Early Detection of Encroaching Woody Juniperus virginiana and Its Classification in Multi-Species Forest Using UAS Imagery and Semantic Segmentation Algorithms
"> Figure 1
<p>The study area located in North Platte, Nebraska (<b>a</b>); an overview of the study area with the orthomosaic (<b>b</b>); the UAS used in this study (<b>c</b>); and the RGB camera mounted on the UAS (<b>d</b>).</p> "> Figure 2
<p>Example image patches of the four classes in this study: (<b>a</b>) is an example raw image collected from the UAS; (<b>b</b>) is a sample patch of redcedar class; (<b>c</b>) is a sample patch of defoliation class; (<b>d</b>) is a sample patch of pine class; and (<b>e</b>–<b>g</b>) are example patches of others class. Each patch was the input of the AlexNet and ResNet in this study with size of 227 × 227 × 3 or 224 × 224 × 3. The target of the models was the class for the center pixel.</p> "> Figure 3
<p>AlexNet and ResNet algorithms’ performances with different numbers of batch size (i.e., 4, 32, 128). ResNet algorithms gained higher performance than AlexNet, while algorithms with small batch size gained higher performance than those with large batch size. Pine class gained the highest IoU, while defoliation class gained lowest IoU.</p> "> Figure 4
<p>OA (<b>a</b>), precision (<b>b</b>), recall (<b>c</b>), and <span class="html-italic">F</span>1 score (<b>d</b>) of ResNet algorithm with UAS images in various down-sampled spatial resolutions. All showed a decrease trend with decreasing spatial resolution and most of the performances got quick decrease with images coarser than 4 cm. For ERC segmentation from multi-species forest, 3 cm was a recommended spatial resolution due to the quick decrease of precision with images coarser than 3 cm.</p> "> Figure 5
<p>Visualization of the multi-species forest classification result: orthomosaic of the study area (<b>left</b>) and the classification result using images in 0.694 cm spatial resolution and the well-trained ResNet algorithm (<b>right</b>).</p> "> Figure 6
<p>Visualization of examples of multi-species forest classification results with UAS images in original (0.694 cm) and down-sampled spatial resolutions at 2 cm, and 5 cm. The classification performance reduced as the spatial resolution decreased.</p> "> Figure 7
<p>Classification results of cases for small individual ERCs with the ResNet algorithm and UAS images in their original (0.694 cm) and downsampled (5 cm) spatial resolution. In this study, ERCs with a diameter less than 1 m were able to be accurately classified and delineated in the images with the original resolution but failed to be detected when the spatial resolution decreased to 5 cm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Acquisition System
2.2. Data Pre-Processing
2.3. Semantic Segmentation Algorithms and Hyperparameter Fine-Tuning
2.3.1. Decision Tree and Random Forest
2.3.2. Convolutional Neural Networks
2.3.3. Model Hyperparameters Fine-Tuning
2.4. Semantic Segmentation Performance Evaluation
3. Results
3.1. Semantic Segmentation Performance of Individual Algorithms with Images in Original Spatial Resolution
3.2. Semantic Segmentation Performance with Images in Down-Sampled Spatial Resolutions
3.3. Visualizations of the Forest Classification
4. Discussion
4.1. Opportunities and Challenges in ERC Early Detection with High Spatial Resolution Remote Sensing Imagery
4.2. CNN-Based Models Improve Data Utilization of Ultra-High Spatial Resolution Imagery for Multi-Species Classification
