6000 | 5200 | 9900 | 3500 | 3000 | 2800 | 2400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruse, J.; Wörner, J.; Schneider, J.; Dörksen, H.; Pein-Hackelbusch, M. Methods for Estimating the Detection and Quantification Limits of Key Substances in Beer Maturation with Electronic Noses. Sensors 2024, 24, 3520. https://doi.org/10.3390/s24113520
Kruse J, Wörner J, Schneider J, Dörksen H, Pein-Hackelbusch M. Methods for Estimating the Detection and Quantification Limits of Key Substances in Beer Maturation with Electronic Noses. Sensors. 2024; 24(11):3520. https://doi.org/10.3390/s24113520
Chicago/Turabian StyleKruse, Julia, Julius Wörner, Jan Schneider, Helene Dörksen, and Miriam Pein-Hackelbusch. 2024. "Methods for Estimating the Detection and Quantification Limits of Key Substances in Beer Maturation with Electronic Noses" Sensors 24, no. 11: 3520. https://doi.org/10.3390/s24113520