Hierarchical Surface Texturing of Hydroxyapatite Ceramics: Influence on the Adhesive Bonding Strength of Polymeric Polycaprolactone
<p>Schematic representation of the realized surface textures on a cross-sectional area of 2.35 mm <math display="inline"><semantics> <mo>×</mo> </semantics></math> 2.35 mm: non-textured reference (<b>A</b>), linear grooves (<b>B</b>), cylindric pits (<b>C</b>), linear waves (<b>D</b>) and Gaussian hills (<b>E</b>). Real sample dimensions of the fabricated test bars (30 mm <math display="inline"><semantics> <mo>×</mo> </semantics></math> 5 mm <math display="inline"><semantics> <mo>×</mo> </semantics></math> 5 mm) with a surface texture of 5 mm <math display="inline"><semantics> <mo>×</mo> </semantics></math> 5 mm used for the single-lap shear testing and schematic testing setup of the applied single-lap shear test to evaluate the adhesive bonding strength of the surface-textured HAp ceramics to polycaprolactone (PCL) (<b>F</b>).</p> "> Figure 2
<p>Surface topography of the sintered HAp with different macro-surface texturings analyzed by confocal microscopy: non-textured reference (<b>A</b>), linear grooves (<b>B</b>), cylindric pits (<b>C</b>), linear waves (<b>D</b>), Gaussian hills (<b>E</b>) and the corresponding representative height profiles showing the wavelength and amplitude of each surface texturing (<b>F</b>).</p> "> Figure 3
<p>Nominal–actual surface comparison of each texturing (<b>A</b>–<b>E</b>), showing the dimensional deviations between the real sintered HAp surfaces with macroscopic surface texturing and CAD models (considering the anisotropic shrinkage) by colored heat maps and corresponding histogram. The color legend has the following meaning: blue = negative deviation, real surface is below CAD surface; green = no deviation; red = positive deviation, real surface is above the CAD surface. (<b>F</b>) shows the assumptions made regarding anisotropic shrinkage and the determined dimensional deviations (mean- and 5σ-deviation) for each texturing type.</p> "> Figure 4
<p>Microstructure of the acid-etched HAp surfaces showing a surface roughening for the subtractive etching-process of HCl (<b>A</b>). A significantly higher surface roughness was observed for the tartaric acid-etched samples (<b>B</b>–<b>D</b>), combining an additive precipitation of Ca-tartrate crystals on the HAp surface (<b>C</b>) and subtractive etching of the HAp matrix (<b>D</b>). The two etching treatments showed no influence on the initial grain size (high-resolution image section of (<b>A</b>,<b>D</b>)).</p> "> Figure 5
<p>Schematic reaction mechanisms of the acid etchings (<b>A</b>) and the silane coupling (<b>B</b>) with the ceramic HAp surface. For HCl, the etching of HAp can be described by a simple dissolution process (subtractive etching). In the case of carboxylic acids with two or more carboxylic-groups (here tartaric acid), the chemical reaction between the deprotonated carboxylates and released Ca<sup>2+</sup>-ions results in an additional nucleation and crystal growth of adherent, water-insoluble Ca-carboxylate complexes (here Ca-tartrate crystals) on the HAp surface. The etching of HAp with carboxylic acids is therefore a mixture of subtractive dissolution and additive precipitation of crystals. The mechanism of the silane coupling (here 3-aminopropyltriethoxysilane (APTES)) can be described by a condensation reaction, forming covalent bonds between the silane and the functional groups of the HAp surface. The silane’s functional groups “R” (here the amino group of APTES) can then improve the adhesive bonding strength between HAp and polymeric PCL by forming dipole–dipole interactions or chemical bonds.</p> "> Figure 6
