Recent Spatiotemporal Trends in Glacier Snowline Altitude at the End of the Melt Season in the Qilian Mountains, China
"> Figure 1
<p>Location of the study area in the Qilian Mountains, with the glaciers and meteorological stations shown.</p> "> Figure 2
<p>Classification results of Landsat images of Qiyi Glacier in Qilian Mountains by maximum likelihood method (Landsat images of 2013, LC0820130820) (<b>a</b>), and height zones of DEM images reclassified at 50 m intervals (<b>b</b>).</p> "> Figure 3
<p>Glacier SLA obtained by using Landsat data and MODIS data, and SLA sequence of Qiyi Glacier in Qilian Mountains from 1989 to 2018 extracted by using Landsat data as the “ reference value” assisted by MODIS data.</p> "> Figure 4
<p>The time distribution of the selected Landsat images to derive SLA.</p> "> Figure 5
<p>The SLAs extracted from Sentinel-2 images in warm season [<a href="#B26-remotesensing-13-04935" class="html-bibr">26</a>].</p> "> Figure 6
<p>Relationship between the remote-sensing-derived SLA and measured ELA of Qiyi Glacier in the Qilian Mountains. The black dot–dash line represents the 1:1 line.</p> "> Figure 7
<p>Glacier SLA in the western section, central section, eastern section of the Qilian Mountains and the Qilian Mountains during the 1989–2018 period. Dashline represent the linear fit line of the SLA.</p> "> Figure 8
<p>Summer mean temperature (<b>a</b>) and annual total precipitation anomalies (<b>b</b>) from the meteorological stations and ERA5 data near the glaciers in the Qilian Mountains. The black dash line represents the linear fit line of summer mean temperature or annual total precipitation anomalies of the meteorological station.</p> "> Figure 9
<p>Glacier SLA (<b>a</b>) and number of glaciers with different orientations (<b>b</b>) in the Qilian Mountains in 1989, 1999, 2009 and 2018.</p> "> Figure 10
<p>The glacier SLA in 1989, 1999, 2009 and 2018 (gray and black bars), summer temperature (red and dark red lines) and annual total precipitation (dark blue and light blue bars) on the south and north slopes (<b>a</b>), and on the east and west slopes (<b>b</b>), with light colors representing the north and east slopes (light gray, red and light blue), respectively. Dark colors represent south slope and west slope (black, dark red, dark blue).</p> "> Figure 11
<p>Spatial changes in the mean glacier SLA in the Qilian Mountains in 1989, 1999, 2009 and 2018 (<b>a</b>–<b>d</b>), and SLA change from 1989–2018 (<b>e</b>).</p> "> Figure 12
<p>Changes of summer mean temperature (<b>a</b>) and annual total precipitation (<b>b</b>) in Qilian Mountains during 1989–2018.</p> "> Figure 13
<p>The glacier mean SLA of 10 sub-basins of the Qilian Mountains during 1989–2018 (<b>a</b>), and the variation of glacier SLA of 10 sub-basins during 1989–2018 (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.1.1. Landsat Data
3.1.2. MODIS SLA Data
3.1.3. DEM Data
3.1.4. Meteorological Data
3.1.5. Equilibrium Line Altitude Data
3.2. Methods
3.2.1. Striping Noise of Landsat Image Removal
3.2.2. Radiometric Calibration of Landsat Image
