A Segmented Processing Approach of Eigenvector Spatial Filtering Regression for Normalized Difference Vegetation Index in Central China
<p>An illustration of image segmentation. (The large datasets are segmented to smaller ones with the size N × N. The optimum N is determined by tests of linear ESF for a single small block.).</p> "> Figure 2
<p>The study area and NDVI distribution (NDVI is from monthly compositing dataset of MODIS Terra (MODND1D) in August 2009, which takes the maximum from 1 August to 1 September in 2009. The datasets are provided by International Scientific & Technical Data Mirror Site, Computer Network Information Center, Chinese Academy of Sciences. Projection Coordinate System: WGS 1984 UTM Zone 48N).</p> "> Figure 3
<p>Raster data after preprocessed (DEM dataset was released in 2008, PREC, RHU, and DAYP datasets are yearly value of 2009, and OC and BS datasets were released in 2008).</p> "> Figure 4
<p>(<b>a</b>) Comparison of RSE between OLS, SAR, and ESF; (<b>b</b>) comparison of R-Squared between OLS, SAR, and ESF; (<b>c</b>) comparison of Adjusted R-Squared between OLS, SAR, and ESF; (<b>d</b>) comparison of Pseudo R-Squared between OLS, SAR, and ESF; (<b>e</b>) comparison of AIC between OLS, SAR, and ESF. The X-axis means the serial number of segmented blocks by column.</p> "> Figure 4 Cont.
<p>(<b>a</b>) Comparison of RSE between OLS, SAR, and ESF; (<b>b</b>) comparison of R-Squared between OLS, SAR, and ESF; (<b>c</b>) comparison of Adjusted R-Squared between OLS, SAR, and ESF; (<b>d</b>) comparison of Pseudo R-Squared between OLS, SAR, and ESF; (<b>e</b>) comparison of AIC between OLS, SAR, and ESF. The X-axis means the serial number of segmented blocks by column.</p> "> Figure 5
<p>Original NDVI image and fitted NDVI image of the three models.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Raster Segmentation
2.2. Eigenvector Generation Based on SWM
2.3. Parallel Eigenvector Filtering
2.4. Validation
3. Experiment
3.1. Study Area and Datasets
3.2. Variable Selection
3.3. Parallelization of ESF
4. Results
4.1. Comparison of 3 Models in Each Block
4.2. Summarized Results
4.3. Time Cost Comparison in Parallel Computation
5. Discussion
5.1. Influence for NDVI Distribution
5.2. Implementation of Parallel ESF
5.3. Drawback
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rouse, J.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived ndvi to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, S.E.; Farrar, T.J. The influence of soil type on the relationships between ndvi, rainfall, and soil-moisture in semiarid Botswana. I. Ndvi response to rainfall. Remote Sens. Environ. 1994, 50, 107–120. [Google Scholar] [CrossRef]
- Di, L.P.; Rundquist, D.C.; Han, L.H. Modeling relationships between ndvi and precipitation during vegetative growth cycles. Int. J. Remote Sens. 1994, 15, 2121–2136. [Google Scholar] [CrossRef]
- Chamailléjammes, S.; Fritz, H. Precipitation-ndvi relationships in eastern and southern African savannas vary along a precipitation gradient. Int. J. Remote Sens. 2009, 30, 3409–3422. [Google Scholar] [CrossRef]
- Padmanaban, R.; Bhowmik, A.K.; Cabral, P. A remote sensing approach to environmental monitoring in a reclaimed mine area. Int. J. Geo-Inf. 2017, 6, 401. [Google Scholar] [CrossRef]
- Schultz, P.A.; Halpert, M.S. Global correlation of temperature, ndvi and precipitation. Adv. Space Res. 1993, 13, 277–280. [Google Scholar] [CrossRef]
- An, C.; Fan, J.; Zhang, Y.; Yan, D. Characterizing the responses of vegetation to climate change in the Tibet Plateau using remote sensing data. J. Appl. Remote Sens. 2018, 12, 016035. [Google Scholar] [CrossRef]
- Guo, H.; Lei, L. Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau. J. Appl. Remote Sens. 2013, 7, 3572. [Google Scholar]
- Hou, W.; Gao, J.; Wu, S.; Dai, E. Interannual variations in growing-season ndvi and its correlation with climate variables in the southwestern karst region of China. Remote Sens. 2015, 7, 11105–11124. [Google Scholar] [CrossRef]
