Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization
"> Figure 1
<p>Principle of the direct reflectance measurement from drone.</p> "> Figure 2
<p>(<b>a</b>) The measurement setup for spectral response characterisation. Broadband light from a supercontinuum laser source (background) is directed to a monochromator (left) via an optical fibre. Resultant monochromatic light is fed to an integrating sphere, where a photodiode is used to monitor the light intensity. ASD FieldSpec pro is also used to monitor the output port (the optics and optical fibre visible in front of the sphere) (<b>b</b>) A FPI image of the integrating sphere port acquired in the calibration.</p> "> Figure 3
<p>The radiance calibration setup. The lamp is placed on an optical rail to a known distance from a reflectance panel. The FPI camera is viewing the panel from 45° angle. Stray light is blocked by light baffles (additional baffles were placed after taking this image).</p> "> Figure 4
<p>Example FPI images of the reflectance panel illuminated with (<b>a</b>) Polaron and (<b>b</b>) FEL lamp, 500 mm lamp distance. Only the centre part of the illuminated area was used for calibration.</p> "> Figure 5
<p>(<b>a</b>) An aerial image of the take-off and landing site. The reference panels BC, GC and GP in direct sunlight and in shadow are visible in image. (<b>b</b>) An image of the UAV landing site. The proximity of trees to the reference panels is evident in this image.</p> "> Figure 6
<p>Time dependency of FPI camera radiance during 30 min. All data scaled with radiance at 30 min. Areas for accepted and rejected bands with 5% criteria between 5 min and 30 min are shown blue (accepted) and orange (rejected). Bands 7 and 12 are still accepted, bands 14 and 1 show the deviation of rejected bands.</p> "> Figure 7
<p>(<b>a</b>) Radiance spectra of reference panels BC, GC, GP and leaf measured with FPI camera based on manufacturer’s calibration (FPI-Man) and measured with ASD spectrometer. ASD spectra has been integrated to match FPI camera spectral responses. (<b>b</b>) Percentage difference between ASD and FPI <span class="html-italic">L<sub>man</sub></span> radiance. Stable FPI bands only.</p> "> Figure 8
<p>Example of full spectral response curves for bands 12 (<math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> = 599.24 nm, FWHM = 19.82 nm) and 30 (<math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> = 804.14 nm, FWHM = 25.13 nm). Curves are scaled so that the maximum value is 1.</p> "> Figure 9
<p>Original radiance spectra and same spectra integrated with FPI spectral responses. NPL FEL1000 and NPL POL1000: reference spectra provided by NPL; FEL1000 FPI and POL1000 FPI: corresponding spectra sampled using the FPI camera spectral responses; ASD Leaf: leaf radiance spectra measured using the ASD at the FGI’s laboratory; Leaf FPI: the ASD spectra sampled using the FPI-camera spectral responses. Leaf FPI is same as Leaf ASD line in <a href="#sensors-18-01417-f007" class="html-fig">Figure 7</a>a.</p> "> Figure 10
<p>(<b>a</b>) Panel radiances based on manufacturer’s calibration. All FPI camera integration times, both lamps and all lamp distances, and NPL reference radiance for all lamp distances. (<b>b</b>) Manufacturer’s radiance <span class="html-italic">L<sub>Man</sub></span> percentage difference to NPL reference radiance <span class="html-italic">L<sub>NPL_ref</sub></span>. Values are given at centre wavelengths of the FPI camera channels.</p> "> Figure 11
<p>Band wise linear model parameters (<b>a</b>) <span class="html-italic">a</span> and (<b>b</b>) <span class="html-italic">b</span> to adjust <span class="html-italic">L<sub>man</sub></span> radiance using Equation (6). Parameters solved using 11 data sets. Light blue colour indicates 95% confidence interval for parameters from least squares calculations.</p> "> Figure 12