3.2.3. Landsat Image Registration
3.2.4. Glacier Boundary Extraction
3.2.5. Determination of SLA
3.2.6. Supplement of SLA Sequence
3.2.7. Meteorological Data Processing
4. Results and Discussion
4.1. Glacier SLA Accuracy Evaluation
4.2. Temporal Variations in Glacier SLA in the Qilian Mountains
4.3. Spatial Variations in Glacier SLA in the Qilian Mountains
4.4. Climate Sensitivity of Glacier ELA in Qilian Mountains
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.J.; Ye, B.S.; Liu, S.Y. Impact of climate change on the alpine streamflow during the past 40 a in the middle part of the QiIian Mountains, Northwestern China. J. Glaciol. Geocryol. 2000, 22, 193–199. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, W.H.; Deng, H.J.; Fang, G.H.; Li, Z. Changes in Central Asia’s water tower: Past, present and future. Sci. Rep. 2016, 6, 35458. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Duan, J.P.; Wang, L.L.; Ren, J.W.; Li, L. Progress in glacier variations in China and its sensitivity to climatic change during the past century. Prog. Geog. 2009, 28, 231–237. [Google Scholar] [CrossRef]
- Duan, K.Q.; Yao, T.D.; Shi, P.H.; Guo, X.J. Simulation and prediction of equilibrium line altitude of glaciers in the eastern Tibetan Plateau. Sci. China Earth Sci. 2017, 47, 104–113. [Google Scholar] [CrossRef]
- Pellitero, R.; Rea, B.R.; Spagnolo, M.; Bakke, J.; Hughes, P.; Ivy-Ochs, S.; Lukas, S.; Ribolini, A. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Comput. Geosci. 2015, 82, 55–62. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.A.; Wang, N.L.; Li, Z.; Wu, Y.W.; Zhang, W.; Guo, Z.M. Region-wide glacier mass budgets for the Tanggula Mountains between ~1969 and ~2015 derived from remote sensing data. Arct. Antarct. Alp. Res. 2018, 49, 551–568. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.S.; Li, Z.W.; Li, J.; Zhao, R.; Ding, X.L. Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ. 2018, 210, 96–112. [Google Scholar] [CrossRef]
- Gao, X.; Ye, B.S.; Zhang, S.Q.; Qiao, C.J.; Zhang, X.W. Glacier runoff variation and its influence on river runoff during 1961–2006 in the Tarim River Basin, China. Sci. China Earth Sci. 2010, 53, 880–891. [Google Scholar] [CrossRef]
- Cogley, J.G.; Hock, R.; Rasmussen, L.A.; Arendt, A.A.; Bauder, A.; Braithwaite, R.J.; Jansson, P.; Kaser, G.; MÖler, M.; Nicholson, L.; et al. Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2; UNESCO: Paris, France, 2011; p. 965. [Google Scholar]
- Lliboutry, L. Traite’de Glaciology. Tome II: Glaciers, Variations du Climat, Sols Gele’s; Masson et Cie: Paris, France, 1965. [Google Scholar]
- Rastner, P.; Prinz, R.; Notarnicola, C.; Nicholson, L.; Sailer, R.; Schwaizer, G.; Paul, F. On the automated mapping of snow cover on glaciers and calculation of snow line altitudes from multi-temporal Landsat data. Remote Sens. 2019, 11, 1410. [Google Scholar] [CrossRef] [Green Version]
- Barandun, M.; Huss, M.; Usubaliev, R.; Azisov, E.; Berthier, E.; Kääb, A.; Bolch, T.; Hoelzle, M. Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations. Cryosphere 2018, 12, 1899–1919. [Google Scholar] [CrossRef] [Green Version]
