A Deep Fusion uNet for Mapping Forests at Tree Species Levels with Multi-Temporal High Spatial Resolution Satellite Imagery
"> Figure 1
<p>Schematic diagram of study area location and data source. WYD: Wangyedian forest farm; GF-2 satellite (bands 4, 3, 2 false-color combinations).</p> "> Figure 2
<p>Examples in detail for some of the training samples in the Wangyedian forest farm. (<b>a</b>) Original image blocks of 2019 (bands 4, 3, 2 false-color combinations); (<b>b</b>) original image blocks of 2017 (bands 4, 3, 2 false-color combinations); (<b>c</b>) ground truth (GT) blocks showing the labels corresponding to the image blocks in (<b>a</b>,<b>b</b>).</p> "> Figure 3
<p>Spatial distribution map of the field survey sample points and some of the training samples in the Wangyedian forest farm.</p> "> Figure 4
<p>Workflow for the dual-uNet-Resnet model for forest type classification at tree species level based on the multi-temporal HSR image.</p> "> Figure 5
<p>The general workflow of the dual-uNet-Resnet classification method.</p> "> Figure 6
<p>The structure of the bottleneck block.</p> "> Figure 7
<p>The detailed classification results of the Wangyedian forest farm. (<b>a</b>) GF-2; (<b>b</b>) label; (<b>c</b>) dual-uNet-Resnet; (<b>d</b>) dual-FCN8s; (<b>e</b>) UNet-Resnet; (<b>f</b>) UNet; (<b>g</b>) FCN8s.</p> "> Figure 8
<p>The detailed classification results of the four residual networks as encoder. (<b>a</b>) GF-2; (<b>b</b>) label; (<b>c</b>) Resnet 50; (<b>d</b>) Resnet 34; (<b>e</b>) Resnet 18; (<b>f</b>) Resnet 101.</p> "> Figure 9
<p>The detailed information of the results with two decoder fusion strategies of the Wangyedian forest farm (<b>a</b>) GF-2; (<b>b</b>) label; (<b>c</b>) dual-uNet-Resnet; (<b>d</b>) dual-uNet-Resnet-DeMerge.</p> "> Figure 10
<p>The detailed information of without and with convolution module and residual convolutional module into the skip connection (<b>a</b>) GF-2; (<b>b</b>) label; (<b>c</b>) dual-uNet-Resnet; (<b>d</b>) dual-uNet-Resnet-ConvConnect; (<b>e</b>) dual-uNet-Resnet-WithoutConnect.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Test Data
2.2.1. Land Cover Types, Forest, and Tree Species Definition
2.2.2. Multi-Temporal Remote Sensing Data
2.2.3. Sample Dataset
- (1)
- Training and validation sample block
- (2)
- Test sample point
2.3. Workflow Description
2.4. Network Structure
2.4.1. Deep Residual Model
2.4.2. UNet Backbone
2.4.3. Dual-uNet-Resnet Model
2.5. Accuracy Evaluation Index
3. Results
3.1. Classification Results of the Dual-uNet-Resnet
3.2. Benchmark Comparison for Classification Based on Multi-Temporal Imagery
4. Discussion
4.1. Impact of the Depth of Residual Network on Classification Results
4.2. Impact of the Different Fusion Strategies of the Decoder
4.3. Impact of Inserting the Convolution Module into the Skip Connection
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Aardt, J.A.N.; Wynne, R.H. Examining pine spectral separability using hyperspectral data from an airborne sensor: An extension of field-based results. Int. J. Remote Sens. 2007, 28, 431–436. [Google Scholar] [CrossRef]
- Shang, X.; Chisholm, L.A. Classification of Australian Native Forest Species Using Hyperspectral Remote Sensing and Machine-Learning Classification Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2481–2489. [Google Scholar] [CrossRef]
- Boschetti, M.; Boschetti, L.; Oliveri, S.; Casati, L.; Canova, I. Tree Species Mapping with Airborne Hyper-spectral MIVIS Data: The Ticino Park Study Case. Int. J. Remote Sens. 2007, 28, 1251–1261. [Google Scholar] [CrossRef]
- Jansson, G.; Angelstam, P. Threshold Levels of Habitat Composition for the Presence of the Long-Tailed Tit (Aegithalos Caudatus) in a Boreal Landscape. Landsc. Ecol. 1999, 14, 283–290. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-Pixel vs. Object-Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Johansen, K.; Coops, N.C.; Gergel, S.E.; Stange, Y. Application of High Spatial Resolution Satellite Imagery for Riparian and Forest Ecosystem Classification. Remote Sens. Environ. 2007, 110, 29–44. [Google Scholar] [CrossRef]
- Deur, M.; Gašparović, M.; Balenović, I. Tree Species Classification in Mixed Deciduous Forests Using Very High Spatial Resolution Satellite Imagery and Machine Learning Methods. Remote Sens. 2020, 12, 3926. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef] [Green Version]
