Injection Molding of 3-3 Hydroxyapatite Composites
<p>Microstructure (<b>A</b>,<b>B</b>) and particle size distributions (<b>C</b>) of the type A (d<sub>50</sub> = 20 µm) and type B (d<sub>50</sub> = 200 µm) phenolic resin spheres utilized as spherical pore formers.</p> "> Figure 2
<p>Porosity fractions (total, open and closed) of the porous hydroxyapatite (Hap) samples in dependence of the pore former content containing 20 µm spherical pore formers (<b>A</b>): The linear fit of (<b>A</b>) shows the linear relation (continuous line) between the total porosity and the pore former content, the dashed lines are only a guidance for the eye. (<b>B</b>) shows the dependence of the real surface-to-surface inter pore distance (data points represented by square symbols), determined by image analysis from SEM-micrographs, on the pore former content for the 20 µm spherical pore formers. The experimental data was compared to the model of Equation (1) inserting the measured particle size distribution of the 20 µm spheres of <a href="#materials-13-01907-f001" class="html-fig">Figure 1</a>C (see material and methods, here highlighted in the blue section) and for different pore sizes including 5, 100 and 200 µm (dashed lines).</p> "> Figure 3
<p>SEM-micrographs of fracture surfaces showing the microstructure of the porous HAp samples containing 10 (<b>A</b>,<b>D</b>), 20 (<b>B</b>,<b>E</b>) and 40 (<b>C</b>,<b>F</b>) Vol% of 20 µm spherical pore formers. The lower 250× magnification images of (<b>A</b>–<b>C</b>) display the homogeneous distribution of the pores, while the higher 1000× magnification images of (<b>D</b>–<b>F</b>) show the change of connectivity from isolated to interconnected pores.</p> "> Figure 4
<p>Mechanical properties of the porous HAp ceramics and HAp/urethane dimethacrylate (UDMA) composites: Young’s modulus and flexural strength of the porous HAp ceramics in dependence of the total porosity (<b>A</b>) and Young’s modulus and Vickers hardness of the HAp/UDMA composites in dependence of the UDMA-polymer content (<b>B</b>).</p> "> Figure 5
<p>Microstructure of the fabricated HAp/UDMA composites with 40 Vol% of pore formers (<b>A</b>,<b>B</b>): SEM-micrographs show the complete polymer infiltration of all HAp pores (<b>A</b>) and polymerization shrinkage at the HAp/UDMA interface, highlighted by the orange arrows (<b>B</b>). Visualization of the interconnected UDMA-based polymer network (<b>C</b>,<b>D</b>): SEM-micrograph after etching-out the HAp ceramic matrix (<b>C</b>) and reconstructed, skeletonized µCT-polymer network indicating the pore sizes by a color heat-map with blue for pores >1 µm and red color >10 µm (<b>D</b>). Fracture behavior of the HAp/UDMA composites (<b>E</b>,<b>F</b>): The two fracture surfaces of one sample from the flexural testing, showing the fracture at the polymer/ceramic interface associated with 100% pullout effects of all polymeric spheres, highlighted as exemplary by three red arrows (<b>E</b>,<b>F</b>).</p> "> Figure 6
<p>Future perspectives for porous HAp ceramics and HAp/UDMA composites fabricated by porous injection molding: Microstructure of a porous HAp sample with a bimodal pore size distribution containing 5 Vol% of 200 µm and 15 Vol% of 20 µm spherical pore formers (<b>A</b>). Polished SEM-micrograph of a HAp sample with a graded porosity, showing the defect-free interface between two layers containing 20 Vol% and 40 Vol% of 20 µm spherical pore formers (<b>B</b>). Potential non-load bearing cranial (1) and maxillofacial (2) implants for the porous HAp ceramics (<b>C</b>). Fabricated porous HAp bending bars with 0, 10 and 30 Vol% of pore formers (1) and potential two-part dental implants for the interpenetrating HAp/UDMA composites (2), showing a ceramic crown and three types of abutments with different anchoring geometries (<b>D</b>).</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Injection Molding of Porous Hydroxyapatite Ceramics