<p>Adhesive bonding strength between hierarchical surface-textured HAp and PCL. Left side shows bonding strength of the well-defined macro-texturings B–E (green color) and non-textured reference (A). The silanized nano-texturing (yellow color) and the HCl (H) and tartaric acid (T) etched micro-texturings (blue color) are shown in the middle. The hierarchical texturing combining the macro-texturing E with a subsequent HCl etching and silanization (red column) are shown on the right side. The rightest column shows a theoretical model assuming a non-weighted additive composition of the individual contributions of the macro texture type E, HCl-etched (H) and silanized (S).</p> "> Figure 7
<p>Representative stress–strain curves (<b>A</b>), corresponding fracture surfaces and failure types (I.–III.) from the compressive shear tests between the macro-surface-textured HAp and PCL (<b>B</b>–<b>E</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Surface-Textured HAp Ceramics by Micro-Transfer Molding
2.2. Surface Treatments of the Sintered (Textured) HAp Ceramics
2.3. Characterization
2.4. Statistical Analysis
3. Results and Discussion
3.1. Microstructural Characterization of Macro-Surface-Textured HAp Ceramics
3.2. Microstructural Characterization of the Micro- and Nano-Surface-Textured HAp Ceramics
3.3. Adhesive Bonding Strength of Hierarchical Surface-Textured HAp to PCL
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Blas Romero, A.; Pfaffinger, M.; Mitteramskogler, G.; Schwentenwein, M.; Jellinek, C.; Homa, J.; Díaz Lantada, A.; Stampfl, J. Lithography-based additive manufacture of ceramic biodevices with design-controlled surface topographies. Int. J. Adv. Manuf. Technol. 2017, 88, 1547–1555. [Google Scholar] [CrossRef] [Green Version]
- Boyan, B. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996, 17, 137–146. [Google Scholar] [CrossRef]
- Curodeau, A.; Sachs, E.; Caldarise, S. Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. J. Biomed. Mater. Res. 2000, 53, 525–535. [Google Scholar] [CrossRef]
- Rupp, F.; Gittens, R.A.; Scheideler, L.; Marmur, A.; Boyan, B.D.; Schwartz, Z.; Geis-Gerstorfer, J. A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomater. 2014, 10, 2894–2906. [Google Scholar] [CrossRef] [Green Version]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface Modifications and Their Effects on Titanium Dental Implants. Biomed Res. Int. 2015, 2015, 791725. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Chae, S.; Oh, S.; Kim, S.H.; Choi, K.H.; Meeseepong, M.; Chang, J.; Kim, N.; Yong, H.K.; Lee, N.-E.; et al. Single-Chain Atomic Crystals as Extracellular Matrix-Mimicking Material with Exceptional Biocompatibility and Bioactivity. Nano Lett. 2018, 18, 7619–7627. [Google Scholar] [CrossRef]
- Deligianni, D.D.; Katsala, N.D.; Koutsoukos, P.G.; Missirlis, Y.F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 2000, 22, 87–96. [Google Scholar] [CrossRef]
