Estimation of Small-Stream Water Surface Elevation Using UAV Photogrammetry and Deep Learning
<p>Orthophoto mosaics from Grodzisko (<b>a</b>) and Rybna (<b>b</b>) case studies from 13 July 2021.</p> "> Figure 2
<p>Part of the Kocinka stretch in Rybna (March 2022).</p> "> Figure 3
<p>Schematic representation of the data set preparation workflow. Colors are for illustration purposes only and do not reflect actual data.</p> "> Figure 4
<p>Example DSM and orthophoto dataset samples (<b>a</b>–<b>d</b>) with marked areas where the DSM equals the actual WSE ± 5 cm (red color).</p> "> Figure 5
<p>Direct regression approach—schematic representation. Numbers near arrows provide information about the dimensions of the flowing data.</p> "> Figure 6
<p>Mask averaging approach—schematic representation. Numbers near arrows provide information about the dimensions of the flowing data.</p> "> Figure 7
<p>The selection of validation samples for each of the 5 folds in stratified resampling.</p> "> Figure 8
<p>Predictions of validation subsets from stratified cross-validation plotted against chainage (dark-green points). Compared with ground truth WSE (black line), DSM sampled near streambank (orange points), and DSM sampled at stream centerline (blue points). Columns denote different approaches and rows correspond to distinct case studies.</p> "> Figure 8 Cont.
<p>Predictions of validation subsets from stratified cross-validation plotted against chainage (dark-green points). Compared with ground truth WSE (black line), DSM sampled near streambank (orange points), and DSM sampled at stream centerline (blue points). Columns denote different approaches and rows correspond to distinct case studies.</p> "> Figure 9
<p>Predictions of validation subsets from all-in-case-out cross-validation plotted against chainage (dark-green points). Compared with ground truth WSE (black line), DSM sampled near streambank (orange points), and DSM sampled at stream centerline (blue points). Columns denote different approaches and rows correspond to distinct case studies.</p> "> Figure 9 Cont.
<p>Predictions of validation subsets from all-in-case-out cross-validation plotted against chainage (dark-green points). Compared with ground truth WSE (black line), DSM sampled near streambank (orange points), and DSM sampled at stream centerline (blue points). Columns denote different approaches and rows correspond to distinct case studies.</p> "> Figure 10
<p>Residuals (ground truth WSE minus predicted WSE) obtained during stratified and all-in-case-out cross-validations for each case study (rows) and method (columns) plotted against chainage.</p> "> Figure 11
<p>Orthophoto, DSM, and weight masks obtained in stratified and all-in-case-out cross validations for the three best performing samples from the AMO18 case study. <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics></math> correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM. (<b>A</b>–<b>C</b>) samples ordered from most to least performing.</p> "> Figure 12
<p>Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations for the three best performing samples from the GRO20 case study. <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics></math> correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM. (<b>A</b>–<b>C</b>) samples ordered from most to least performing.</p> "> Figure 13
<p>Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations for the three best performing samples from the GRO21 case study. <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics></math> correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM. (<b>A</b>–<b>C</b>) samples ordered from most to least performing.</p> "> Figure 14
<p>Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations for the three best performing samples from the RYB20 case study. <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics></math> correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM. (<b>A</b>–<b>C</b>) samples ordered from most to least performing.</p> "> Figure 15
<p>Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations for the three best performing samples from the RYB21 case study. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics></math> correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM. (<b>A</b>–<b>C</b>) samples ordered from most to least performing.</p> "> Figure 16
<p>Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations for the three worst performing samples from the AMO18 case study. <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics></math> correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM. (<b>A</b>–<b>C</b>) samples ordered from least to most performing.</p> "> Figure 17
<p>Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations for the three worst performing samples from the GRO20 case study. <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics></math> correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM. (<b>A</b>–<b>C</b>) samples ordered from least to most performing.</p> "> Figure 18
<p>Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations for the three worst performing samples from the GRO21 case study. <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics></math> correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red color on the orthophoto and DSM. (<b>A</b>–<b>C</b>) samples ordered from least to most performing.</p> "> Figure 19
<p>Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations for the three worst performing samples from the RYB20 case study. <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics></math> correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM. (<b>A</b>–<b>C</b>) samples ordered from least to most performing.</p> "> Figure 20