<p>New adjusted radiance spectra <span class="html-italic">L<sub>New</sub></span> (<b>a</b>) and percentage difference to NPL reference <span class="html-italic">L<sub>NPL_ref</sub></span> (<b>b</b>) for 11 data sets used in the calculation of the calibration model.</p> "> Figure 13
<p>New adjusted radiance spectra <span class="html-italic">L<sub>New</sub></span> (<b>a</b>) and percentage difference to NPL reference <span class="html-italic">L<sub>NPL_ref</sub></span> (<b>b</b>) for six independent data sets.</p> "> Figure 14
<p><span class="html-italic">R</span><sup>2</sup> values for linear fit between adjusted sensor radiance (10 ms sensor integration times) and NPL reference radiance. Stable bands only.</p> "> Figure 15
<p>Linearity plots for (<b>a</b>) band 28 (<math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> = 761.2 nm) and (<b>b</b>) band 36 (<math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> = 885.9 nm).</p> "> Figure 16
<p>(<b>a</b>) Mean value of 600–700 nm irradiance spectra of the ASD and Ocean Optics (OO) for each FPI image acquisition time during the campaign. Irradiance increases toward the end of the flight due to rising solar angle. The steps in OO data are caused by UAV flying in different directions and thus the UAV and irradiance sensor tilting. (<b>b</b>) Effect of tree canopy to the irradiance spectrum. ASD is affected by the proximity of the tree canopies compared to the OO which is above canopy.</p> "> Figure 17
<p>Corrected <span class="html-italic">OO<sub>cor</sub></span> irradiance during the flight for blue (band 5, <math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> = 537.2 nm), orange (band 15, <math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> = 628.6 nm) and NIR (band 27, <math display="inline"> <semantics> <mrow> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> = 748.8 nm) range bands.</p> "> Figure 18
<p>(<b>a</b>) False-colour reflectance mosaic of vertical flight f1 with FPI green, red and NIR range bands; (<b>b</b>) Part of the point cloud coloured with the spectral data, including locations of reference panels and measured trees.</p> "> Figure 19
<p>Reflectance spectra of sample targets based on original manufacturer calibration (<b>Man</b>) and the SI-traceable calibration at NPL (<b>New</b>). Also reference reflectance spectra measured at FGI laboratory for targets BC and GC are shown (<b>Ref</b>).</p> "> Figure A1
<p>FPI spectral response curves for bands 1–12. Curves are scaled so that the maximum value is 1.</p> "> Figure A2
<p>FPI spectral response curves for bands 13–24. Curves are scaled so that the maximum value is 1.</p> "> Figure A3
<p>FPI spectral response curves for bands 25–36. Curves are scaled so that the maximum value is 1.</p> ">
Abstract
:1. Introduction
2. Materials and methods
2.1. Proposed Method for Direct Hyperspectral Reflectance Measurement from Drone
2.2. UAV Based 3D Imaging Spectrometer System
2.2.1. The 2D Frame Format Hyperspectral Camera
2.2.2. Irradiance Spectrometers
2.3. Laboratory Calibration of the FPI Camera
2.3.1. Spectral Calibration
2.3.2. Absolute Radiance Calibration
2.3.3. Sensor Linearity Evaluation
2.3.4. Evaluation of FPI Camera Stability
2.4. UAV Data Capture and Data Processing Procedure
3. Results
3.1. Preliminary Study of FPI Camera Stability
3.2. Sensor Radiometric Laboratory Calibration at NPL
3.2.1. Spectral Calibration
3.2.2. Radiance Calibration
3.2.3. Sensor Linearity Evaluation
3.3. Drone Campaigns
3.3.1. Processing of Ocean Optics Downwelling Irradiance Data
3.3.2. Reflectance Data Sets
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- Mäkynen, J.; Holmlund, C.; Saari, H.; Ojala, K.; Antila, T. Unmanned aerial vehicle (UAV) operated megapixel spectral camera. In Electro-Optical Remote Sensing, Photonic Technologies, and Applications V; SPIE: Prague, Czech Republic, 2011; Volume 8186. [Google Scholar]