- Gui, N.; Xu, W.; Myers, D.E.; Shukla, R.; Tang, H.P.; Qian, M. The effect of ordered and partially ordered surface topography on bone cell responses: A review. Biomater. Sci. 2018, 6, 250–264. [Google Scholar] [CrossRef]
- Kunert-Keil, C.; Gredes, T.; Richter, D.-U.; Szyba, M.; Dominiak, M.; Gedrange, T. The survival and proliferation of fibroblasts on ceramic implants: An in vitro study. Biomed. Tech. 2012, 57, 11–15. [Google Scholar] [CrossRef]
- Wassmann, T.; Kreis, S.; Behr, M.; Buergers, R. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int. J. Implant Dent. 2017, 3, 32. [Google Scholar] [CrossRef]
- Danzer, R. Some notes on the correlation between fracture and defect statistics: Are Weibull statistics valid for very small specimens? J. Eur. Ceram. Soc. 2006, 26, 3043–3049. [Google Scholar] [CrossRef]
- Rice, R.W.; Mecholsky, J.J.; Freiman, S.W.; Morey, S.M. Failure Causing Defects in Ceramics: What NDE Should Find; Defense Technical Information Center: Fort Belvoir, VA, USA, 1979. [Google Scholar]
- Ghosh, S.; Abanteriba, S. Status of surface modification techniques for artificial hip implants. Sci. Technol. Adv. Mater. 2016, 17, 715–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-H.; Ritchie, A.; Hardaker, C. Surface roughness of ceramic femoral heads after in vivo transfer of metal: Correlation to polyethylene wear. J. Bone Joint Surg. Am. 2005, 87, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.; Choudhury, D.; Ghosh, S.; Bin Mamat, A.; Pingguan-Murphy, B. Improved friction and wear performance of micro dimpled ceramic-on-ceramic interface for hip joint arthroplasty. Ceram. Int. 2015, 41, 681–690. [Google Scholar] [CrossRef]
- Schneider, J.; Djamiykov, V.; Greiner, C. Friction reduction through biologically inspired scale-like laser surface textures. Beilstein J. Nanotechnol. 2018, 9, 2561–2572. [Google Scholar] [CrossRef] [PubMed]
- Demirtag, Z.; Culhaoglu, A.K. Surface Roughness of Ceramic-Resin Composites After Femtosecond Laser Irradiation, Sandblasting or Acid Etching and Their Bond Strength With and Without Silanization to a Resin Cement. Oper. Dent. 2019, 44, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.; Wegner, S.M. Bonding to zirconia ceramic: Adhesion methods and their durability. Dent. Mater. 1998, 14, 64–71. [Google Scholar] [CrossRef]
- Piascik, J.R.; Wolter, S.D.; Stoner, B.R. Development of a novel surface modification for improved bonding to zirconia. Dent. Mater. 2011, 27, e99–e105. [Google Scholar] [CrossRef]
- Thompson, J.Y.; Stoner, B.R.; Piascik, J.R.; Smith, R. Adhesion/cementation to zirconia and other non-silicate ceramics: Where are we now? Dent. Mater. 2011, 27, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.L.; Nishikawa, C.; Shimada, K.; Mizutani, M.; Kuriyagawa, T. Surface Textures Fabrication on Zirconia Ceramics by 3D Ultrasonic Vibration Assisted Slant Feed Grinding. AMR 2013, 797, 326–331. [Google Scholar] [CrossRef]
- Bettinger, C.J.; Langer, R.; Borenstein, J.T. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Ed. Engl. 2009, 48, 5406–5415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashby, M.F.; Bréchet, Y. Designing hybrid materials. Acta Mater. 2003, 51, 5801–5821. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter 2011, 1, 3–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Liu, R.; Huang, Q.; Ding, X. Preparation and characterization of hydroxyapatite/polycaprolactone-chitosan composites. J. Mater. Sci. Mater. Med. 2009, 20, 2375–2383. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.-C.; Baji, A. Fracture strength and adhesive strength of hydroxyapatite-filled polycaprolactone. J. Mater. Sci. Mater. Med. 2008, 19, 929–936. [Google Scholar] [CrossRef]