- Key, T.; Warner, T.A.; McGraw, J.B.; Fajvan, M.A. A Comparison of Multispectral and Multitemporal Information in High Spatial Resolution Imagery for Classification of Individual Tree Species in a Temperate Hardwood Forest. Remote Sens. Environ. 2001, 75, 100–112. [Google Scholar] [CrossRef]
- Nelson, M. Evaluating Multitemporal Sentinel-2 Data for Forest Mapping Using Random Forest. Master’s Thesis, Stockholm University, Stockholm, Sweden, 2017. [Google Scholar]
- Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data. Remote Sens. 2018, 10, 1419. [Google Scholar] [CrossRef] [Green Version]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Kim, K.-M.; Kim, E.-H.; Jin, R. Machine Learning for Tree Species Classification Using Sentinel-2 Spectral Information, Crown Texture, and Environmental Variables. Remote Sens. 2020, 12, 2049. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, Y.; Lu, D.; Li, G.; Chen, E. Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data. Remote Sens. 2019, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Trans. Geosci. Remote Sens. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Pan, X.; Li, H.; Gardiner, A.; Sargent, I.; Hare, J.; Atkinson, P.M. A Hybrid MLP-CNN Classifier for Very Fine Resolution Remotely Sensed Image Classification. ISPRS J. Photogramm. Remote Sens. 2018, 140, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Du, S. Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery. ISPRS J. Photogramm. Remote Sens. 2016, 113, 155–165. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, Z.; Yue, J.; Zhang, X.; Luo, L. On Combining Multiscale Deep Learning Features for the Classification of Hyperspectral Remote Sensing Imagery. Int. J. Remote Sens. 2015, 36, 3368–3379. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Fu, G.; Liu, C.; Zhou, R.; Sun, T.; Zhang, Q. Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network. Remote Sens. 2017, 9, 498. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Li, Y.; Jiao, L.; Chen, Y.; Shang, R. Densely Based Multi-Scale and Multi-Modal Fully Convolutional Networks for High-Resolution Remote-Sensing Image Semantic Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2612–2626. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Georgiou, T.; Lew, M.S. A Review of Semantic Segmentation Using Deep Neural Networks. Int. J. Multimed. Inf. Retr. 2018, 7, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, E.; Guo, Y.; Li, Z.; Jin, Y.; Zhao, J.; Zhou, Y. Deep U-Net Optimization Method for Forest Type Classification with High Resolution Multispectral Remote Sensing Images. For. Res. 2020, 33, 11–18. [Google Scholar] [CrossRef]
- Cao, K.; Zhang, X. An Improved Res-UNet Model for Tree Species Classification Using Airborne High-Resolution Images. Remote Sens. 2020, 12, 1128. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Ho Tong Minh, D. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for Land Cover Mapping via a Multi-Source Deep Learning Architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Scott, G.J.; Marcum, R.A.; Davis, C.H.; Nivin, T.W. Fusion of Deep Convolutional Neural Networks for Land Cover Classification of High-Resolution Imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1638–1642. [Google Scholar] [CrossRef]
- Scott, G.J.; Hagan, K.C.; Marcum, R.A.; Hurt, J.A.; Anderson, D.T.; Davis, C.H. Enhanced Fusion of Deep Neural Networks for Classification of Benchmark High-Resolution Image Data Sets. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1451–1455. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Z.; Chen, E.; Zhang, X.; Zhao, L.; Chen, Y.; Wang, Y. A Deep Learning Method for Forest Fine Classification Based on High Resolution Remote Sensing Images: Two-Branch FCN-8s. Sci. Silvae Sin. 2020, 3, 48–60. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Z.; Chen, E.; Zhang, X.; Zhao, L.; Chen, Y.; Wang, Y. A Deep Learning Forest Types Classification Method for Resolution Multispectral Remote Sensing Images: Dual-FCN8s-CRF. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Guo, Y.; Li, Z.; Chen, E.; Zhang, X.; Zhao, L.; Xu, E.; Hou, Y.; Sun, R. An End-to-End Deep Fusion Model for Mapping Forests at Tree Species Levels with High Spatial Resolution Satellite Imagery. Remote Sens. 2020, 12, 3324. [Google Scholar] [CrossRef]
- GB/T 26424-2010. Technical Regulations for Inventory for Forest Management Planning and Design; Chinese GB Standards: Shenzhen, China, 2011. [Google Scholar]
- China Centre for Resources Satellite Data and Application. The Introduction of GF-2 Satellite. Available online: http://218.247.138.119/CN/Satellite/3128.shtml (accessed on 12 June 2021).