- Honkavaara, E.; Markelin, L.; Hakala, T.; Peltoniemi, J. The Metrology of Directional, Spectral Reflectance Factor Measurements Based on Area Format Imaging by UAVs. Photogramm. Fernerkund. Geoinformation 2014, 2014, 175–188. [Google Scholar] [CrossRef]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Lucieer, A.; Malenovský, Z.; Veness, T.; Wallace, L. HyperUAS-Imaging Spectroscopy from a Multirotor Unmanned Aircraft System: HyperUAS-Imaging Spectroscopy from a Multirotor Unmanned. J. Field Robot. 2014, 31, 571–590. [Google Scholar] [CrossRef]
- Sandau, R. (Ed.) Digital Airborne Camera—Introduction and Technology; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-1-4020-8877-3. [Google Scholar]
- Kelcey, J.; Lucieer, A. Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sens. 2012, 4, 1462–1493. [Google Scholar] [CrossRef]
- Büttner, A.; Röser, H.-P. Hyperspectral Remote Sensing with the UAS “Stuttgarter Adler”—System Setup, Calibration and First Results. Photogramm. Fernerkund. Geoinformation 2014, 2014, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Cocks, T.D.; Jenssen, R.; Steward, A.; Wilson, I.; Shieds, T. The HyMapTM Airborne Hyperspectral Sensor: The System, Calibration and Performance. In Proceedings of the 1st EARSeL Workshop on Imaging Spectroscopy, Zurich, Switzerland, 6–8 October 1998; pp. 37–42. [Google Scholar]
- Davis, C.; Bowles, J.; Leathers, R.; Korwan, D.; Downes, T.V.; Snyder, W.; Rhea, W.; Chen, W.; Fisher, J.; Bissett, P.; et al. Ocean PHILLS hyperspectral imager: Design, characterization, and calibration. Opt. Express 2002, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- Gege, P.; Fries, J.; Haschberger, P.; Schötz, P.; Schwarzer, H.; Strobl, P.; Suhr, B.; Ulbrich, G.; Jan Vreeling, W. Calibration facility for airborne imaging spectrometers. ISPRS J. Photogramm. Remote Sens. 2009, 64, 387–397. [Google Scholar] [CrossRef]
- Ng, S.W.; Zulkifli, A. Establishing metrological traceability for radiometric calibration of earth observation sensor in Malaysia. IOP Conf. Ser. Mater. Sci. Eng. 2016, 152, 012028. [Google Scholar] [CrossRef]
- Voss, K.J.; Belmar da Costa, L. Polarization properties of FEL lamps as applied to radiometric calibration. Appl. Opt. 2016, 55, 8829. [Google Scholar] [CrossRef] [PubMed]
- Chrien, T.G.; Green, R.O.; Eastwood, M.L. Accuracy of the spectral and radiometric laboratory calibration of the Airborne Visible/Infrared Imaging Spectrometer. In Imaging Spectroscopy of the Terrestrial Environment; Vane, G., Ed.; SPIE: Prague, Czech Republic, 1990; pp. 37–49. [Google Scholar]
- Yang, G.; Li, C.; Wang, Y.; Yuan, H.; Feng, H.; Xu, B.; Yang, X. The DOM Generation and Precise Radiometric Calibration of a UAV-Mounted Miniature Snapshot Hyperspectral Imager. Remote Sens. 2017, 9, 642. [Google Scholar] [CrossRef]
- Suomalainen, J.; Anders, N.; Iqbal, S.; Roerink, G.; Franke, J.; Wenting, P.; Hünniger, D.; Bartholomeus, H.; Becker, R.; Kooistra, L. A Lightweight Hyperspectral Mapping System and Photogrammetric Processing Chain for Unmanned Aerial Vehicles. Remote Sens. 2014, 6, 11013–11030. [Google Scholar] [CrossRef]
- Aasen, H.; Bolten, A. Multi-temporal high-resolution imaging spectroscopy with hyperspectral 2D imagers – From theory to application. Remote Sens. Environ. 2018, 205, 374–389. [Google Scholar] [CrossRef]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Von Bueren, S.K.; Burkart, A.; Hueni, A.; Rascher, U.; Tuohy, M.P.; Yule, I.J. Deploying four optical UAV-based sensors over grassland: Challenges and limitations. Biogeosciences 2015, 12, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Hakala, T.; Honkavaara, E.; Saari, H.; Mäkynen, J.; Kaivosoja, J.; Pesonen, L.; Pölönen, I. Spectral imaging from UAVs under varying illumination conditions. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; International Society of Photogrammetry and Remote Sensing (ISPRS): Christian Heipke, Germany, 2013; pp. 189–194. [Google Scholar] [CrossRef]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [Google Scholar] [CrossRef]