2.2. Fabrication of HAp/UDMA Composites
2.3. Characterization
3. Results and Discussion
3.1. Microstructural and Mechanical Properties of the Porous Injection Molded HAp
3.2. Microstructural and Mechanical Properties of the Interpenetrating HAp/UDMA Composites
3.3. Potentials and Future Perspectives of the Porous HAp Ceramics and HAp/UDMA Composites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- White, A.A.; Best, S.M.; Kinloch, I.A. Hydroxyapatite—Carbon Nanotube Composites for Biomedical Applications: A Review. Int. J. Appl. Ceram. Technol. 2007, 4, 1–13. [Google Scholar] [CrossRef]
- Giannoudis, P.V.; Dinopoulos, H.; Tsiridis, E. Bone substitutes: An update. Injury 2005, 36 (Suppl. 3), 20–27. [Google Scholar] [CrossRef]
- Schmitz, J.P.; Hollinger, J.O. The Critical Size Defect as an Experimental Model for Craniomandibulofacial Nonunions. Clin. Orthop. Relat. Res. 1986, 299–308. [Google Scholar] [CrossRef]
- de Long, W.G.; Einhorn, T.A.; Koval, K.; McKee, M.; Smith, W.; Sanders, R.; Watson, T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J. Bone Jt. Surg. 2007, 89, 649–658. [Google Scholar] [CrossRef]
- Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone regeneration: Current concepts and future directions. BMC Med. 2011, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado, A.J.; Coutinho, O.P.; Reis, R.L. Bone tissue engineering: State of the art and future trends. Macromol. Biosci. 2004, 4, 743–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deville, S.; Saiz, E.; Tomsia, A.P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 5480–5489. [Google Scholar] [CrossRef] [Green Version]
- Feng, P.; Niu, M.; Gao, C.; Peng, S.; Shuai, C. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci. Rep. 2014, 4, 5599. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, S.; Rodriguez, M.A.; Pena, P.; De Aza, A.H.; De Aza, S.; Ferraz, M.P.; Monteiro, F.J. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Mater. Sci. Eng. C 2009, 29, 1510–1514. [Google Scholar] [CrossRef]
- Ramay, H.R.; Zhang, M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials 2003, 24, 3293–3302. [Google Scholar] [CrossRef]
- Milosevski, M.; Bossert, J.; Milosevski, D.; Gruevska, N. Preparation and properties of dense and porous calcium phosphate. Ceram. Int. 1999, 25, 693–696. [Google Scholar] [CrossRef]
- Lett, J.A.; Sundareswari, M.; Ravichandran, K. Porous hydroxyapatite scaffolds for orthopedic and dental applications—The role of binders. Mater. Today Proc. 2016, 3, 1672–1677. [Google Scholar] [CrossRef]
- Yasuda, H.Y.; Mahara, S.; Terashita, N.; Umakoshi, Y. Preparation of Porous Hydroxyapatite/α-Tricalcium Phosphate Composites by a Colloidal Process. Mater. Trans. 2002, 43, 1332–1335. [Google Scholar] [CrossRef] [Green Version]