- Griffith, D.A. Positive spatial autocorrelation impacts on attribute variable frequency distributions. Chil. J. Stat. 2011, 2, 3–28. [Google Scholar]
- Griffith, D.; Chun, Y. Spatial autocorrelation and uncertainty associated with remotely-sensed data. Remote Sens. 2016, 8, 535. [Google Scholar] [CrossRef]
- Iwasaki, H. Ndvi prediction over mongolian grassland using gsmap precipitation data and jra-25/jcdas temperature data. J. Arid. Environ. 2009, 73, 557–562. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, J.; Wilson, J.P.; Wu, J.; Wu, Q.; Yang, J. A dynamic classification pattern of spatial statistical services using formal concept analysis. Geogr. Anal. 2018. [Google Scholar] [CrossRef]
- Burden, S.; Cressie, N.; Steel, D.G. The SAR model for very large datasets: A reduced rank approach. Econometrics 2015, 3, 317–338. [Google Scholar] [CrossRef]
- Griffith; Daniel, A. Spatial Statistics & Geostatistics; Sage: Newcastle upon Tyne, UK, 2013; pp. 314–322. [Google Scholar]
- Griffith, D.A.; Paelinck, J.H.P. An equation by any other name is still the same: On spatial econometrics and spatial statistics. Ann. Reg. Sci. 2007, 41, 209–227. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial autocorrelation and eigenvectors of the geographic weights matrix accompanying geo-referenced data. Can. Geogr. 1996, 40, 351–367. [Google Scholar] [CrossRef]
- Chun, Y.; Griffith, D.A.; Lee, M.; Sinha, P. Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters. J. Geogr. Syst. 2016, 18, 67–85. [Google Scholar] [CrossRef]
- Griffith, D.A.; Paelinck, J.H.P. Non-Standard Spatial Statistics and Spatial Econometrics; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Patuelli, R.; Griffith, D.A.; Tiefelsdorf, M.; Nijkamp, P. The use of spatial filtering techniques: The spatial and space-time structure of german unemployment data. SSRN Electron. J. 2006. [Google Scholar] [CrossRef]
- Griffith, D.A.; Peres-Neto, P.R. Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses. Ecology 2006, 87, 2603–2613. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, X.; Li, Q.; Yu, X.; Chen, J.; Guo, J. Exploring determinants of housing prices in Beijing: An enhanced hedonic regression with open access poi data. Int. J. Geo-Inf. 2017, 6, 358. [Google Scholar] [CrossRef]
- Griffith, D.A. Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebra Appl. 2000, 321, 95–112. [Google Scholar] [CrossRef]
- Lovell, J.L.; Graetz, R.D. Filtering pathfinder avhrr land ndvi data for Australia. Int. J. Remote Sens. 2001, 22, 2649–2654. [Google Scholar] [CrossRef]
- Geerken, R.; Zaitchik, B.; Evans, J.P. Classifying rangeland vegetation type and coverage from ndvi time series using fourier filtered cycle similarity. Int. J. Remote Sens. 2005, 26, 5535–5554. [Google Scholar] [CrossRef]
- Mccallum, Q.E.; Weston, S. Parallel R; O’Reilly Media, Inc.: Newton, MA, USA, 2011. [Google Scholar]
- Zhao, P. R with parallel computing from user perspectives. In Parallel R; O’Reilly Media, Inc.: Newton, MA, USA, 2016; Volume 2016. [Google Scholar]
- Helbich, M.; Griffith, D.A. Spatially varying coefficient models in real estate: Eigenvector spatial filtering and alternative approaches. Comput. Environ. Urban 2016, 57, 1–11. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Tiefelsdorf, M.; Boots, B. The exact distribution of Moran’s I. Environ. Plan. A 2000, 27, 985–999. [Google Scholar] [CrossRef]
- Fischer, M.M.; Nijkamp, P. Handbook of Regional Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1419–1434. [Google Scholar]
- Griffith, D.A. Spatial Autocorrelation and Spatial Filtering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 633–635. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: New York, NY, USA, 2009; pp. 1–4. [Google Scholar]
- LeSage, J.P. An introduction to spatial econometrics. Rev. D’économie Industrielle 2008, 123, 19–44. [Google Scholar] [CrossRef]
- Ward, M.D.; Gleditsch, K.S. Spatial Regression Models; Sage: Newcastle upon Tyne, UK, 2008; Volume 155. [Google Scholar]
- Wikipedia. Hunan#geography. Available online: https://en.wikipedia.org/wiki/Hunan#Geography (accessed on 28 July 2014).