- Burkart, A.; Hecht, V.L.; Kraska, T.; Rascher, U. Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution. Precis. Agric. 2018, 19, 134–146. [Google Scholar] [CrossRef]
- Miyoshi, G.T.; Imai, N.N.; Tommaselli, A.M.G.; Honkavaara, E.; Näsi, R.; Moriya, É.A.S. Radiometric block adjustment of hyperspectral image blocks in the Brazilian environment. Int. J. Remote Sens. 2018, 1–21. [Google Scholar] [CrossRef]
- Honkavaara, E.; Hakala, T.; Markelin, L.; Rosnell, T.; Saari, H.; Mäkynen, J. A Process for Radiometric Correction of UAV Image Blocks. Photogramm. Fernerkund. Geoinformation 2012, 2012, 115–127. [Google Scholar] [CrossRef]
- Burkart, A.; Aasen, H.; Alonso, L.; Menz, G.; Bareth, G.; Rascher, U. Angular Dependency of Hyperspectral Measurements over Wheat Characterized by a Novel UAV Based Goniometer. Remote Sens. 2015, 7, 725–746. [Google Scholar] [CrossRef] [Green Version]
- Suomalainen, J.; Hakala, T.; Honkavaara, E. Measuring incident irradiance on-board an unstable UAV platform—First results on virtual horizontation of multiangle measurements. In Proceedings of the International Conference on Unmanned Aerial Vehicles in Geomatics, Bonn, Germany, 4–7 September 2017. [Google Scholar]
- Von Schoenermark, M.F.; Roeser, H.-P.L. Reflection properties of vegetation and soil with a new BRDF database. In Targets and Backgrounds X: Characterization and Representation; Watkins, W.R., Clement, D., Reynolds, W.R., Eds.; SPIE: Prague, Czech Republic, 2004. [Google Scholar]
- Saari, H.; Pölönen, I.; Salo, H.; Honkavaara, E.; Hakala, T.; Holmlund, C.; Mäkynen, J.; Mannila, R.; Antila, T.; Akujärvi, A. Miniaturized hyperspectral imager calibration and UAV flight campaigns. In Sensors, Systems, and Next-Generation Satellites XVII; Meynart, R., Neeck, S.P., Shimoda, H., Eds.; SPIE: Prague, Czech Republic, 2013. [Google Scholar]
- O’Haver, T. A Pragmatic Introduction to Signal Processing with Applications in Scientific Measurement. Available online: http://terpconnect.umd.edu/~toh/spectrum/index.html (accessed on 26 April 2018).
- Honkavaara, E.; Rosnell, T.; Oliveira, R.; Tommaselli, A. Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes. ISPRS J. Photogramm. Remote Sens. 2017, 134, 96–109. [Google Scholar] [CrossRef]
- Jakob, S.; Zimmermann, R.; Gloaguen, R. The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo—A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data. Remote Sens. 2017, 9, 88. [Google Scholar] [CrossRef]
Lamp | Distance (mm) | Integration Times (ms) | |||
---|---|---|---|---|---|
Polaron | 500 | 10 | 20 | 30 | - |
1000 | 10 | 20 | 30 | 50 | |
FEL | 500 | 10 | 15 | - | - |
707 | 10 | 15 | 20 | 25 | |
1000 | 10 | 15 | 20 | 25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakala, T.; Markelin, L.; Honkavaara, E.; Scott, B.; Theocharous, T.; Nevalainen, O.; Näsi, R.; Suomalainen, J.; Viljanen, N.; Greenwell, C.; et al. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization. Sensors 2018, 18, 1417. https://doi.org/10.3390/s18051417
Hakala T, Markelin L, Honkavaara E, Scott B, Theocharous T, Nevalainen O, Näsi R, Suomalainen J, Viljanen N, Greenwell C, et al. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization. Sensors. 2018; 18(5):1417. https://doi.org/10.3390/s18051417
Chicago/Turabian StyleHakala, Teemu, Lauri Markelin, Eija Honkavaara, Barry Scott, Theo Theocharous, Olli Nevalainen, Roope Näsi, Juha Suomalainen, Niko Viljanen, Claire Greenwell, and et al. 2018. "Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization" Sensors 18, no. 5: 1417. https://doi.org/10.3390/s18051417
APA StyleHakala, T., Markelin, L., Honkavaara, E., Scott, B., Theocharous, T., Nevalainen, O., Näsi, R., Suomalainen, J., Viljanen, N., Greenwell, C., & Fox, N. (2018). Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization. Sensors, 18(5), 1417. https://doi.org/10.3390/s18051417