- Žebre, M.; Colucci, R.R.; Giorgi, F.; Glasser, N.F.; Racoviteanu, A.E.; Gobbo, C.D. 200 years of equilibrium-line altitude variability across the European Alps (1901−2100). Clim. Dynam. 2021, 56, 1–19. [Google Scholar] [CrossRef]
- Pattanaik, S.R.; Singh, S.K.; Bahuguna, I.M.; Shah, R.D. Spatial and temporal variability of Accumulation Area Ratio (AAR) of glaciers in Nubra, Chandra and Bhagirathi sub-basins in the Himalayan region (2008–2013). Them. J.Geogr. 2019, 8, 93–106. [Google Scholar]
- Wunderle, S.; Droz, M.; Kleindienst, H. Spatial and temporal analysis of the snow line in the Alps based on NOAA-AVHRR data. Geogr. Helv. 2002, 57, 170–183. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.W.; He, J.Q.; Guo, Z.M.; Chen, A.A. Limitations in identifying the equilibrium-line altitude from the optical remote-sensing derived snowline in the Tien Shan, China. J. Glaciol. 2014, 60, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Prantl, H.; Nicholson, L.; Sailer, R.; Hanzer, F.; Juen, I.; Rastner, P. Glacier snowline determination from terrestrial laser scanning intensity data. Geosciences 2017, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- McFadden, E.M.; Ramage, J.; Rodbell, D.T. Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005. Cryosphere 2011, 4, 1931–1966. [Google Scholar] [CrossRef] [Green Version]
- Pelto, M. Utility of late summer transient snowline migration rate on Taku Glacier, Alaska. Cryosphere 2011, 5, 1127–1133. [Google Scholar] [CrossRef]
- De Angelis, H.; Rau, F.; Skvarca, P. Snow zonation on Hielo Patagónico Sur, Southern Patagonia, derived from Landsat 5 TM data. Glob. Planet. Chang. 2007, 59, 149–158. [Google Scholar] [CrossRef]
- Kaur, R.; Saikumar, D.; Kulkarni, A.V.; Chaudhary, B.S. Variations in snowcover and snowline altitude in Baspa Basin. Curr. Sci. 2009, 96, 1255–1258. [Google Scholar]
- Guo, Z.M.; Geng, L.; Shen, B.S.; Wu, Y.W.; Chen, A.A.; Wang, N.L. Spatiotemporal Variability in the Glacier Snowline Altitude across High Mountain Asia and Potential Driving Factors. Remote Sens. 2021, 13, 425. [Google Scholar] [CrossRef]
- Bao, W.J.; Liu, S.Y.; Wu, K.P.; Wang, R.J.; Jiang, Z.L. A method for extracting snow line altitude based on MODIS snow product. J. Glaciol. Geocryol. 2017, 39, 259–272. [Google Scholar] [CrossRef]
- Tang, Z.G.; Wang, X.R.; Wang, J.; Wang, X.; Wei, J.F. Investigating spatiotemporal patterns of snowline altitude at the end of melting season in High Mountain Asia, using cloud-free MODIS snow cover product, 2001–2016. Cryosphere Discuss. 2019, 1–24. [Google Scholar] [CrossRef]
- Fausto, R.S.; Andersen, S.B.; Ahlstrøm, A.P.; van As, D.; Box, J.E.; Binder, D.; Citterio, M.; Colgan, W.; Haubner, K.; Hansen, K. Greenland ice sheet–snowline elevations at the end of the melt seasons from 2000 to 2017. Geol. Surv. Den. Greenl. 2018, 41, 71–74. [Google Scholar]