- Ródenas-Rochina, J.; Ribelles, J.L.G.; Lebourg, M. Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 2013, 24, 1293–1308. [Google Scholar] [CrossRef]
- Neuendorf, R.E.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomater. 2008, 4, 1288–1296. [Google Scholar] [CrossRef]
- Kim, J.-W.; Shin, K.-H.; Koh, Y.-H.; Hah, M.J.; Moon, J.; Kim, H.-E. Production of Poly(ε-Caprolactone)/Hydroxyapatite Composite Scaffolds with a Tailored Macro/Micro-Porous Structure, High Mechanical Properties, and Excellent Bioactivity. Materials 2017, 10, 1123. [Google Scholar] [CrossRef] [Green Version]
- Chuenjitkuntaworn, B.; Inrung, W.; Damrongsri, D.; Mekaapiruk, K.; Supaphol, P.; Pavasant, P. Polycaprolactone/hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J. Biomed. Mater. Res. A 2010, 94, 241–251. [Google Scholar] [CrossRef]
- Antony, B.-F.; Amyl, G. Novel high-strength bioabsorbable bone adhesives. Front. Bioeng. Biotechnol. 2016, 4. [Google Scholar] [CrossRef]
- Bride, J.A.; Baskaran, S.; Taylor, N.; Halloran, J.W.; Juan, W.H.; Pang, S.W.; O’Donnell, M. Photolithographic micromolding of ceramics using plasma etched polyimide patterns. Appl. Phys. Lett. 1993, 63, 3379–3381. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.R.; Aksay, I.A. Microchannel Molding: A Soft Lithography-inspired Approach to Micrometer-scale Patterning. J. Mater. Res. 2005, 20, 1995–2003. [Google Scholar] [CrossRef]
- Jedlicka, S.S.; McKenzie, J.L.; Leavesley, S.J.; Little, K.M.; Webster, T.J.; Robinson, J.P.; Nivens, D.E.; Rickus, J.L. Sol-gel derived materials as substrates for neuronal differentiation: Effects of surface features and protein conformation. J. Mater. Chem. 2006, 16, 3221. [Google Scholar] [CrossRef]
- Stumpf, M.; Travitzky, N.; Greil, P.; Fey, T. Sol-gel infiltration of complex cellular indirect 3D printed alumina. J. Eur. Ceram. Soc. 2018, 38, 3603–3609. [Google Scholar] [CrossRef]
- Hermanson, G.T. Silane coupling agents. In Bioconjugate Techniques; Elsevier: Amsterdam, The Netherlands, 2013; pp. 535–548. ISBN 9780123822390. [Google Scholar]
- Biggemann, J.; Pezoldt, M.; Stumpf, M.; Greil, P.; Fey, T. Modular ceramic scaffolds for individual implants. Acta Biomater. 2018, 80, 390–400. [Google Scholar] [CrossRef]
- Biggemann, J.; Hoffmann, P.; Hristov, I.; Simon, S.; Müller, P.; Fey, T. Injection Molding of 3-3 Hydroxyapatite Composites. Materials 2020, 13, 1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biggemann, J.; Diepold, B.; Pezoldt, M.; Stumpf, M.; Greil, P.; Fey, T. Automated 3D assembly of periodic alumina-epoxy composite structures. J. Am. Ceram. Soc. 2018, 101, 3864–3873. [Google Scholar] [CrossRef]
- Sahaya Shajan, X.; Mahadevan, C. FT-IR spectroscopic and thermal studies on pure and impurity added calcium tartrate tetrahydrate crystals. Cryst. Res. Technol. 2005, 40, 598–602. [Google Scholar] [CrossRef]