- Chenghu, Z.; Weimin, C. 1:1 Million Digital Geomorphologic Data Sets in Western China; Environmental and Ecological Science Data Center for West China, National Natural Science Foundation of China: Beijing, China, 2007. [Google Scholar]
- Domrös, M.; Gongbing, P. The Climate of China; Springer: New York, NY, USA; Berlin, Germany, 2011; pp. 265–266. [Google Scholar]
- Fu, C.; Jiang, Z.; Guan, Z.; He, J.; Xu, Z. Regional Climate Studies of China; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Defries, R.; Townshend, J. Ndvi-derived land cover classification at global scales. Int. J. Remote Sens. 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual variations of monthly and seasonal normalized difference vegetation index (ndvi) in China from 1982 to 1999. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void-filling interpolation methods for srtm data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2008, 10, 423–436. [Google Scholar] [CrossRef]
- Ruggiero, P.G.C.; Batalha, M.A.; Pivello, V.R.; Meirelles, S.T. Soil-vegetation relationships in cerrado (Brazilian Savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 2002, 160, 1–16. [Google Scholar] [CrossRef]
- Fischer, G.; Nachtergaele, F.; Prieler, S.; Van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2008; Volume 10. [Google Scholar]
Variable | Meaning | Resolution | Raster Size | Source |
---|---|---|---|---|
NDVI | assess the cover level of green vegetation on the earth surface | 1 km | 848 × 848 pixels | MODIS/Terra |
DEM | a digital representation of ground-surface topography or terrain | 90 m | 6001 × 6001 pixels | STRM |
PREC | the total quantity of rainfall to the ground at a site within a year, which supplies most of the water that plants need to absorb | 1 km | 848 × 848 pixels | Meteorological Stations |
RHU | moisture in the atmosphere, which influences the exchange of water between plants and atmosphere | 1 km | 848 × 848 pixels | Meteorological Stations |
DAYP | the number of days for daily precipitation ≥ 0.1 mm | 1 km | 848 × 848 pixels | Meteorological Stations |
OC | a good indicator to access health condition of the soil, a good criterion for soil fertility | 30 arc seconds | 601 × 601 pixels | HDWS |
BS | total ratio of exchangeable cations (nutrients) Na, Ca, Mg, and K. Access the capacity of absorbing nutrients in the soil | 30 arc seconds | 601 × 601 pixels | HDWS |
Variable | β | SE | tStat | p-Value | Residual | RSE | RSqu | Adj.R2 | F-Stat | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|---|