- Woottichaiwat, S.; Puajindanetr, S.; Best, S.M. Fabrication of Porous Hydroxyapatite through Combination of Sacrificial Template and Direct Foaming Techniques. Eng. J. 2011, 15, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kawata, M.; Uchida, H.; Itatani, K.; Okada, I.; Koda, S.; Aizawa, M. Development of porous ceramics with well-controlled porosities and pore sizes from apatite fibers and their evaluations. J. Mater. Sci. Mater. Med. 2004, 15, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Montufar, E.B.; Traykova, T.; Gil, C.; Harr, I.; Almirall, A.; Aguirre, A.; Engel, E.; Planell, J.A.; Ginebra, M.P. Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomater. 2010, 6, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jang, T.-S.; Song, J.; Kim, H.-E.; Jung, H.-D. The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting. Materials 2017, 10, 367. [Google Scholar] [CrossRef]
- Jang, D.-W.; Franco, R.A.; Sarkar, S.K.; Lee, B.-T. Fabrication of Porous Hydroxyapatite Scaffolds as Artificial Bone Preform and its Biocompatibility Evaluation. ASAIO J. 2014, 60, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; He, J.; Lin, T.; Zhang, Z.; Zhang, Y.; Liu, S. 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceram. Int. 2019, 45, 1163–1170. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, H.; Shi, T.; Xie, D.; Chen, R.; Han, X.; Shen, L.; Wang, C.; Tian, Z. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram. Int. 2019, 45, 11079–11086. [Google Scholar] [CrossRef]
- Leukers, B.; Gülkan, H.; Irsen, S.H.; Milz, S.; Tille, C.; Schieker, M.; Seitz, H. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J. Mater. Sci. Mater. Med. 2005, 16, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, J.G.; Eurell, J.A.C.; Stewart, M.; Jamison, R.D. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. J. Biomed. Mater. Res. A 2006, 76, 366–376. [Google Scholar] [CrossRef]
- Han, J.; Zhao, J.; Shen, Z. Zirconia ceramics in metal-free implant dentistry. Adv. Appl. Ceram. 2017, 116, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.Y.; Yoon, T.-R. Recent updates for biomaterials used in total hip arthroplasty. Biomater. Res. 2018, 22, 33. [Google Scholar] [CrossRef] [PubMed]
- Lacefield, W.R. Hydroxyapatite coatings. Ann. N. Y. Acad. Sci. 1988, 523, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Matula, G.; Krysteczko, J. Porous material produced by ceramic injection molding. J. Achiev. Mater. Manuf. Eng. 2015, 71, 14–21. [Google Scholar]
- Surawatthana, J.; Chuankrerkkul, N.; Buggakupta, W. Properties of Porous Alumina Fabricated by Ceramic Injection Moulding Using Environmentally Friendly Binder. AMR 2012, 506, 238–241. [Google Scholar] [CrossRef]
- Zhang, S.X.; Ong, Z.Y.; Li, T.; Li, Q.F.; Pook, S.F. Ceramic composite components with gradient porosity by powder injection moulding. Mater. Des. 2010, 31, 2897–2903. [Google Scholar] [CrossRef]
- Biggemann, J.; Pezoldt, M.; Stumpf, M.; Greil, P.; Fey, T. Modular ceramic scaffolds for individual implants. Acta Biomater. 2018, 80, 390–400. [Google Scholar] [CrossRef]
- Chuankrerkkul, N.; Chauoon, S.; Meepho, M.; Pornprasertsuk, R. Characterisation of NiO-YSZ Porous Anode-Support for Solid Oxide Fuel Cells Fabricated by Ceramic Injection Moulding. KEM 2017, 751, 467–470. [Google Scholar] [CrossRef]
- Cihlář, J.; Tranec, M. Injection moulded hydroxyapatite ceramics. Biomaterials 1996, 17, 1905–1911. [Google Scholar] [CrossRef]
- Vivanco, J.; Aiyangar, A.; Araneda, A.; Ploeg, H.-L. Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds. J. Mech. Behav. Biomed. Mater. 2012, 9, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.-H.; Kim, Y.-W.; Park, C.B.; Wang, C. Effect of forming methods on porosity and compressive strength of polysiloxane-derived porous silicon carbide ceramics. J. Ceram. Soc. Jpn. 2012, 120, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.P.C.; Bram, M.; Stöver, D.; Buchkremer, H.P. Realization of a Titanium Spinal Implant with a Gradient in Porosity by 2-Component-Metal Injection Moulding. Adv. Eng. Mater. 2013, 15, 510–521. [Google Scholar] [CrossRef]