- Sun, M.P.; Liu, S.Y.; Yao, X.J.; Guo, W.Q.; Xu, J.L. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. J. Geogr. Sci. 2018, 28, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.M.; Wang, N.L.; Wu, H.B.; Wu, Y.W.; Wu, X.J.; Li, Q.L. Variations in firn line altitude and firn zone area on Qiyi Glacier, Qilian Mountains, over the period of 1990 to 2011. Arct. Antarct. Alp. Res. 2015, 47, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.T.; Liu, C.H.; You, G.X.; Pu, J.C.; Yang, H.A.; Tian, P.Y. Glacier Inventory of China I Qilian Mountains; Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences: Lanzhou, China, 1981. [Google Scholar]
- He, J.; Wang, N.L.; Chen, A.A.; Yang, X.W.; Hua, T. Glacier changes in the Qilian Mountains, Northwest China, between the 1960s and 2015. Water 2019, 11, 623. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.F. A Concise China Glacier Inventory; Shanghai Science Popular Press: Shanghai, China, 2005. [Google Scholar]
- Lan, Y.C.; Kang, E.S.; Zhang, J.S.; Cheng, R.S. Air temperature series and its changing trends in Qilian Mountains area since 1950s. J. Desert Res. 2001, 21, 53–57. [Google Scholar]
- Shi, Y.F.; Liu, C.H.; Kang, E.S. The Glacier Inventory of China. Ann. Glaciol. 2009, 50, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.L.; He, J.Q.; Pu, J.C.; Jiang, X.; Jing, Z.F. Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years. Chin. Sci. Bull. 2010, 55, 3810–3817. [Google Scholar] [CrossRef]
- Davaze, L.; Rabatel, A.; Dufour, A.; Hugonnet, R.; Arnaud, Y. Region-wide annual glacier surface mass balance for the European Alps from 2000 to 2016. Front. Earth Sci. 2020, 8, 149. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.G.; Hu, G.J.; Wang, J.W.; Sang, G.Q.; Li, J. Spatiotemporal dynamics of snowline altitude and their Responses to climate change in the Tienshan Mountains, Central Asia, during 2001–2019. Sustainability 2021, 13, 3992. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.L.; Vogelmann, J.E.; Gao, F.; Jin, S.M. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. The new remote-sensing-derived Swiss glacier inventory: I. Methods. Ann. Glaciol. 2002, 34, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.Z.; Yang, T.B.; Liu, Q.P. Climate change and glacier area shrinkage in the Qilian mountains, China, from 1956 to 2010. Ann. Glaciol. 2014, 55, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Guo, W.Q.; Liu, S.Y.; Yu, P.C.; Xu, J.L. Automatic extraction of ridgelines using on drainage boundaries and aspect difference. Sci. Surv. Mapp. 2011, 36, 210–212. [Google Scholar] [CrossRef]
- Guo, W.Q.; Liu, S.Y.; Xu, J.L.; Wu, L.Z.; Shangguan, D.H.; Yao, X.J.; Wei, J.F.; Bao, W.J.; Yu, P.C.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Han, C.T.; Chen, R.S.; Liu, J.F.; Yang, Y.; Qing, W.W. A discuss of the separating solid and liquid precipitations. J. Glaciol. Geocryol. 2010, 32, 249–256. [Google Scholar]
- Ohmura, A.; Kasser, P.; Funk, M. Climate at the Equilibrium Line of Glaciers. J. Glaciol. 1992, 38, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Huang, Y.S.; Shi, Y.F.; Li, L. Relationship between snow line change and climate change in the middle of Qilian Mountains during 2000-2012. Mt. Res. 2015, 33, 683–689. [Google Scholar] [CrossRef]