<p>Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations for the three worst performing samples from the RYB21 case study. <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>a</mi> <mi>i</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics></math> correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM. (<b>A</b>–<b>C</b>) samples ordered from least to most performing.</p> "> Figure A1
<p>Direct regression—validation RMSEs achieved in different cross-validation folds by each encoder. The error bars, indicating 95th percentile intervals, result from variations in batch sizes tested during experimentation.</p> "> Figure A2
<p>Direct regression—validation RMSEs achieved in different cross-validation folds by various batch sizes. The error bars, indicating 95th percentile intervals, result from variations in encoders tested during experimentation.</p> "> Figure A3
<p>Mask averaging—validation RMSEs achieved in different cross-validation folds by various encoders. The error bars, indicating 95th percentile intervals, result from variations in batch sizes and architectures tested during experimentation.</p> "> Figure A4
<p>Mask averaging—validation RMSEs achieved in different cross-validation folds by various batch sizes. The error bars, indicating 95th percentile intervals, result from variations in encoders and architectures tested during experimentation.</p> "> Figure A5
<p>Mask averaging—validation RMSEs achieved in different cross-validation folds using various architectures. The error bars, indicating 95th percentile intervals, result from variations in batch sizes and encoders tested during experimentation.</p> "> Figure A6
<p>Fusion approach—schematic representation. Numbers near the arrows provide information about the dimensions of the flowing data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Site
- An approximately 700 m stretch of the Kocinka stream located near the village of Grodzisko (50.8744°N, 18.9711°E). This stretch has a water surface width of about 2 m. There are no trees in close proximity to the stream. The streambed is made up of dark silt and the water is opaque. The banks and the streambed are overgrown with rushes that protrude above the water surface. The banks are steeply sloping at angles of about 50° to 90° relative to the water surface. There are marshes nearby, with stream water flowing into them in places. Data from this stretch were collected on the following days:
- ○
- 19 December 2020. Total cloud cover was present during the measurements. Due to the winter season, the foliage was reduced. Samples obtained from this survey are labeled with the identifier “GRO20”.
- ○
- 13 July 2021. There was no cloud cover during the measurements. The rushes were high and the water surface was densely covered with Lemna plants. Samples obtained from this survey are labeled with the identifier “GRO21”.
- An approximately 700 m stretch of the Kocinka stream located near the village of Rybna (50.9376°N, 19.1143°E). This stretch has a water surface width of about 3 m and is overhung by sparse deciduous trees. There is a pale, sandy streambed that is visible through the clear water. There are no rushes that emerge from the streambed. The banks slope at angles of about 20° to 90° relative to the water surface. Data from this stretch were collected on the following days:
- ○
- 19 December 2020. Total cloud cover was present during the measurements. Due to the winter season, the trees were devoid of leaves and the grasses were reduced. Samples obtained from this survey are labeled with the identifier “RYB20”.
- ○
- 13 July 2021. There was no cloud cover during the measurements. The streambank grasses were high. With good lighting and exceptionally clear water, the streambed was clearly visible through the water. The samples obtained from this survey are labeled with the identifier “RYB21”.
2.2. Field Surveys
2.3. Data Processing
2.4. Machine Learning Data Set Structure
- Photogrammetric orthophoto. A square crop of an orthophoto representing area, containing the water body of a stream and adjacent land. A grayscale image is represented as a array of integer values from to (1-channel image of pixels).
- Photogrammetric DSM. A square crop of the DSM representing the same area as the orthophoto sample described above. Stored as array of floating-point numbers containing elevations of pixels expressed in m above MSL (height above mean sea level).
- Water Surface Elevation. Ground truth WSE of the water body segment included in the orthophoto and DSM sample. Represented as a single floating-point value expressed in m above MSL.
- Metadata. The following additional information is stored for each sample:
- ○
- DSM statistics. Mean, standard deviation, minimum, and maximum values of the photogrammetric DSM sample array, which can be used for standardization or normalization. Represented as floating point values expressed in m above MSL.
- ○
- Centroid latitude and longitude. World Geodetic System 8’4 (WGS-84) geographical coordinates of the centroid of the shape of the sample area. Represented as floating-point numbers.
- ○
- Chainage. Sample position expressed using a chainage relative for a given stream section.
- ○
- Subset ID. Text value that identifies the survey subset to which the sample belongs. Available values: “GRO21”, “RYB21”, “GRO20”, “RYB20, “AMO18”. For additional information about case studies, see Section 2.1.