- Schuessele, A.; Mayr, H.; Tessmar, J.; Goepferich, A. Enhanced bone morphogenetic protein-2 performance on hydroxyapatite ceramic surfaces. J. Biomed. Mater. Res. A 2009, 90, 959–971. [Google Scholar] [CrossRef]
- German Institute of Standardization E.V. Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters; DIN EN ISO 4287:2010-07; Beuth Verlag GmbH: Berlin, Germany, 2010. [Google Scholar]
- German Institute of Standardization E.V. Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture; DIN EN ISO 4288:1998-04; Beuth Verlag GmbH: Berlin, Germany, 1998. [Google Scholar]
- German Institute of Standardization E.V. Beschichtungsstoffe—Benetzbarkeit—Teil2: Bestimmung der Freien Oberflächenenergie Fester Oberflächen durch Messung des Kontaktwinkels; DIN 55660-2:2011-12; Beuth Verlag GmbH: Berlin, Germany, 2011. [Google Scholar]
- German Institute of Standardization E.V. Adhesives—Wettability—Determination by Measurement of Contact Angle and Surface Free Energy of Solid Surface; DIN EN 828:2013-04; Beuth Verlag GmbH: Berlin, Germany, 2013. [Google Scholar]
- Van Oss, C.; Good, R.; Chaudhury, M. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J. Colloid Interface Sci. 1986, 111, 378–390. [Google Scholar] [CrossRef]
- Van Oss, C.J.; Good, R.J.; Chaudhury, M.K. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 1988, 4, 884–891. [Google Scholar] [CrossRef]
- Hefer, A.W.; Bhasin, A.; Little, D.N. Bitumen Surface Energy Characterization Using a Contact Angle Approach. J. Mater. Civ. Eng. 2006, 18, 759–767. [Google Scholar] [CrossRef]
- German Institute of Standardization E.V. Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies, German Version EN 1465:2009; DIN EN 1465:2009-07; Beuth Verlag GmbH: Berlin, Germany, 2009. [Google Scholar]
- German Institute of Standardization E.V. Adhesives—Determination of Shear Behaviour of Structural Adhesives—Part 2: Tensile Test Method Using Thick Adherends; ISO 11003-2:2019-06; Beuth Verlag GmbH: Berlin, Germany, 2019. [Google Scholar]
- George, E.; Liacouras, P.; Rybicki, F.J.; Mitsouras, D. Measuring and Establishing the Accuracy and Reproducibility of 3D Printed Medical Models. Radiographics 2017, 37, 1424–1450. [Google Scholar] [CrossRef] [PubMed]
- Toth, T.; Hudak, R.; Zivcak, J. Dimensional verification and quality control of implants produced by additive manufacturing. Qual. Innov. Prosper. J. 2015, 19. [Google Scholar] [CrossRef] [Green Version]
- Habenicht, G. Kleben; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-85264-3. [Google Scholar]
- Fischer, H.; Niedhart, C.; Kaltenborn, N.; Prange, A.; Marx, R.; Niethard, F.U.; Telle, R. Bioactivation of inert alumina ceramics by hydroxylation. Biomaterials 2005, 26, 6151–6157. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Dissolution mechanism of calcium apatites in acids: A review of literature. World J. Methodol. 2012, 2, 1–17. [Google Scholar] [CrossRef]
- Yoshida, Y.; van Meerbeek, B.; Nakayama, Y.; Yoshioka, M.; Snauwaert, J.; Abe, Y.; Lambrechts, P.; Vanherle, G.; Okazaki, M. Adhesion to and decalcification of hydroxyapatite by carboxylic acids. J. Dent. Res. 2001, 80, 1565–1569. [Google Scholar] [CrossRef]
- Naidu, S.; Blair, J.; Scherer, G.W.; Butt, D. Acid-Resistant Coatings on Marble. J. Am. Ceram. Soc. 2016, 99, 3421–3428. [Google Scholar] [CrossRef]
