A Method for Estimating the Polarimetric Scattering Matrix of Moving Target for Simultaneous Fully Polarimetric Radar
<p>The signal processing flow chart of the STSR radar.</p> "> Figure 2
<p>Results of three PSM estimation methods where <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Results of three PSM estimation methods where <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Results of three PSM estimation methods for different integrated pulses. (<b>a</b>) Results of three PSM estimation methods where <span class="html-italic">N</span> = 4; (<b>b</b>) Results of three PSM estimation methods where <span class="html-italic">N</span> = 6; (<b>c</b>) Results of three PSM estimation methods where <span class="html-italic">N</span> = 8; (<b>d</b>) Results of three PSM estimation methods where <span class="html-italic">N</span> = 10.</p> "> Figure 5
<p>Results of three PSM estimation methods where <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Results of three PSM estimation methods where <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Signal Model for Moving Target in STSR Radar
3. PSM Estimation for the Moving Target
4. Simulation Results and Discussion
4.1. PSM Estimation without System Errors
4.2. PSM Estimation with System Errors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sandeep, G.; Arye, N. Polarimetric MIMO Radar With Distributed Antennas for Target Detection. IEEE Trans. Signal Process. 2010, 58, 1689–1697. [Google Scholar]
- Martorella, M.; Giusti, E.; Demi, L.; Zhou, Z.; Cacciamano, A.; Berizzi, F.; Bates, B. Target recognition by means of polarimetric ISAR images. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 225–239. [Google Scholar] [CrossRef]
- Sharma, J.J.; Hajnsek, I.; Papathanassiou, K.P.; Moreira, A. Polarimetric decomposition over glacier ice using long-wavelength airborne PolSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 519–535. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yang, Y.; Li, Y.; Wang, X. Frequency Calibration for the Scattering Matrix of the Simultaneous Polarimetric Radar. IEEE Geosci. Remote Sens. Lett. 2018, 15, 429–433. [Google Scholar] [CrossRef]
- Nashashibi, A.Y.; Sarabandi, K.; Frantzis, P.; de Roo, R.D.; Ulaby, F.T. An ultrafast wide-band millimeter-wave (MMW) polarimetric radar for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1777–1786. [Google Scholar] [CrossRef]
- Yanovsky, F.J.; Russchenberg, H.W.J.; Unal, C.M.H. Retrieval of information about turbulence in rain by using Doppler-polarimetric radar. IEEE Trans. Microw. Theory Tech. 2005, 53, 444–450. [Google Scholar] [CrossRef]
- Giuli, D.; Fossi, M.; Facheris, L. Radar target scattering matrix measurement through orthogonal signals. IEE Proc. F Radar Signal Process. 1993, 140, 233–242. [Google Scholar] [CrossRef]
- Wang, F.L.; Pang, C.; Li, Y.Z.; Wang, X.S. Algorithms for Designing Unimodular Sequences with High Doppler Tolerance for Simultaneous Fully Polarimetric Radar. Sensors 2018, 18, 905. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yu, J.; Peng, Y.N.; Xia, X.G. Radon-Fourier Transform for Radar Target Detection, I: Generalized Doppler Filter Bank. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1186–1202. [Google Scholar] [CrossRef]
- Li, M.; He, Z.S.; Li, W.C. Transient Interference Mitigation via Supervised Matrix Completion. IEEE Geosci. Remote Sens. Lett. 2016, 13, 907–911. [Google Scholar] [CrossRef]
- Perry, R.P.; DiPietro, R.C.; Fante, R.L. SAR imaging of moving targets. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 188–200. [Google Scholar] [CrossRef]
- Santalla, V.; Antar, Y.M.M. A comparison between different polarimetric measurement schemes. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1007–1017. [Google Scholar] [CrossRef]
- Niemeijer, R.J. Doppler-polarimetric radar signal processing. Electr. Eng. Math. Comput. Sci. 1996. [Google Scholar]
- Xiao, J.J.; Nehorai, A. Joint Transmitter and Receiver Polarization Optimization for Scattering Estimation in Clutter. IEEE Trans. Signal Process. 2009, 57, 4142–4147. [Google Scholar] [CrossRef]
- Pang, C. Study on Theory and Technology for Accurate Polarimetry Using Phased Array Radar. Ph.D. Thesis, Information and Communication Engineering, College of Electronic Science, National University of Defense Technology, Changsha, China, 2016. [Google Scholar]
- Qian, L.C.; Xu, J.; Xia, X.G.; Sun, W.F.; Long, T.; Peng, Y.N. Wideband-scaled Radon-Fourier transform for high-speed radar target detection. IET Radar Sonar Navig. 2014, 8, 501–512. [Google Scholar] [CrossRef]
- Richards, M.A. Fundamentals of Radar Signal Processing, Second Edition; McGraw-Hill: New York, NY, USA, 2014; pp. 71–73. [Google Scholar]
- John, R.R.; Frederick, J.M. Foundations of Electromagnetic Theory; Iaddison-Wesley: Reading, MA, USA, 1960. [Google Scholar]
- Harold, M. Remote Sensing with Polarimetric Radar; John Wiely and Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Li, Z. Design, simulation and validation of dual-channel polaremetric agile radar technology. Ph.D. Thesis, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 2011. [Google Scholar]
Component | Value | Component | Value |
---|---|---|---|
Carrier frequency | 10 GHz | Target PSM | |
Mode | STSR | Control factor | |
Bandwidth | 1 GHz | Initial position | 5000 m |
Pulse duration | 100 | ||
PRF | 1000 Hz | Noise | Gaussian |
Measurements | 12 | Trials of each SNR | 500 |
PI | PC | MS | |
---|---|---|---|
HH | 1 | 1 | 1 |
VH | |||
HV | |||
VV |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Li, C.; Pang, C.; Li, Y.; Wang, X. A Method for Estimating the Polarimetric Scattering Matrix of Moving Target for Simultaneous Fully Polarimetric Radar. Sensors 2018, 18, 1418. https://doi.org/10.3390/s18051418
Wang F, Li C, Pang C, Li Y, Wang X. A Method for Estimating the Polarimetric Scattering Matrix of Moving Target for Simultaneous Fully Polarimetric Radar. Sensors. 2018; 18(5):1418. https://doi.org/10.3390/s18051418
Chicago/Turabian StyleWang, Fulai, Chao Li, Chen Pang, Yongzhen Li, and Xuesong Wang. 2018. "A Method for Estimating the Polarimetric Scattering Matrix of Moving Target for Simultaneous Fully Polarimetric Radar" Sensors 18, no. 5: 1418. https://doi.org/10.3390/s18051418
APA StyleWang, F., Li, C., Pang, C., Li, Y., & Wang, X. (2018). A Method for Estimating the Polarimetric Scattering Matrix of Moving Target for Simultaneous Fully Polarimetric Radar. Sensors, 18(5), 1418. https://doi.org/10.3390/s18051418