4.3. Trade-Off between Spatial Resolution and Coverage for Encroachment Species Detection and Mapping
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parr, C.L.; Gray, E.F.; Bond, W.J. Cascading Biodiversity and Functional Consequences of a Global Change-Induced Biome Switch. Divers. Distrib. 2012, 2012, 493–503. [Google Scholar] [CrossRef]
- Ratajczak, Z.; Nippert, J.B.; Collins, S.L. Woody Encroachment Decreases Diversity across North American Grasslands and Savannas. Ecology 2012, 93, 697–703. [Google Scholar] [CrossRef]
- Stevens, N.; Lehmann, C.E.R.; Murphy, B.P.; Durigan, G. Savanna Woody Encroachment Is Widespread across Three Continents. Glob. Chang. Biol. 2017, 23, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Saintilan, N.; Rogers, K. Research Review Woody Plant Encroachment of Grasslands: A Comparison of Terrestrial and Wetland Settings. New Phytol. 2015, 205, 1062–1070. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xiao, X.; Qin, Y.; Doughty, R.B.; Dong, J.; Zou, Z. Characterizing the Encroachment of Juniper Forests into Sub-Humid and Semi-Arid Prairies from 1984 to 2010 Using PALSAR and Landsat Data. Remote Sens. Environ. 2018, 205, 166–179. [Google Scholar] [CrossRef]
- McKinley, D.C.; Norris, M.D.; Blair, J.M.; Johnson, L.C. Altered Ecosystem Processes as a Consequence of Juniperus virginiana L. Encroachment into North American Tallgrass Prairie. In Western North American Juniperus Communities; Springer: New York, NY, USA, 2008; pp. 170–187. [Google Scholar]
- Zou, C.; Twidwell, D.; Bielski, C.; Fogarty, D.; Mittelstet, A.; Starks, P.; Will, R.; Zhong, Y.; Acharya, B.; Zou, C.B.; et al. Impact of Eastern Redcedar Proliferation on Water Resources in the Great Plains USA—Current State of Knowledge. Water 2018, 10, 1768. [Google Scholar] [CrossRef] [Green Version]
- Archer, S.R.; Andersen, E.M.; Predick, K.I.; Schwinning, S.; Steidl, R.J.; Woods, S.R. Woody Plant Encroachment: Causes and Consequences. In Rangeland Systems; Springer: Cham, Switzerland, 2017; pp. 25–84. [Google Scholar]
- Scholtz, R.; Polo, J.A.; Fuhlendorf, S.D.; Engle, D.M.; Weir, J.R. Woody Plant Encroachment Mitigated Differentially by Fire and Herbicide. Rangel. Ecol. Manag. 2018, 71, 239–244. [Google Scholar] [CrossRef]
- Policelli, N.; Picca, P.; Gómez Villafañe, I.E. Is Prescribed Fire a Suitable Management Tool to Reduce Shrub Encroachment in Palm Savannas? Restor. Ecol. 2019, 27, 109–119. [Google Scholar] [CrossRef]
- Sühs, R.B.; Giehl, E.L.H.; Peroni, N. Preventing Traditional Management Can Cause Grassland Loss within 30 Years in Southern Brazil. Sci. Rep. 2020, 10, 783. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.L.; Stubbendieck, J. Factors Influencing Eastern Redcedar Seedling Survival on Rangeland. J. Range Manag. 1993, 46, 448. [Google Scholar] [CrossRef] [Green Version]
- van Els, P.; Will, R.E.; Palmer, M.W.; Hickman, K.R. Changes in Forest Understory Associated with Juniperus Encroachment in Oklahoma, USA. Appl. Veg. Sci. 2010, 13, 356–368. [Google Scholar] [CrossRef]
- Qiao, L.; Zou, C.B.; Stebler, E.; Will, R.E. Woody Plant Encroachment Reduces Annual Runoff and Shifts Runoff Mechanisms in the Tallgrass Prairie, USA. Water Resour. Res. 2017, 53, 4838–4849. [Google Scholar] [CrossRef]
- Hoff, D.L.; Will, R.E.; Zou, C.B.; Weir, J.R.; Gregory, M.S.; Lillie, N.D. Estimating Increased Fuel Loading within the Cross Timbers Forest Matrix of Oklahoma, USA Due to an Encroaching Conifer, Juniperus virginiana, Using Leaf-off Satellite Imagery. For. Ecol. Manag. 2018, 409, 215–224. [Google Scholar] [CrossRef]