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Proceedings of the IGARSS 2002, Toronto, ON, Canada, 24–28 June 2002; pp. 1414–1418. [Google Scholar] [CrossRef]
- Cao, H.; Gao, W.; Zhang, X.; Liu, X.; Fan, B.; Li, S. Overview of ZY-3 satellite research and application. In Proceedings of the 63rd IAC (International Astronautical Congress), Naples, Italy, 1–5 October 2012. [Google Scholar]
- Gao, Y.; Zhang, W. Comparison test and research progress of topographic correction on remotely sensed data. Geogr. Res. 2008, 27, 467–477. [Google Scholar] [CrossRef]
- Sun, W.; Chen, B.; Messinger, D.W. Nearest-neighbor diffusion-based pansharpening algorithm for spectral images. Opt. Eng. 2014, 53, 013107. [Google Scholar] [CrossRef] [Green Version]
- Hirose, Y.; Yamashita, K.; Hijiya, S. Back-Propagation Algorithm Which Varies the Number of Hidden Units. Neural Netw. 1991, 4, 61–66. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Moolayil, J. An Introduction to Deep Learning and Keras: A Fast-Track Approach to Modern Deep Learning with Python; Apress: Thousand Oaks, CA, USA, 2018; pp. 1–16. [Google Scholar]
- Drakopoulos, G.; Liapakis, X.; Spyrou, E.; Tzimas, G.; Sioutas, S. Computing long sequences of consecutive fibonacci integers with tensorflow. In Proceedings of the International Conference on Artificial Intelligence Applications and Innovations, Dubai, UAE, 30 November 2019; pp. 150–160. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Hościło, A.; Lewandowska, A. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 929. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Jiao, L.; Zhao, J.; Zhao, J.; Zhang, D.; Liu, F.; Yang, S.; Tang, X. Deep Multiple Instance Learning-Based Spatial–Spectral Classification for PAN and MS Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 461–473. [Google Scholar] [CrossRef]
- Ren, C.; Ju, H.; Zhang, H.; Huang, J. Forest land type precise classification based on SPOT5 and GF-1 images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 894–897. [Google Scholar]
Test Area | Level One | Level Two | Level Three |
---|---|---|---|
The Wangyedian forest farm | Forest land | Woodland | Chinese pine (CP) |
Larix principis (LP) | |||
Korean pine (KP) | |||
White birch and aspen (WA) | |||
Mongolian oak (MO) | |||
Shrub land (SL) | / | ||
Non-forest land | Cultivated land (CUL) | / | |
Grassland (GL) | / | ||
Construction land (COL) | / | ||
Other non-forest land (ONFL) | / |
Scenery Serial Number | Image Time | Solar Elevation Angle (°) | Solar Azimuth (°) | Cloud Cover (%) |
---|---|---|---|---|
4074551 | 5 September 2017 | 36.139 | 163.305 | 2% |
4074552 | 5 September 2017 | 35.978 | 163.166 | 2% |
4082058 | 5 September 2017 | 36.039 | 163.724 | 0% |
4082059 | 5 September 2017 | 35.878 | 163.586 | 0% |