- Chen, L.-J.; Li, T.; Li, Y.-M.; He, H.; Hu, Y.-H. Porous titanium implants fabricated by metal injection molding. Trans. Nonferrous Metal. Soc. 2009, 19, 1174–1179. [Google Scholar] [CrossRef]
- Gülsoy, H.Ö.; German, R.M. Production of micro-porous austenitic stainless steel by powder injection molding. Scr. Mater. 2008, 58, 295–298. [Google Scholar] [CrossRef]
- Studart, A.R.; Gonzenbach, U.T.; Tervoort, E.; Gauckler, L.J. Processing Routes to Macroporous Ceramics: A Review. J. Am. Ceram. Soc. 2006, 89, 1771–1789. [Google Scholar] [CrossRef]
- Biggemann, J.; Diepold, B.; Pezoldt, M.; Stumpf, M.; Greil, P.; Fey, T. Automated 3D assembly of periodic alumina-epoxy composite structures. J. Am. Ceram. Soc. 2018, 101, 3864–3873. [Google Scholar] [CrossRef]
- European Committee for Standardization. Advanced Technical Ceramics; Monolithic Ceramics; General and Textural Properties; Part 2: Determination of Density and Porosity, German version EN 623-2:1993; Beuth Verlag GmbH: Berlin, Germany, 1993. [Google Scholar]
- E28 Committee. Test Method for Dynamic Youngs Modulus, Shear Modulus, and Poissons Ratio by Impulse Excitation of Vibration; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- European Committee for Standardization. Advanced Technical Ceramics—Mechanical Properties of Monolithic Ceramics at Room Temperature—Part 2: Determination of Young’s Modulus, Shear Modulus and Poisson’s Ratio; German Version EN 843-2:2006; Beuth Verlag GmbH: Berlin, Germany, 2007. [Google Scholar]
- European Committee for Standardization. Advanced Technical Ceramics—Mechanical Properties of Monolithic Ceramics at Room Temperature—Part 1: Determination of Flexural Strength; German Version EN 843-1:2006; Beuth Verlag GmbH: Berlin, Germany, 2008. [Google Scholar]
- Hench, L.L. An Introduction to Bioceramics, 2nd ed.; Imperial College Press: London, UK, 2013; ISBN 978-1-908977-15-1. [Google Scholar]
- Jones, J.R.; Hench, L.L. Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 2003, 7, 301–307. [Google Scholar] [CrossRef]
- Ziff, R.M.; Torquato, S. Percolation of disordered jammed sphere packings. J. Phys. A Math. Theor. 2017, 50, 85001. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Jiao, Y. Theoretical framework for percolation threshold, tortuosity and transport properties of porous materials containing 3D non-spherical pores. Int. J. Eng. Sci. 2019, 134, 31–46. [Google Scholar] [CrossRef]
- Xu, W.; Jia, M.; Gong, Z. Thermal conductivity and tortuosity of porous composites considering percolation of porous network: From spherical to polyhedral pores. Compos. Sci. Technol. 2018, 167, 134–140. [Google Scholar] [CrossRef]
- Jing, X.; Zhao, W.; Lan, L. The effect of particle size on electric conducting percolation threshold in polymer/conducting particle composites. J. Mater. Sci. Lett. 2000, 19, 377–379. [Google Scholar] [CrossRef]
- Scher, H.; Zallen, R. Critical Density in Percolation Processes. J. Chem. Phys. 1970, 53, 3759–3761. [Google Scholar] [CrossRef] [Green Version]
- Erk, K.A.; Dunand, D.C.; Shull, K.R. Titanium with controllable pore fractions by thermoreversible gelcasting of TiH2. Acta Mater. 2008, 56, 5147–5157. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Kowk, K. Mean interparticle distances between hard particles in one to three dimensions. Polymer 2001, 42, 2701–2706. [Google Scholar] [CrossRef]