- Donovan, V.M.; Burnett, J.L.; Bielski, C.H.; Birgé, H.E.; Bevans, R.; Twidwell, D.; Allen, C.R. Social-Ecological Landscape Patterns Predict Woody Encroachment from Native Tree Plantings in a Temperate Grassland. Ecol. Evol. 2018, 8, 9624–9632. [Google Scholar] [CrossRef] [PubMed]
- Kaskie, K.D.; Wimberly, M.C.; Bauman, P.J. Rapid Assessment of Juniper Distribution in Prairie Landscapes of the Northern Great Plains. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101946. [Google Scholar] [CrossRef]
- Meneguzzo, D.M.; Liknes, G.C. Status and Trends of Eastern Redcedar (Juniperus virginiana) in the Central United States: Analyses and Observations Based on Forest Inventory and Analysis Data. J. For. 2015, 113, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Eggemeyer, K.D.; Awada, T.; Wedin, D.A.; Harvey, F.E.; Zhou, X. Ecophysiology of Two Native Invasive Woody Species and Two Dominant Warm-Season Grasses in the Semiarid Grasslands of the Nebraska Sandhills. Int. J. Plant Sci. 2006, 167, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Huddle, J.A.; Awada, T.; Martin, D.L.; Zhou, X.; Pegg, S.E.; Josiah, S.J. Do invasive riparian woody plants affect hydrology and ecosystem processes? Gt. Plains Res. 2011, 21, 49–71. [Google Scholar]
- Sankey, T.T.; McVay, J.; Swetnam, T.L.; McClaran, M.P.; Heilman, P.; Nichols, M. UAV Hyperspectral and Lidar Data and Their Fusion for Arid and Semi-Arid Land Vegetation Monitoring. Remote Sens. Ecol. Conserv. 2018, 4, 20–33. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Friedl, M.A.; Brodley, C.E. Decision Tree Classification of Land Cover from Remotely Sensed Data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random Forest and Rotation Forest for Fully Polarized SAR Image Classification Using Polarimetric and Spatial Features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Michez, A.; Piégay, H.; Lisein, J.; Claessens, H.; Lejeune, P. Classification of Riparian Forest Species and Health Condition Using Multi-Temporal and Hyperspatial Imagery from Unmanned Aerial System. Environ. Monit. Assess. 2016, 188, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.; Rasmussen, B.; Dickson, B.; Zachmann, L. Chimera: A Multi-Task Recurrent Convolutional Neural Network for Forest Classification and Structural Estimation. Remote Sens. 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Descals, A.; Szantoi, Z.; Meijaard, E.; Sutikno, H.; Rindanata, G.; Wich, S. Oil Palm (Elaeis guineensis) Mapping with Details: Smallholder versus Industrial Plantations and Their Extent in Riau, Sumatra. Remote Sens. 2019, 11, 2590. [Google Scholar] [CrossRef] [Green Version]
- Durfee, N.; Ochoa, C.; Mata-Gonzalez, R.; Durfee, N.; Ochoa, C.G.; Mata-Gonzalez, R. The Use of Low-Altitude UAV Imagery to Assess Western Juniper Density and Canopy Cover in Treated and Untreated Stands. Forests 2019, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Cavender-Bares, J.; Gamon, J.A.; Townsend, P.A. Remote Sensing of Plant Biodiversity; Pinto-Ledezma, J.N., Cavender-Bares, J., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Filippelli, S.K.; Vogeler, J.C.; Falkowski, M.J.; Meneguzzo, D.M. Monitoring Conifer Cover: Leaf-off Lidar and Image-Based Tracking of Eastern Redcedar Encroachment in Central Nebraska. Remote Sens. Environ. 2020, 248, 111961. [Google Scholar] [CrossRef]
- Long Range Drone|5 Hour Flight Time|Commercial Drones|HSE-UAV. Available online: https://hse-uav.com/product/sp9-fixed-wing-drone/ (accessed on 9 April 2021).