4029092 | 29 May 2019 | 21.675 | 156.181 | 0% |
4029093 | 29 May 2019 | 21.526 | 155.893 | 0% |
4072605 | 23 June 2019 | 19.695 | 156.174 | 2% |
4072607 | 23 June 2019 | 19.549 | 155.842 | 7% |
CP | LP | KP | WA | MO | CUL | COL | SL | GL | ONFL | Total | UA (%) | |
CP | 70 | 4 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 78 | 89.74 |
LP | 3 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 66 | 93.94 |
KP | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 100.00 |
WA | 1 | 0 | 0 | 30 | 1 | 0 | 0 | 0 | 0 | 0 | 32 | 93.75 |
MO | 0 | 0 | 0 | 1 | 26 | 0 | 0 | 0 | 0 | 0 | 27 | 96.30 |
CUL | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 3 | 2 | 41 | 87.80 |
COL | 0 | 0 | 0 | 0 | 0 | 0 | 39 | 0 | 0 | 0 | 39 | 100.00 |
SL | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 22 | 0 | 0 | 23 | 95.65 |
GL | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 9 | 0 | 11 | 81.82 |
ONFL | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 25 | 26 | 96.15 |
Total | 74 | 67 | 15 | 35 | 28 | 36 | 39 | 23 | 12 | 29 | 358 | |
PA (%) | 94.59 | 92.54 | 100.00 | 85.71 | 92.86 | 100.00 | 100.00 | 95.65 | 75.00 | 86.21 |
Dual-uNet-Resnet | Dual-FCN8s | UNet-Resnet | UNet | FCN8s | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
CP | 94.59 | 89.74 | 97.26 | 85.54 | 81.08 | 90.91 | 87.84 | 83.33 | 82.43 | 83.56 |
LP | 92.54 | 93.94 | 78.13 | 87.72 | 95.59 | 79.27 | 86.76 | 84.29 | 84.06 | 82.86 |
KP | 100.00 | 100.00 | 100.00 | 93.75 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 71.43 |
WA | 85.71 | 93.75 | 100.00 | 95.12 | 91.89 | 100.00 | 87.10 | 93.10 | 76.00 | 95.00 |
MO | 92.86 | 96.30 | 96.43 | 96.43 | 96.43 | 100.00 | 96.43 | 90.00 | 100.00 | 100.00 |
CUL | 100.00 | 87.80 | 94.44 | 89.47 | 97.22 | 74.47 | 91.67 | 75.00 | 86.11 | 81.58 |
COL | 100.00 | 100.00 | 100.00 | 100.00 | 95.00 | 97.44 | 97.50 | 97.50 | 97.50 | 97.50 |
SL | 95.65 | 95.65 | 95.65 | 91.67 | 72.73 | 100.00 | 82.61 | 90.48 | 91.30 | 75.00 |
GL | 75.00 | 81.82 | 75.00 | 90.00 | 50.00 | 75.00 | 50.00 | 85.71 | 50.00 | 100.00 |
ONFL | 86.21 | 96.15 | 76.67 | 100.00 | 86.21 | 92.59 | 65.52 | 86.36 | 83.33 | 89.29 |
OA (%) | 93.30% | 91.67% | 88.92% | 86.80% | 86.08% | |||||
Kappa coefficient | 0.9229 | 0.9044 | 0.8724 | 0.8477 | 0.8396 |
Resnet 101 | Resnet 50 | Resnet 34 | Resnet 18 | |||||
---|---|---|---|---|---|---|---|---|
PA(%) | UA(%) | PA(%) | UA(%) | PA(%) | UA(%) | PA(%) | UA(%) | |
CP | 89.19 | 97.06 | 94.59 | 89.74 | 95.95 | 88.75 | 93.24 | 86.25 |
LP | 95.65 | 86.84 | 92.54 | 93.94 | 88.41 | 95.31 | 89.86 | 91.18 |
KP | 100.00 | 93.75 | 100.00 | 100.00 | 100.00 | 93.75 | 100.00 | 100.00 |
WA | 92.31 | 90.00 | 85.71 | 93.75 | 90.91 | 93.75 | 87.80 | 94.74 |
MO | 89.29 | 92.59 | 92.86 | 96.30 | 92.59 | 92.59 | 89.29 | 96.15 |