- Fu, B.; Shen, Q.; Qian, W.; Zeng, Y.; Sun, X.; Hannig, M. Interfacial interaction of tartaric acid with hydroxyapatite and enamel. J. Mater. Sci. Mater. Med. 2005, 16, 827–831. [Google Scholar] [CrossRef]
- Yoshida, Y.; van Meerbeek, B.; Nakayama, Y.; Snauwaert, J.; Hellemans, L.; Lambrechts, P.; Vanherle, G.; Wakasa, K. Evidence of chemical bonding at biomaterial-hard tissue interfaces. J. Dent. Res. 2000, 79, 709–714. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Yamashita, K.; Doi, Y. Thermal degradation of poly((R)-3-hydroxybutyrate), poly(ε-caprolactone), and poly((S)-lactide). Polym. Degrad. Stabil. 2002, 76, 53–59. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, Y.; Qian, J.; Liu, Z.; Yang, B.; Wang, X. Bio-inspired polydopamine functionalization of carbon fiber for improving the interfacial adhesion of polypropylene composites. RSC Adv. 2015, 5, 107652–107661. [Google Scholar] [CrossRef]
- Persenaire, O.; Alexandre, M.; Degée, P.; Dubois, P. Mechanisms and kinetics of thermal degradation of poly(epsilon-caprolactone). Biomacromolecules 2001, 2, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Erbil, H.Y.; Yaşar, B.; Süzer, Ş.; Baysal, B.M. Surface Characterization of the Hydroxy-Terminated Poly(ε-caprolactone)/Poly(dimethylsiloxane) Triblock Copolymers by Electron Spectroscopy for Chemical Analysis and Contact Angle Measurements. Langmuir 1997, 13, 5484–5493. [Google Scholar] [CrossRef]
- Demnati, I.; Grossin, D.; Errassifi, F.; Combes, C.; Rey, C.; le Bolay, N. Synthesis of fluor-hydroxyapatite powder for plasma sprayed biomedical coatings: Characterization and improvement of the powder properties. Powder Technol. 2014, 255, 23–28. [Google Scholar] [CrossRef] [Green Version]
- González-Martín, M.L.; Labajos-Broncano, L.; Jańczuk, B.; Bruque, J.M. Wettability and surface free energy of zirconia ceramics and their constituent. J. Mater. Sci. 1999, 34, 5923–5926. [Google Scholar] [CrossRef]
- Wong, S.-C.; Baji, A.; Gent, A.N. Effect of specimen thickness on fracture toughness and adhesive properties of hydroxyapatite-filled polycaprolactone. Compos. Part A Appl. Sci. Manuf. 2008, 39, 579–587. [Google Scholar] [CrossRef]
- Duncan, B. Developments in testing adhesive joints. In Advances in Structural Adhesive Bonding: Developments in Testing Adhesive Joints; Duncan, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 389–436. ISBN 9781845694357. [Google Scholar]
- Moulds, R.J. Design and stress calculations for bonded joints. In Adhesives and Sealants—General Knowledge, Application Techniques, New Curing Techniques: Design and Stress Calculations for Bonded Joints; Moulds, R.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 197–231. ISBN 9780080447087. [Google Scholar]
- Kim, W.-S.; Yun, I.-H.; Lee, J.-J.; Jung, H.-T. Evaluation of mechanical interlock effect on adhesion strength of polymer–metal interfaces using micro-patterned surface topography. Int. J. Adhes. Adhes. 2010, 30, 408–417. [Google Scholar] [CrossRef]
- Stuart, T.P.; Crouch, I.G. The design, testing and evaluation of adhesively bonded, interlocking, tapered joints between thick aluminium alloy plates. Int. J. Adhes. Adhes. 1992, 12, 3–8. [Google Scholar] [CrossRef]
Texturing Type | Surface Morphology | Structuring Spacing (Wavelength λ) | Structuring Depth (2 × Amplitude ψ) | Tested Surface Treatments | |
---|---|---|---|---|---|
λx | λy | Ψz | ** | ||
/µm | /µm | /µm | |||