- Liu, D.; Xia, F. Assessing Object-Based Classification: Advantages and Limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Wagner, F.H.; Sanchez, A.; Tarabalka, Y.; Lotte, R.G.; Ferreira, M.P.; Aidar, M.P.M.; Gloor, E.; Phillips, O.L.; Aragão, L.E.O.C. Using the U-net Convolutional Network to Map Forest Types and Disturbance in the Atlantic Rainforest with Very High Resolution Images. Remote Sens. Ecol. Conserv. 2019, 5, 360–375. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, B.G.; Marconi, S.; Bohlman, S.A.; Zare, A.; White, E.P. Cross-Site Learning in Deep Learning RGB Tree Crown Detection. Ecol. Inform. 2020, 56, 101061. [Google Scholar] [CrossRef]
- Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing Fully Convolutional Networks, Random Forest, Support Vector Machine, and Patch-Based Deep Convolutional Neural Networks for Object-Based Wetland Mapping Using Images from Small Unmanned Aircraft System. GISci. Remote Sens. 2018, 55, 243–264. [Google Scholar] [CrossRef]
- Mazzia, V.; Khaliq, A.; Chiaberge, M. Improvement in Land Cover and Crop Classification Based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN). Appl. Sci. 2020, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.; Huang, Y.; Liu, Q.; Fan, W.; Sun, Z.; Dong, H.; Wan, F.; Qiao, X. UAV and a Deep Convolutional Neural Network for Monitoring Invasive Alien Plants in the Wild. Comput. Electron. Agric. 2020, 174, 105519. [Google Scholar] [CrossRef]
- Kattenborn, T.; Eichel, J.; Wiser, S.; Burrows, L.; Fassnacht, F.E.; Schmidtlein, S. Convolutional Neural Networks Accurately Predict Cover Fractions of Plant Species and Communities in Unmanned Aerial Vehicle Imagery. Remote Sens. Ecol. Conserv. 2020, 6, 472–486. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.R.K.; Prinz, T.; Ziller, S.R.; Thiele, J.; Heringer, G.; Meira-Neto, J.A.A.; Buttschardt, T.K. Open-Source Processing and Analysis of Aerial Imagery Acquired with a Low-Cost Unmanned Aerial System to Support Invasive Plant Management. Front. Environ. Sci. 2017, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Dash, J.P.; Watt, M.S.; Paul, T.S.H.; Morgenroth, J.; Pearse, G.D. Early Detection of Invasive Exotic Trees Using UAV and Manned Aircraft Multispectral and LiDAR Data. Remote Sens. 2019, 11, 1812. [Google Scholar] [CrossRef] [Green Version]
- Al-Ali, Z.M.; Abdullah, M.M.; Asadalla, N.B.; Gholoum, M. A Comparative Study of Remote Sensing Classification Methods for Monitoring and Assessing Desert Vegetation Using a UAV-Based Multispectral Sensor. Environ. Monit. Assess. 2020, 192, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Abeysinghe, T.; Simic Milas, A.; Arend, K.; Hohman, B.; Reil, P.; Gregory, A.; Vázquez-Ortega, A. Mapping Invasive Phragmites Australis in the Old Woman Creek Estuary Using UAV Remote Sensing and Machine Learning Classifiers. Remote Sens. 2019, 11, 1380. [Google Scholar] [CrossRef] [Green Version]
- O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep Learning vs. Traditional Computer Vision. In Advances in Intelligent Systems and Computing, Proceedings of the Computer Vision Conference (CVC), Las Vegas, NV, USA, 25–26 April 2019; Springer: Cham, Switzerland, 2020; Volume 943, pp. 128–144. [Google Scholar]
- Lateef, F.; Ruichek, Y. Survey on Semantic Segmentation Using Deep Learning Techniques. Neurocomputing 2019, 338, 321–348. [Google Scholar] [CrossRef]
- Patel, M.; Jernigan, S.; Richardson, R.; Ferguson, S.; Buckner, G. Autonomous Robotics for Identification and Management of Invasive Aquatic Plant Species. Appl. Sci. 2019, 9, 2410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Pan, X.; Li, H.; Gardiner, A.; Sargent, I.; Hare, J.; Atkinson, P.M. A Hybrid MLP-CNN Classifier for Very Fine Resolution Remotely Sensed Image Classification. ISPRS J. Photogramm. Remote Sens. 2018, 140, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Huang, L.; Luo, J.; Lin, Z.; Niu, F.; Liu, L. Using Deep Learning to Map Retrogressive Thaw Slumps in the Beiluhe Region (Tibetan Plateau) from CubeSat Images. Remote Sens. Environ. 2020, 237. [Google Scholar] [CrossRef]