- Phani, K.K.; Niyogi, S.K. Young’s modulus of porous brittle solids. J. Mater. Sci. 1987, 22, 257–263. [Google Scholar] [CrossRef]
- Spriggs, R.M. Expression for Effect of Porosity on Elastic Modulus of Polycrystalline Refractory Materials, Particularly Aluminum Oxide. J. Am. Ceram. Soc. 1961, 44, 628–629. [Google Scholar] [CrossRef]
- Orlovskii, V.P.; Komlev, V.S.; Barinov, S.M. Hydroxyapatite and Hydroxyapatite-Based Ceramics. Inorg. Mater. 2002, 38, 973–984. [Google Scholar] [CrossRef]
- He, L.-H.; Standard, O.C.; Huang, T.T.Y.; Latella, B.A.; Swain, M.V. Mechanical behaviour of porous hydroxyapatite. Acta Biomater. 2008, 4, 577–586. [Google Scholar] [CrossRef]
- Akao, M.; Aoki, H.; Kato, K. Mechanical properties of sintered hydroxyapatite for prosthetic applications. J. Mater. Sci. 1981, 16, 809–812. [Google Scholar] [CrossRef]
- Pabst, W.; Gregorová, E. Young’s modulus of isotropic porous materials with spheroidal pores. J. Eur. Ceram. Soc. 2014, 34, 3195–3207. [Google Scholar] [CrossRef]
- Andersson, C.A. Derivation of the Exponential Relation for the Effect of Ellipsoidal Porosity on Elastic Modulus. J. Am. Ceram. Soc. 1996, 79, 2181–2184. [Google Scholar] [CrossRef]
- Ridzwan, M.; Shuib, S.; Hassan, A.Y.; Shokri, A.A.; Ibrahim, M. Problem of Stress Shielding and Improvement to the Hip Implant Designs: A Review. J. Med. Sci. 2007, 7, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.R. Interpenetrating Phase Composites. J. Am. Ceram. Soc. 1992, 75, 739–758. [Google Scholar] [CrossRef]
- Feng, X.-Q.; Mai, Y.-W.; Qin, Q.-H. A micromechanical model for interpenetrating multiphase composites. Comput. Mater. Sci. 2003, 28, 486–493. [Google Scholar] [CrossRef]
- O’Brien, D.J.; Parquette, B. Polymer toughness transfer in a transparent interpenetrating glass–polymer composite. Compos. Sci. Technol. 2012, 73, 57–63. [Google Scholar] [CrossRef]
- Franco Steier, V.; Koplin, C.; Kailer, A. Influence of pressure-assisted polymerization on the microstructure and strength of polymer-infiltrated ceramics. J. Mater. Sci. 2013, 48, 3239–3247. [Google Scholar] [CrossRef]
- Chung, C.-M.; Kim, J.-G.; Kim, M.-S.; Kim, K.-M.; Kim, K.-N. Development of a new photocurable composite resin with reduced curing shrinkage. Dent. Mater. 2002, 18, 174–178. [Google Scholar] [CrossRef]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef]
- Li, W.; Sun, J. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material. Med. Sci. Monit. 2018, 24, 3068–3076. [Google Scholar] [CrossRef] [PubMed]
- Sutera, S.P.; Skalak, R. The History of Poiseuille’s Law. Ann. Rev. Fluid Mech. 1993, 25, 1–20. [Google Scholar] [CrossRef]
- Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM J. Appl. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Voigt, W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. 1889, 274, 573–587. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.J.; Geng, L.; Peng, H.-X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog. Mater. Sci. 2015, 71, 93–168. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Evans, A.G. Perspective on the Development of High-Toughness Ceramics. J. Am. Ceram. Soc. 1990, 73, 187–206. [Google Scholar] [CrossRef]
- Dunlop, J.W.; Fratzl, P. Biological Composites. Ann. Rev. Mater. Res. 2010, 40, 1–24. [Google Scholar] [CrossRef]
- Suchanek, W.; Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 1998, 13, 94–117. [Google Scholar] [CrossRef]