2.5. DSM-WSE Relationship
2.6. Deep Learning Framework
2.7. Standardization
- —standardized sample DSM two-dimensional (2D) array with values centered around 0;
- —raw sample DSM 2D array with values expressed in ;
- —mean DSM value of a sample;
- —standard deviation of DSM arrays pixel values for the entire data set.
- —standardized 1-channel orthophoto gray-scale image (2D array) with values centered around 0;
- —1-channel orthophoto gray-scale image (2D array) represented with values from the range [0, 1];
- —mean value of ImageNet data set red, green and blue channel values means (0.485, 0.456, 0.406);
- —mean value of ImageNet data set red, green, and blue channel values standard deviations (0.229, 0.224, 0.225).
2.8. Augmentation
2.9. Cross Validation
2.10. Grid Search
2.11. Centerline and Streambank Sampling
3. Results
3.1. Grid Search Results
3.2. Accuracy Metrics
3.3. Plots against Chainage
3.4. Weight Masks Visualization
4. Discussion
4.1. Discussion of Straightforward Sampling of DSM
4.2. Impact of Cross-Validation Method
4.3. Comparison between Proposed Deep Learning Approaches
4.4. Explainability in the Mask-Averaging Approach
4.5. Comparison of Deep Learning Approach with Direct Sampling of DSM
4.6. Comparison with Other Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | two-dimensional |
AMO18 | Åmose Å 2018 case study |
CNN | convolutional neural network |
DL | deep learning |
DSM | digital surface model |
GCP | ground control point |
GNSS | global navigation satellite system |
GRO20 | Grodzisko 2020 case study |
GRO21 | Grodzisko 2021 case study |
MAE | mean absolute error |
MBE | mean bias error |
ML | machine learning |
MSL | height above mean sea level |
RMSE | root mean square error |
RTN | real-time network |
RYB20 | Rybna 2020 case study |
RYB21 | Rybna 2021 case study |
SFM | structure from motion |
St. Dev. | standard deviation |
UAV | unmanned aerial vehicle |
WGS-84 | World Geodetic System 8’4 |
WS | water surface |
WSE | water surface elevation |
Appendix A. Grid Search Statistics
Appendix B. Unsuccessful Approach
References
- IPCC. Climate Change 2014: Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2015; ISBN 978-92-9169-143-2. [Google Scholar]
- UNESCO. The United Nations World Water Development Report 2020: Water and Climate Change; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2020; ISBN 978-92-3-100371-4. [Google Scholar]
- Blöschl, G.; Bierkens, M.F.P.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.G.; Sivapalan, M.; et al. Twenty-Three Unsolved Problems in Hydrology (UPH)—A Community Perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring Surface Water from Space. Rev. Geophys. 2007, 45, 2006RG000197. [Google Scholar] [CrossRef]
- Jarihani, A.A.; Callow, J.N.; Johansen, K.; Gouweleeuw, B. Evaluation of Multiple Satellite Altimetry Data for Studying Inland Water Bodies and River Floods. J. Hydrol. 2013, 505, 78–90. [Google Scholar] [CrossRef]
- Domeneghetti, A. On the Use of SRTM and Altimetry Data for Flood Modeling in Data-Sparse Regions. Water Resour. Res. 2016, 52, 2901–2918. [Google Scholar] [CrossRef]
- Langhammer, J.; Bernsteinová, J.; Miřijovský, J. Building a High-Precision 2D Hydrodynamic Flood Model Using UAV Photogrammetry and Sensor Network Monitoring. Water 2017, 9, 861. [Google Scholar] [CrossRef]