- Zhu, Y.; Gei, C.M.; So, E.; Jin, Y. Multi-Temporal Relearning with Convolutional LSTM Models for Land Use Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Xin, Q.; Huang, J. Developing a Multi-Filter Convolutional Neural Network for Semantic Segmentation Using High-Resolution Aerial Imagery and LiDAR Data. ISPRS J. Photogramm. Remote Sens. 2018, 143, 3–14. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, J.; Bruzzone, L. Semantic Segmentation of Large-Size VHR Remote Sensing Images Using a Two-Stage Multiscale Training Architecture. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5367–5376. [Google Scholar] [CrossRef]
- Swain, P.H.; Hauska, H. Decision tree classifier: Design and potential. IEEE Trans. Geosci. Electron. 1977, 15, 142–147. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Kekre, H.; Thepade, S.; Sarode, T.K.; Suryawanshi, V. Image Retrieval Using Texture Features Extracted from GLCM, LBG and KPE. Int. J. Comput. Theory Eng. 2010, 2, 695. [Google Scholar] [CrossRef]
- Nezhad, M.Z.; Zhu, D.; Yang, K.; Sadati, N.; Zafar Nezhad, M. A Predictive Approach Using Deep Feature Learning for Electronic Medical Records: A Comparative Study. arXiv 2018, arXiv:1801.02961v1. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Canziani, A.; Paszke, A.; Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications. arXiv 2016, arXiv:1605.07678. [Google Scholar]
- Wilson, D.R.; Martinez, T.R. The General Inefficiency of Batch Training for Gradient Descent Learning. Neural Netw. 2003, 16, 1429–1451. [Google Scholar] [CrossRef] [Green Version]
- Story, M.; Congalton, R.G. Accuracy Assessment: A User’s Perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Choi, H.; Lee, H.-J.; You, H.-J.; Rhee, S.-Y.; Jeon, W.-S. Comparative Analysis of Generalized Intersection over Union and Error Matrix for Vegetation Cover Classification Assessment. Sensors Mater. 2019, 31, 3849–3858. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Z.; Lin, W. RGB-D Semantic Segmentation: A Review. In Proceedings of the IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2018, San Diego, CA, USA, 23–27 July 2018; Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2018. [Google Scholar]
- Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Geissler, G.; Zhang, G.; Cejda, N.; Alikhani, B.; Doughty, R.B. Mapping the Dynamics of Eastern Redcedar Encroachment into Grasslands during 1984–2010 through PALSAR and Time Series Landsat Images. Remote Sens. Environ. 2017, 190, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Nesbit, P.; Hugenholtz, C. Enhancing UAV–SfM 3D Model Accuracy in High-Relief Landscapes by Incorporating Oblique Images. Remote Sens. 2019, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Sharir, O.; Shashua, A. On the Expressive Power of Overlapping Architectures of Deep Learning. arXiv 2017, arXiv:1703.02065. [Google Scholar]
- Kamal, M.; Phinn, S. Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-Based and Object-Based Approach. Remote Sens. 2011, 3, 2222–2242. [Google Scholar] [CrossRef] [Green Version]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Meneguzzo, D.M.; Liknes, G.C.; Nelson, M.D. Mapping Trees Outside Forests Using High-Resolution Aerial Imagery: A Comparison of Pixel- and Object-Based Classification Approaches. Environ. Monit. Assess. 2013, 185, 6261–6275. [Google Scholar] [CrossRef] [PubMed]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-Pixel vs. Object-Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Liu, T.; Abd-Elrahman, A.; Zare, A.; Dewitt, B.A.; Flory, L.; Smith, S.E. A Fully Learnable Context-Driven Object-Based Model for Mapping Land Cover Using Multi-View Data from Unmanned Aircraft Systems. Remote Sens. Environ. 2018, 216, 328–344. [Google Scholar] [CrossRef]