- Imbeni, V.; Kruzic, J.J.; Marshall, G.W.; Marshall, S.J.; Ritchie, R.O. The dentin-enamel junction and the fracture of human teeth. Nat. Mater. 2005, 4, 229–232. [Google Scholar] [CrossRef]
- Di Luca, A.; Ostrowska, B.; Lorenzo-Moldero, I.; Lepedda, A.; Swieszkowski, W.; van Blitterswijk, C.; Moroni, L. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci. Rep. 2016, 6, 22898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, X.; Sun, D. Graded/Gradient Porous Biomaterials. Materials 2010, 3, 26–47. [Google Scholar] [CrossRef] [Green Version]
- Werner, J.; Linner-Krčmar, B.; Friess, W.; Greil, P. Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure. Biomaterials 2002, 23, 4285–4294. [Google Scholar] [CrossRef]
Pore Former Content /Vol% | Open /Vol% | Porosity (Φp) Closed /Vol% | Total /Vol% | Interpore Distance 〈T〉 /µm | Young’s Modulus (E) /GPa | Flexural Strength (σf) /MPa |
---|---|---|---|---|---|---|
0 | 0.6 ± 0.4 | 10.6 ± 1.2 | 11.2 ± 1.0 | - | 97.3 ± 1.9 | 69.0 ± 10.9 |
10 | 1.4 ± 0.4 | 14.9 ± 1.3 | 16.3 ± 1.3 | 11 | 83.1 ± 3.9 | 51.1 ± 12.5 |
20 | 3.4 ± 0.7 | 25.4 ± 1.5 | 28.8 ± 1.7 | 4.9 | 57.0 ± 2.5 | 31.4 ± 5.6 |
30 | 34.7 ± 0.9 | 2.1 ± 1.5 | 36.8 ± 1.4 | 1.8 | 42.8 ± 3.1 | 18.1 ± 2.3 |
40 | 42.8 ± 1.6 | 2.4 ± 1.4 | 45.2 ± 0.9 | 0.4 | 29.1 ± 0.9 | 13.0 ± 3.0 |
Samples | Preform Porosity | Geometric Density | Theoretical Density | Vickers Hardness | Young’s Modulus | Flexural Strength |
---|---|---|---|---|---|---|
/Vol% | /g·cm−3 | /% | HV1/GPa | /GPa | /MPa | |
Pure HAp | - | 2.81 ± 0.05 | 88.8 | 4.5* | 131** | 104** |
30 Vol% Inf. | 36.8 ± 1.4 | 2.29 ± 0.05 | 97.6 | 2.12 ± 0.31 | 46.1 ± 2.1 | 29.6 ± 5.5 |
40 Vol% Inf. | 45.2 ± 0.9 | 2.10 ± 0.04 | 94.9 | 1.15 ± 0.18 | 31.8 ± 3.3 | 19.7 ± 3.9 |
Pure UDMA/TEGDMA | - | 1.20 ± 0.01 | - | 0.2 ± 0.04 | 3.9 ± 0.3 | 97.3 ± 21.4 |
Monolithic Ceramic | Material | Porosity | Young’s Modulus | Vickers Hardness | Flexural Strength | Reference |
---|---|---|---|---|---|---|
/Vol% | /GPa | /GPa | /MPa | |||
Bone restoration | Cortical Bone | 5–10 | 7–30 | - | 50–150 | [8,43,74] |
Trabecular bone | 75–95 | 0.05–0.5 | - | 10–20 | [43,74] | |
Porous HAp | 11.2–45.2 | 29–97 | - | 13–69 | This work | |
PICN | Material | Polymer Content | Young’s Modulus | Vickers Hardness | Flexural Strength | Reference |
/Vol% | /GPa | /GPa | /MPa | |||
Dental restoration | Enamel | - | 48–105 | 3–5.3 | 76 | [74,75] |
Dentin | - | 11–20.3 | 0.5–1.0 | 245–268 | [74,75] | |
HAp/UDMA*,a | 37–45 | 32–46 | 1.2–2.1 | 20–30 | This work | |
Feldspar/UDMA**,a | 28–41 | 16–28 | 1.1–2.1 | 131–160 | [65] | |
ZrO2/UDMA**,a | 8–42 | 15–101 | 0.4–10.8 | 58–212 | [66] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biggemann, J.; Hoffmann, P.; Hristov, I.; Simon, S.; Müller, P.; Fey, T. Injection Molding of 3-3 Hydroxyapatite Composites. Materials 2020, 13, 1907. https://doi.org/10.3390/ma13081907
Biggemann J, Hoffmann P, Hristov I, Simon S, Müller P, Fey T. Injection Molding of 3-3 Hydroxyapatite Composites. Materials. 2020; 13(8):1907. https://doi.org/10.3390/ma13081907
Chicago/Turabian StyleBiggemann, Jonas, Patrizia Hoffmann, Ivaylo Hristov, Swantje Simon, Philipp Müller, and Tobias Fey. 2020. "Injection Molding of 3-3 Hydroxyapatite Composites" Materials 13, no. 8: 1907. https://doi.org/10.3390/ma13081907
APA StyleBiggemann, J., Hoffmann, P., Hristov, I., Simon, S., Müller, P., & Fey, T. (2020). Injection Molding of 3-3 Hydroxyapatite Composites. Materials, 13(8), 1907. https://doi.org/10.3390/ma13081907