- Montesarchio, V.; Napolitano, F.; Rianna, M.; Ridolfi, E.; Russo, F.; Sebastianelli, S. Comparison of Methodologies for Flood Rainfall Thresholds Estimation. Nat. Hazards 2014, 75, 909–934. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Barbetta, S.; Brocca, L.; Moramarco, T. River Discharge Estimation by Using Altimetry Data and Simplified Flood Routing Modeling. Remote Sens. 2013, 5, 4145–4162. [Google Scholar] [CrossRef]
- Jiang, L.; Bandini, F.; Smith, O.; Jensen, I.K.; Bauer-Gottwein, P. The Value of Distributed High-Resolution UAV-Borne Observations of Water Surface Elevation for River Management and Hydrodynamic Modeling. Remote Sens. 2020, 12, 1171. [Google Scholar] [CrossRef]
- Lawford, R.; Strauch, A.; Toll, D.; Fekete, B.; Cripe, D. Earth Observations for Global Water Security. Curr. Opin. Environ. Sustain. 2013, 5, 633–643. [Google Scholar] [CrossRef]
- Shiklomanov, A.I.; Lammers, R.B.; Vörösmarty, C.J. Widespread Decline in Hydrological Monitoring Threatens Pan-Arctic Research. EoS Trans. Am. Geophys. Union 2002, 83, 13–17. [Google Scholar] [CrossRef]
- McCabe, M.F.; Rodell, M.; Alsdorf, D.E.; Miralles, D.G.; Uijlenhoet, R.; Wagner, W.; Lucieer, A.; Houborg, R.; Verhoest, N.E.C.; Franz, T.E.; et al. The Future of Earth Observation in Hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 3879–3914. [Google Scholar] [CrossRef]
- Cracknell, A.P. The Development of Remote Sensing in the Last 40 Years. Int. J. Remote Sens. 2018, 39, 8387–8427. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Du, Z.; Peng, D.; Hao, P.; Zhang, Y.; Gong, P. An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sens. 2022, 14, 1863. [Google Scholar] [CrossRef]
- Louet, J.; Bruzzi, S. ENVISAT Mission and System. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July 1999; IEEE: Piscataway, NJ, USA, 1999; Volume 3, pp. 1680–1682. [Google Scholar]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Kittel, C.M.M.; Jiang, L.; Tøttrup, C.; Bauer-Gottwein, P. Sentinel-3 Radar Altimetry for River Monitoring—A Catchment-Scale Evaluation of Satellite Water Surface Elevation from Sentinel-3A and Sentinel-3B. Hydrol. Earth Syst. Sci. 2021, 25, 333–357. [Google Scholar] [CrossRef]
- Sulistioadi, Y.B.; Tseng, K.-H.; Shum, C.K.; Hidayat, H.; Sumaryono, M.; Suhardiman, A.; Setiawan, F.; Sunarso, S. Satellite Radar Altimetry for Monitoring Small Rivers and Lakes in Indonesia. Hydrol. Earth Syst. Sci. 2015, 19, 341–359. [Google Scholar] [CrossRef]
- Pavelsky, T.M.; Durand, M.T.; Andreadis, K.M.; Beighley, R.E.; Paiva, R.C.D.; Allen, G.H.; Miller, Z.F. Assessing the Potential Global Extent of SWOT River Discharge Observations. J. Hydrol. 2014, 519, 1516–1525. [Google Scholar] [CrossRef]
- Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT Mission and Its Capabilities for Land Hydrology. Surv. Geophys. 2016, 37, 307–337. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative Analysis of Watershed Geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913. [Google Scholar] [CrossRef]
- Wohl, E. The Significance of Small Streams. Front. Earth Sci. 2017, 11, 447–456. [Google Scholar] [CrossRef]
- Vélez-Nicolás, M.; García-López, S.; Barbero, L.; Ruiz-Ortiz, V.; Sánchez-Bellón, Á. Applications of Unmanned Aerial Systems (UASs) in Hydrology: A Review. Remote Sens. 2021, 13, 1359. [Google Scholar] [CrossRef]
- Bandini, F.; Sunding, T.P.; Linde, J.; Smith, O.; Jensen, I.K.; Köppl, C.J.; Butts, M.; Bauer-Gottwein, P. Unmanned Aerial System (UAS) Observations of Water Surface Elevation in a Small Stream: Comparison of Radar Altimetry, LIDAR and Photogrammetry Techniques. Remote Sens. Environ. 2020, 237, 111487. [Google Scholar] [CrossRef]