- Kattenborn, T.; Eichel, J.; Fassnacht, F.E. Convolutional Neural Networks Enable Efficient, Accurate and Fine-Grained Segmentation of Plant Species and Communities from High-Resolution UAV Imagery. Sci. Rep. 2019, 9, 17656. [Google Scholar] [CrossRef]
- Lu, B.; He, Y. Species Classification Using Unmanned Aerial Vehicle (UAV)-Acquired High Spatial Resolution Imagery in a Heterogeneous Grassland. ISPRS J. Photogramm. Remote Sens. 2017, 128, 73–85. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Landsat Continuity: Issues and Opportunities for Land Cover Monitoring. Remote Sens. Environ. 2008, 112, 955–969. [Google Scholar] [CrossRef]
- Franklin, S.E. Pixel- and Object-Based Multispectral Classification of Forest Tree Species from Small Unmanned Aerial Vehicles. J. Unmanned Veh. Syst. 2018, 6, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Kumar, A.A.; Ramachandran, P. Development of New Index-Based Methodology for Extraction of Built-Up Area from Landsat7 Imagery: Comparison of Performance with SVM, ANN, and Existing Indices. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1592–1603. [Google Scholar] [CrossRef]
Layer | Filter Size | Stride | Number of Filters | Output Dimension |
---|---|---|---|---|
Convolutional layer 1 | 11 × 11 | 4 | 96 | 55 × 55 × 96 |
Max pooling layer 1 | 3 × 3 | 2 | / | 27 × 27 × 96 |
Convolutional layer 2 | 5 × 5 | 1 | 256 | 27 × 27 × 256 |
Max pooling layer 2 | 3 × 3 | 2 | / | 13 × 13 × 256 |
Convolutional layer 3 | 3 × 3 | 1 | 384 | 13 × 13 × 384 |
Convolutional layer 4 | 3 × 3 | 1 | 384 | 13 × 13 × 384 |
Convolutional layer 5 | 3 × 3 | 1 | 256 | 13 × 13 × 256 |
Max pooling layer 3 | 3 × 3 | 2 | / | 6 × 6 × 256 |
Fully connected layer 1 | / | / | / | 4096 |
Fully connected layer 2 | / | / | / | 4096 |
Fully connected layer 3 | / | / | / | 4 |
Layer | Filter Size | Stride | Number of Filters | Output Dimension |
---|---|---|---|---|
Convolutional layer 1 | 7 × 7 | 2 | 64 | 112 × 112 × 64 |
Max pooling layer 1 | 3 × 3 | 2 | / | 56 × 56 × 64 |
Convolutional layer 2 | × 3 | 56 × 56 × 256 | ||
Convolutional layer 3 | × 4 | 28 × 28 × 512 | ||
Convolutional layer 4 | × 6 | 14 × 14 × 1024 | ||
Convolutional layer 5 | × 3 | 7 × 7 × 2048 | ||
Average pooling layer 1 | 7 × 7 | 1 | / | 2048 |
Fully connected layer 1 | / | / | / | 4 |
Algorithms | Overall Accuracy | mIoU (%) | IoU of Redcedar (%) | IoU of Defoliation (%) | IoU of Pine (%) | IoU of Others (%) |
---|---|---|---|---|---|---|
Decision Tree | 0.610 | 44.7 | 61.3 | 31.7 | 41.2 | 44.8 |
Random Forest | 0.666 | 50.7 | 68.7 | 35.7 | 47.2 | 51.1 |
AlexNet | 0.878 | 78.2 | 79.5 | 72.8 | 81.5 | 79.1 |
ResNet | 0.918 | 85.0 | 86.3 | 80.1 | 90.6 | 82.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhou, Y.; Hu, Q.; Tang, Z.; Ge, Y.; Smith, A.; Awada, T.; Shi, Y. Early Detection of Encroaching Woody Juniperus virginiana and Its Classification in Multi-Species Forest Using UAS Imagery and Semantic Segmentation Algorithms. Remote Sens. 2021, 13, 1975. https://doi.org/10.3390/rs13101975
Wang L, Zhou Y, Hu Q, Tang Z, Ge Y, Smith A, Awada T, Shi Y. Early Detection of Encroaching Woody Juniperus virginiana and Its Classification in Multi-Species Forest Using UAS Imagery and Semantic Segmentation Algorithms. Remote Sensing. 2021; 13(10):1975. https://doi.org/10.3390/rs13101975
Chicago/Turabian StyleWang, Lin, Yuzhen Zhou, Qiao Hu, Zhenghong Tang, Yufeng Ge, Adam Smith, Tala Awada, and Yeyin Shi. 2021. "Early Detection of Encroaching Woody Juniperus virginiana and Its Classification in Multi-Species Forest Using UAS Imagery and Semantic Segmentation Algorithms" Remote Sensing 13, no. 10: 1975. https://doi.org/10.3390/rs13101975