CUL | 100.00 | 78.26 | 100.00 | 87.80 | 94.44 | 80.95 | 97.22 | 76.09 |
COL | 97.50 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 90.00 | 100.00 |
SL | 86.96 | 100.00 | 95.65 | 95.65 | 86.96 | 86.96 | 86.36 | 95.00 |
GL | 75.00 | 90.00 | 75.00 | 81.82 | 66.67 | 100.00 | 66.67 | 80.00 |
ONFL | 79.31 | 100.00 | 86.21 | 96.15 | 86.67 | 96.30 | 90.00 | 96.43 |
OA(%) | 91.78% | 93.30% | 91.92% | 90.46% | ||||
Kappa coefficient | 0.9055 | 0.9229 | 0.907 | 0.8903 | ||||
Time for One Epoch | 31 s | 19 s | 19 s | 8 s |
Dual-uNet-Resnet | Dual-uNet-Resnet-DeMerge | |||
---|---|---|---|---|
PA(%) | UA(%) | PA(%) | UA(%) | |
CP | 94.59 | 89.74 | 98.65 | 76.84 |
LP | 92.54 | 93.94 | 76.47 | 98.11 |
KP | 100.00 | 100.00 | 100.00 | 88.24 |
WA | 85.71 | 93.75 | 86.84 | 97.06 |
MO | 92.86 | 96.30 | 92.86 | 100.00 |
CUL | 100.00 | 87.80 | 91.67 | 82.50 |
COL | 100.00 | 100.00 | 100.00 | 100.00 |
SL | 95.65 | 95.65 | 100.00 | 92.00 |
GL | 75.00 | 81.82 | 66.67 | 100.00 |
ONFL | 86.21 | 96.15 | 86.67 | 100.00 |
OA(%) | 93.30% | 90.38% | ||
Kappa coefficient | 0.9229 | 0.8893 |
Dual-uNet-Resnet | Dual-uNet-Resnet-ConvConnect | Dual-uNet-Resnet-WithoutConnect | ||||
---|---|---|---|---|---|---|
PA(%) | UA(%) | PA(%) | UA(%) | PA(%) | UA(%) | |
CP | 91.78 | 90.54 | 97.22 | 87.50 | 94.59 | 89.74 |
LP | 88.06 | 88.06 | 86.57 | 96.67 | 92.54 | 93.94 |
KP | 100.00 | 100.00 | 100.00 | 93.75 | 100.00 | 100.00 |
WA | 94.29 | 100.00 | 92.31 | 94.74 | 85.71 | 93.75 |
MO | 100.00 | 93.10 | 92.59 | 92.59 | 92.86 | 96.30 |
CUL | 97.22 | 77.78 | 100.00 | 85.71 | 100.00 | 87.80 |
COL | 92.11 | 100.00 | 97.50 | 100.00 | 100.00 | 100.00 |
SL | 86.96 | 95.24 | 90.91 | 95.24 | 95.65 | 95.65 |
GL | 58.33 | 63.64 | 58.33 | 87.50 | 75.00 | 81.82 |
ONFL | 86.67 | 100.00 | 96.67 | 100.00 | 86.21 | 96.15 |
OA(%) | 91.01% | 93.06% | 93.30% | |||
Kappa coefficient | 0.8968 | 0.9203 | 0.9229 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Li, Z.; Chen, E.; Zhang, X.; Zhao, L.; Xu, E.; Hou, Y.; Liu, L. A Deep Fusion uNet for Mapping Forests at Tree Species Levels with Multi-Temporal High Spatial Resolution Satellite Imagery. Remote Sens. 2021, 13, 3613. https://doi.org/10.3390/rs13183613
Guo Y, Li Z, Chen E, Zhang X, Zhao L, Xu E, Hou Y, Liu L. A Deep Fusion uNet for Mapping Forests at Tree Species Levels with Multi-Temporal High Spatial Resolution Satellite Imagery. Remote Sensing. 2021; 13(18):3613. https://doi.org/10.3390/rs13183613
Chicago/Turabian StyleGuo, Ying, Zengyuan Li, Erxue Chen, Xu Zhang, Lei Zhao, Enen Xu, Yanan Hou, and Lizhi Liu. 2021. "A Deep Fusion uNet for Mapping Forests at Tree Species Levels with Multi-Temporal High Spatial Resolution Satellite Imagery" Remote Sensing 13, no. 18: 3613. https://doi.org/10.3390/rs13183613