- Bühler, Y.; Adams, M.S.; Stoffel, A.; Boesch, R. Photogrammetric Reconstruction of Homogenous Snow Surfaces in Alpine Terrain Applying Near-Infrared UAS Imagery. Int. J. Remote Sens. 2017, 38, 3135–3158. [Google Scholar] [CrossRef]
- Ouédraogo, M.M.; Degré, A.; Debouche, C.; Lisein, J. The Evaluation of Unmanned Aerial System-Based Photogrammetry and Terrestrial Laser Scanning to Generate DEMs of Agricultural Watersheds. Geomorphology 2014, 214, 339–355. [Google Scholar] [CrossRef]
- Kasvi, E.; Salmela, J.; Lotsari, E.; Kumpula, T.; Lane, S.N. Comparison of Remote Sensing Based Approaches for Mapping Bathymetry of Shallow, Clear Water Rivers. Geomorphology 2019, 333, 180–197. [Google Scholar] [CrossRef]
- Woodget, A.S.; Carbonneau, P.E.; Visser, F.; Maddock, I.P. Quantifying Submerged Fluvial Topography Using Hyperspatial Resolution UAS Imagery and Structure from Motion Photogrammetry. Earth Surf. Process. Landf. 2014, 40, 47–64. [Google Scholar] [CrossRef]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the Topography of Shallow Braided Rivers Using Structure-from-Motion Photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Pai, H.; Malenda, H.F.; Briggs, M.A.; Singha, K.; González-Pinzón, R.; Gooseff, M.N.; Tyler, S.W. Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach. Geophys. Res. Lett. 2017, 44, 11868–11877. [Google Scholar] [CrossRef]
- Pugliese, R.; Regondi, S.; Marini, R. Machine Learning-Based Approach: Global Trends, Research Directions, and Regulatory Standpoints. J. Inf. Technol. Data Manag. 2021, 4, 19–29. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Laboratory Water Surface Elevation Estimation Using Image-Based Convolutional Neural Networks. Ocean Eng. 2022, 248, 110819. [Google Scholar] [CrossRef]
- Elkhrachy, I. Flash Flood Water Depth Estimation Using SAR Images, Digital Elevation Models, and Machine Learning Algorithms. Remote Sens. 2022, 14, 440. [Google Scholar] [CrossRef]
- Bandini, F.; Sunding, T.P.; Linde, J.; Smith, O.; Jensen, I.K.; Köppl, C.J.; Butts, M.; Bauer-Gottwein, P. Dataset Used in “Unmanned Aerial System (UAS) Observations of Water Surface Elevation in a Small Stream: Comparison of Radar Altimetry, LIDAR and Photogrammetry Techniques”; Licensed under Creative Commons Attribution 2.0 Generic; Zenodo: Geneva, Switzerland, 2019. [Google Scholar]
- Siegel, A.F. Correlation and Regression. In Practical Business Statistics; Elsevier: Amsterdam, The Netherlands, 2016; pp. 299–354. [Google Scholar]
- Iakubovskii, P. Segmentation Models Pytorch v0.3.3; GitHub: San Francisco, CA, USA, 2019. [Google Scholar]
- Wan, X. Influence of Feature Scaling on Convergence of Gradient Iterative Algorithm. J. Phys. Conf. Ser. 2019, 1213, 032021. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar] [CrossRef]
- Fan, T.; Wang, G.; Li, Y.; Wang, H. MA-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation. IEEE Access 2020, 8, 179656–179665. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. arXiv 2015, arXiv:1612.01105. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556, 2014 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar] [CrossRef]
Subset ID | Number of WSE Point Measurements | Standard Error of Estimate for Ground Truth WSE (m) | Number of Extracted Data Set Samples |
---|---|---|---|
GRO21 | 36 | 0.012 | 64 |
RYB21 | 52 | 0.013 | 55 |
GRO20 | 84 | 0.020 | 72 |
RYB20 | 76 | 0.016 | 57 |
AMO18 | 7235 | 0.020 | 74 |
Approach | Architectures | Encoder | Batch Size |
---|---|---|---|
Direct regression | - | ResNet18, ResNet50, VGG11, VGG13, VGG16, VGG19 | 1, 2, 4, 8, 16 |