- Dong, Z.W.; Qin, D.H.; Ren, J.W.; Li, K.M.; Li, Z.Q. Variations in the equilibrium line altitude of Urumqi Glacier No.1, Tianshan Mountains, over the past 50 years. Chin. Sci. Bull. 2012, 57, 4776–4783. [Google Scholar] [CrossRef] [Green Version]
Path/Row | Date | Sensor |
---|---|---|
136/33 | 25 August 1989 | Landsat TM5 |
14 July 1991 | Landsat TM5 | |
12 August 1996 | Landsat TM5 | |
21 August 1999 | Landsat TM5 | |
31 August 2000 | Landsat ETM+ | |
29 August 2002 | Landsat TM5 | |
2 August 2004 | Landsat TM5 | |
31 July 2006 | Landsat ETM+ | |
27 August 2007 | Landsat TM5 | |
21 July 2009 | Landsat ETM+ | |
27 August 2010 | Landsat ETM+ | |
11 August 2013 | Landsat OLI | |
29 July 2014 | Landsat OLI | |
25 August 2015 | Landsat ETM+ | |
27 August 2016 | Landsat ETM+ | |
14 August 2017 | Landsat ETM+ | |
10 September 2018 | Landsat OLI | |
135/33 | 2 August 1989 | Landsat TM5 |
31 July 1994 | Landsat TM5 | |
22 September 1996 | Landsat TM5 | |
9 September 1997 | Landsat TM5 | |
28 September 1998 | Landsat TM5 | |
24 June 2001 | Landsat ETM+ | |
17 August 2006 | Landsat TM5 | |
28 August 2010 | Landsat TM5 | |
31 August 2011 | Landsat TM5 | |
20 August 2013 | Landsat OLI | |
30 July 2014 | Landsat ETM+ | |
15 August 2017 | Landsat OLI | |
10 August 2018 | Landsat ETM+ | |
132/34 | 10 August 1988 | Landsat TM5 |
16 August 1990 | Landsat TM5 | |
3 August 1991 | Landsat TM5 | |
27 August 1994 | Landsat TM5 | |
16 August 1996 | Landsat TM5 | |
3 August 1997 | Landsat TM5 | |
1 August 1999 | Landsat ETM+ | |
14 August 2001 | Landsat TM5 | |
24 July 2002 | Landsat ETM+ | |
9 August 2005 | Landsat TM5 | |
12 August 2009 | Landsat ETM+ | |
10 August 2011 | Landsat TM5 | |
4 August 2012 | Landsat ETM+ | |
18 August 2014 | Landsat OLI | |
7 August 2016 | Landsat OLI | |
28 July 2018 | Landsat OLI | |
134/33 | 27 August 1989 | Landsat TM5 |
30 July 1999 | Landsat ETM+ | |
17 July 2009 | Landsat TM5 | |
19 August 2018 | Landsat ETM+ | |
133/33 | 31 July 1999 | Landsat TM5 |
11 August 2009 | Landsat TM5 | |
19 July 2018 | Landsat OLI | |
135/34 | 2 August 1989 | Landsat TM5 |
30 August 1999 | Landsat TM5 | |
13 September 2018 | Landsat OLI |
Station ID | Latitude (°) | Longitude (°) | Elevation (m) | Aspect | Name | Province |
---|---|---|---|---|---|---|
52633 | 38.49 | 98.25 | 3367 | N | Tuole | Qinghai |
52645 | 38.26 | 99.36 | 3314 | NE | Yeniugou | Qinghai |
52657 | 38.18 | 100.25 | 3597 | W | Qilian | Qinghai |
52679 | 37.92 | 102.67 | 1531 | W | Wuwei | Gansu |
52713 | 37.85 | 95.37 | 3173 | SW | Dachaidan | Qinghai |
52765 | 37.38 | 101.62 | 3502 | SE | Menyuan | Qinghai |
52787 | 37.20 | 102.87 | 3045 | NE | Wushaoling | Gansu |
Sensor | Band Number | Band | Wavelengts (μm) | Resolution (m) |
---|---|---|---|---|
TM5 | 1 | Blue | 0.45~0.52 | 30 |
2 | Green | 0.52~0.60 | 30 | |
3 | Red | 0.63~0.69 | 30 | |
4 | Near-Infrared | 0.76~0.90 | 30 | |
5 | Near-Infrared | 1.55~1.75 | 30 | |
6 | Thermal | 10.40~12.50 | 120 | |