A | Non-textured | - | - | 500 | F, P, H, T, S, T + S |
B | Linear grooves | 550 | - | 500 | F |
C | Cylindric pits | 1100 | 780 | 500 | F |
D | Linear waves * | 550 | - | 500 | F |
E | Gaussian hills * | 550 | 390 | 500 | F, H+S |
Measuring Liquids | Reference | Surface Energies (γ) | |||
---|---|---|---|---|---|
γtot | γLW | γ+ | γ− | ||
/mJ·m−2 | /mJ·m−2 | /mJ·m−2 | /mJ·m−2 | ||
Distilled water (H2O) | [48] | 72.8 | 21.8 | 25.5 | 25.5 |
Glycerol (C3H8O) | [48] | 64.0 | 34 | 3.92 | 57.4 |
Diiodomethane (CH2I2) | [48] | 50.8 | 50.8 | 0 | 0 |
Texturing Type | Surface Type/Surface Treatment | Roughness | Surface Coefficient SA *** | |||
---|---|---|---|---|---|---|
Ra | Rc | Rsm | Experimental | Theory | ||
/µm | /µm | /µm | (real surface) | (CAD model) | ||
Macrotexturing (micro molding) | * | * | * | * | ||
A | Non-textured | 0.98 | 4.38 | 142.92 | 1.3 | 1.0 |
B | Linear grooves | 190.47 | 463.67 | 470.66 | 3.3 | 2.8 |
C | Cylindric pits | 203.96 | 499.72 | 946.47 | 3.5 | 2.78 |
D | Linear waves | 123.46 | 428.47 | 486.71 | 2.4 | 2.06 |
E | Gaussian hills | 87.22 | 295.08 | 479.10 | 1.7 | 1.66 |
Microtexturing (acid etching) | ** | ** | ** | ** | ||
A | Polished (P) | 0.03 | 0.398 | 55.21 | 1.1 | 1.0 |
A | HCl (H) | 2.93 | 13.57 | 175.92 | 2.2 | - |
A | Tartaric acid (T) | 9.80 | 34.20 | 182.10 | 1.7 | - |
Sample * | Surface Energies (γ) | Theoretical Adhesion Energy (PCL) | ||||
---|---|---|---|---|---|---|
γtot | γLW | γAB | γ+ | γ− | ||
/mJ·m−2 | /mJ·m−2 | /mJ·m−2 | /mJ·m−2 | /mJ·m−2 | /mJ·m−2 | |
Polished HAp (P) | 49.3 | 39.3 | 10.0 | 0.4 | 66.9 | 85.3 |
Reference HAp [64] | 55.8 | 45.5 | 10.3 | 0.5 | 53.2 | - |
Silanized (S) | 46.6 | 42.2 | 4.4 | 0.1 | 33.7 | 84.9 |
HCl-etched (H) | 78.8 | 42.9 | 35.9 | 4.4 | 73.2 | 99.7 |
Tartaric acid-etched (T) | 90.5 | 45.6 | 44.9 | 5.7 | 89.3 | 104.7 |
T+S | 82.2 | 44.6 | 37.6 | 4.8 | 73.3 | 101.9 |
PCL | 38.7 | 36.4 | 2.3 | 0.1 | 13.0 | - |
Reference PCL [63] | 26.5 | 24.4 | 2.1 | 0.2 | 5.2 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biggemann, J.; Müller, P.; Köllner, D.; Simon, S.; Hoffmann, P.; Heik, P.; Lee, J.H.; Fey, T. Hierarchical Surface Texturing of Hydroxyapatite Ceramics: Influence on the Adhesive Bonding Strength of Polymeric Polycaprolactone. J. Funct. Biomater. 2020, 11, 73. https://doi.org/10.3390/jfb11040073
Biggemann J, Müller P, Köllner D, Simon S, Hoffmann P, Heik P, Lee JH, Fey T. Hierarchical Surface Texturing of Hydroxyapatite Ceramics: Influence on the Adhesive Bonding Strength of Polymeric Polycaprolactone. Journal of Functional Biomaterials. 2020; 11(4):73. https://doi.org/10.3390/jfb11040073
Chicago/Turabian StyleBiggemann, Jonas, Philipp Müller, David Köllner, Swantje Simon, Patrizia Hoffmann, Paula Heik, Jung Heon Lee, and Tobias Fey. 2020. "Hierarchical Surface Texturing of Hydroxyapatite Ceramics: Influence on the Adhesive Bonding Strength of Polymeric Polycaprolactone" Journal of Functional Biomaterials 11, no. 4: 73. https://doi.org/10.3390/jfb11040073
APA StyleBiggemann, J., Müller, P., Köllner, D., Simon, S., Hoffmann, P., Heik, P., Lee, J. H., & Fey, T. (2020). Hierarchical Surface Texturing of Hydroxyapatite Ceramics: Influence on the Adhesive Bonding Strength of Polymeric Polycaprolactone. Journal of Functional Biomaterials, 11(4), 73. https://doi.org/10.3390/jfb11040073