Mask averaging | U-Net, MA-Net, PSP-Net | VGG13, VGG16, VGG19 | 1, 2, 4, 8, 16 |
Direct | Mask | |
---|---|---|
encoder | VGG16 | VGG19 |
architecture | - | PSPNet |
batch size | 1 | 4 |
Mean RMSE | 0.170 | 0.077 |
Cross-Validation | Stratified | All-In-Case-Out | - | |||
---|---|---|---|---|---|---|
Method | Direct | Mask | Direct | Mask | Centerline | Wateredge |
AMO18 | 0.099 | 0.035 | 0.170 | 0.059 | 0.219 | 0.308 |
GRO20 | 0.076 | 0.021 | 0.124 | 0.072 | 0.185 | 0.228 |
GRO21 | 0.107 | 0.058 | 0.243 | 0.117 | 0.27 | 0.277 |
RYB20 | 0.095 | 0.048 | 0.176 | 0.156 | 0.449 | 0.259 |
RYB21 | 0.274 | 0.063 | 0.337 | 0.142 | 0.282 | 0.404 |
Mean | 0.130 | 0.045 | 0.210 | 0.109 | 0.281 | 0.295 |
Sample St. Dev. | 0.081 | 0.017 | 0.083 | 0.043 | 0.102 | 0.067 |
Cross-Validation | Stratified | All-In-Case-Out | - | |||
---|---|---|---|---|---|---|
Method | Direct | Mask | Direct | Mask | Centerline | Wateredge |
AMO18 | 0.078 | 0.026 | 0.121 | 0.045 | 0.179 | 0.176 |
GRO20 | 0.059 | 0.015 | 0.091 | 0.06 | 0.139 | 0.104 |
GRO21 | 0.082 | 0.028 | 0.195 | 0.072 | 0.117 | 0.138 |
RYB20 | 0.074 | 0.037 | 0.127 | 0.111 | 0.373 | 0.157 |
RYB21 | 0.169 | 0.045 | 0.154 | 0.096 | 0.249 | 0.276 |
Mean | 0.092 | 0.030 | 0.138 | 0.077 | 0.211 | 0.17 |
Sample St. Dev. | 0.044 | 0.011 | 0.039 | 0.027 | 0.103 | 0.065 |
Cross-Validation | Stratified | All-In-Case-Out | - | |||
---|---|---|---|---|---|---|
Method | Direct | Mask | Direct | Mask | Centerline | Wateredge |
AMO18 | 0.008 | −0.007 | −0.084 | −0.015 | −0.149 | 0.161 |
GRO20 | −0.024 | −0.007 | −0.076 | −0.057 | −0.071 | 0.042 |
GRO21 | 0.004 | −0.018 | 0.069 | −0.064 | 0.058 | 0.116 |
RYB20 | −0.013 | 0.002 | 0.042 | 0.059 | −0.277 | 0.036 |
RYB21 | −0.076 | 0.006 | −0.034 | −0.004 | −0.225 | 0.102 |
Mean | −0.020 | −0.005 | −0.017 | −0.016 | −0.133 | 0.091 |
Sample St. Dev. | 0.034 | 0.009 | 0.069 | 0.049 | 0.132 | 0.053 |
Method | Source | RMSE | MAE | MBE |
---|---|---|---|---|
UAV radar | [25] | 0.030 | 0.033 | 0.033 |
DL photogrammetry (stratified) | This study | 0.035 | 0.026 | −0.007 |
DL photogrammetry (all-in-case-out) | This study | 0.059 | 0.045 | −0.015 |
UAV photogrammetry DSM centerline | [25] | 0.164 | 0.150 | −0.151 |
UAV photogrammetry point cloud | [25] | 0.180 | 0.160 | −0.160 |
UAV lidar point cloud | [25] | 0.222 | 0.159 | 0.033 |
UAV lidar DSM centerline | [25] | 0.358 | 0.238 | 0.076 |
UAV photogrammetry DSM “water-edge” | [25] | 0.450 | 0.385 | 0.385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szostak, R.; Pietroń, M.; Wachniew, P.; Zimnoch, M.; Ćwiąkała, P. Estimation of Small-Stream Water Surface Elevation Using UAV Photogrammetry and Deep Learning. Remote Sens. 2024, 16, 1458. https://doi.org/10.3390/rs16081458
Szostak R, Pietroń M, Wachniew P, Zimnoch M, Ćwiąkała P. Estimation of Small-Stream Water Surface Elevation Using UAV Photogrammetry and Deep Learning. Remote Sensing. 2024; 16(8):1458. https://doi.org/10.3390/rs16081458
Chicago/Turabian StyleSzostak, Radosław, Marcin Pietroń, Przemysław Wachniew, Mirosław Zimnoch, and Paweł Ćwiąkała. 2024. "Estimation of Small-Stream Water Surface Elevation Using UAV Photogrammetry and Deep Learning" Remote Sensing 16, no. 8: 1458. https://doi.org/10.3390/rs16081458
APA StyleSzostak, R., Pietroń, M., Wachniew, P., Zimnoch, M., & Ćwiąkała, P. (2024). Estimation of Small-Stream Water Surface Elevation Using UAV Photogrammetry and Deep Learning. Remote Sensing, 16(8), 1458. https://doi.org/10.3390/rs16081458