7 | Mid-Infrared | 2.08~2.35 | 30 | |
ETM+ | 1 | Blue | 0.45~0.53 | 30 |
2 | Green | 0.52~0.60 | 30 | |
3 | Red | 0.63~0.69 | 30 | |
4 | Near-Infrared | 0.77~0.90 | 30 | |
5 | SWIR | 1.55~1.75 | 30 | |
6 | Thermal | 10.40~12.50 | 60 | |
7 | Mid-Infrared | 2.08~2.35 | 30 | |
8 | Panchromatic | 0.52~0.90 | 15 | |
OLI | 1 | Coastal | 0.43~0.45 | 30 |
2 | Blue | 0.45~0.51 | 30 | |
3 | Green | 0.53~0.59 | 30 | |
4 | Red | 0.64~0.67 | 30 | |
5 | Near-Infrared | 0.85~0.88 | 30 | |
6 | SWIR 1 | 1.57~1.65 | 30 | |
7 | SWIR 2 | 2.11~2.29 | 30 | |
8 | Panchromatic | 0.50~0.68 | 15 | |
9 | Cirrus | 1.36~1.38 | 30 |
Year | SLA (m) | Threshold (%) |
---|---|---|
1989 | 4780 ± 25 | 70 |
1994 | 4820 ± 25 | 65 |
1996 | 4970 ± 25 | 60 |
1997 | 4830 ± 25 | 40 |
1998 | 4690 ± 25 | 45 |
2001 | 5010 ± 25 | 60 |
2006 | 5020 ± 25 | 80 |
2010 | 4900 ± 25 | 50 |
2011 | 4850 ± 25 | 40 |
2013 | 4970 ± 25 | 65 |
2014 | 4920 ± 25 | 70 |
2017 | 4870 ± 25 | 65 |
2018 | 5030 ± 25 | 65 |
ID | Scenario | Linear Fitting Equation | SLA Change (m) |
---|---|---|---|
1 | SLA of all years | Y = 7.0945x − 9435.1 | 212.84 |
2 | Remove SLAs of 1989 and 2019 | Y = 7.3465x − 9944.2 | 220.40 |
3 | Remove SLAmin | Y = 5.6318x − 6494 | 168.95 |
4 | Remove SLAmax | Y = 6.6264x − 8500 | 198.79 |
5 | Remove SLAmin and SLAsub-min | Y = 4.4916x − 4202.2 | 134.75 |
6 | Remove SLAmax and SLAsub-max | Y = 6.7150x − 8683.5 | 201.45 |
Grid SLA (m) | Grid Number | |||
---|---|---|---|---|
1989 | 1999 | 2009 | 2018 | |
≤4700 | 14 | 10 | 7 | 4 |
4700–4900 | 7 | 20 | 14 | 16 |
4900–5100 | 24 | 12 | 17 | 15 |
≥5100 | 0 | 3 | 7 | 10 |
Basin ID | SLA Change (m) | Summer Mean Temperature Change (°C/10a) | Annual Total Precipitation Change (mm/10a) |
---|---|---|---|
5Y51 | 68 | 0.402 | 0.857 |
5Y56 | 57 | 0.379 | 0.806 |
5Y58 | 66 | 0.395 | 0.822 |
5Y45 | 44 | 0.378 | 0.739 |
5Y44 | 12 | 0.365 | 0.858 |
5Y57 | 112 | 0.432 | 1.251 |
5Y43 | 98 | 0.422 | 0.845 |
5Y42 | 85 | 0.444 | 0.471 |
5J42 | 84 | 0.439 | 0.161 |
5Y41 | 97 | 0.441 | −0.538 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Wang, N.; Shen, B.; Gu, Z.; Wu, Y.; Chen, A. Recent Spatiotemporal Trends in Glacier Snowline Altitude at the End of the Melt Season in the Qilian Mountains, China. Remote Sens. 2021, 13, 4935. https://doi.org/10.3390/rs13234935
Guo Z, Wang N, Shen B, Gu Z, Wu Y, Chen A. Recent Spatiotemporal Trends in Glacier Snowline Altitude at the End of the Melt Season in the Qilian Mountains, China. Remote Sensing. 2021; 13(23):4935. https://doi.org/10.3390/rs13234935
Chicago/Turabian StyleGuo, Zhongming, Ninglian Wang, Baoshou Shen, Zhujun Gu, Yuwei Wu, and Anan Chen. 2021. "Recent Spatiotemporal Trends in Glacier Snowline Altitude at the End of the Melt Season in the Qilian Mountains, China" Remote Sensing 13, no. 23: 4935. https://doi.org/10.3390/rs13234935
APA StyleGuo, Z., Wang, N., Shen, B., Gu, Z., Wu, Y., & Chen, A. (2021). Recent Spatiotemporal Trends in Glacier Snowline Altitude at the End of the Melt Season in the Qilian Mountains, China. Remote Sensing, 13(23), 4935. https://doi.org/10.3390/rs13234935