MC | p | ||||||||||
Intercept | 0.15 | 0.01 | 22.87 | 0.00 | 0.70 | 0.00 | 0.13 | 0.51 | 0.51 | 1148 | <2.2 × 10−16 |
DEM | 0.04 | 0.00 | 8.30 | 0.00 | |||||||
PREC | 0.48 | 0.01 | 71.18 | 0.00 | |||||||
DAYP | 0.47 | 0.01 | 38.47 | 0.00 | |||||||
RHU | 0.06 | 0.02 | 3.48 | 0.00 | |||||||
OC | 0.17 | 0.04 | 4.31 | 0.00 | |||||||
BS | 0.04 | 0.00 | 14.85 | 0.00 |
NDVI | DEM | PREC | RHU | DAYP | OC | BS | |
---|---|---|---|---|---|---|---|
NDVI | 1 | ||||||
DEM | −0.26 | 1 | |||||
PREC | 0.70 | −0.44 | 1 | ||||
RHU | 0.66 | −0.36 | 0.85 | 1 | |||
DAYP | 0.62 | −0.01 | 0.81 | 0.82 | 1 | ||
OC | 0.07 | 0.17 | 0.07 | 0.08 | 0.19 | 1 | |
BS | −0.29 | 0.11 | −0.44 | −0.42 | −0.44 | −0.17 | 1 |
Block No. | Filtered Eigenvectors | Counts |
---|---|---|
1 | 129 | |
2 | 113 | |
3 | 94 | |
4 | 95 | |
… | …… | … |
63 | 98 | |
64 | 95 |
Variable | OLS | SAR | ESF | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SE | tStat | p-Value | Residual | β | SE | z | p-Value | Residual | β | SE | tStat | p-Value | Residual | ||||
MC | p | MC | p | MC | p | |||||||||||||
Intercept | 0.43 | 0.17 | 2.96 | 0.07 | 0.31 | 0.00 | 0.37 | 0.17 | 2.65 | 0.14 | 0.20 | 0.00 | 0.26 | 0.22 | 1.98 | 0.13 | −0.09 | 0.93 |
DEM | 0.36 | 0.09 | 6.41 | 0.07 | 0.37 | 0.08 | 5.85 | 0.05 | 0.35 | 0.09 | 4.66 | 0.04 | ||||||
PREC | 0.43 | 0.18 | 2.47 | 0.11 | 0.45 | 0.17 | 2.13 | 0.14 | 0.20 | 0.24 | 0.15 | 0.23 | ||||||
RHU | 0.01 | 0.27 | 0.01 | 0.16 | −0.02 | 0.26 | −0.30 | 0.11 | 0.28 | 0.36 | 0.41 | 0.12 | ||||||
DAYP | 0.32 | 0.36 | 1.33 | 0.12 | 0.21 | 0.34 | 1.15 | 0.12 | 0.46 | 0.48 | 1.67 | 0.13 | ||||||
OC | 0.56 | 0.99 | 0.82 | 0.21 | 0.33 | 0.93 | 0.58 | 0.20 | 0.65 | 0.84 | 0.73 | 0.20 | ||||||
BS | 0.01 | 0.03 | 0.01 | 0.22 | 0.01 | 0.02 | −0.01 | 0.26 | 0.02 | 0.02 | 0.52 | 0.26 |
Variable | OLS | SAR | ESF | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SE | tStat | p-Value | Residual | β | SE | z | p-Value | Residual | β | SE | tStat | p-Value | Residual | ||||
MC | p | MC | p | MC | p | |||||||||||||
Intercept | −1.06 | 0.11 | −9.61 | 0.00 | 0.39 | 0.00 | −0.05 | 0.11 | −4.79 | 0.00 | 0.23 | 0.00 | 0.66 | 0.13 | 5.23 | 0.00 | −0.11 | 0.98 |
DEM | 0.61 | 0.06 | 10.68 | 0.00 | 0.33 | 0.06 | 6.04 | 0.00 | 0.25 | 0.08 | 3.15 | 0.00 | ||||||
PREC | 2.51 | 0.12 | 20.50 | 0.00 | 1.59 | 0.16 | 12.66 | 0.00 | 0.44 | 0.13 | 3.52 | 0.00 | ||||||
RHU | 2.44 | 0.31 | 7.98 | 0.00 | 3.05 | 0.28 | 10.74 | 0.00 | 0.63 | 0.36 | 1.86 | 0.08 | ||||||
DAYP | −8.16 | 0.50 | −16.22 | 0.00 | −7.95 | 0.46 | −17.18 | 0.00 | −6.20 | 0.73 | −8.49 | 0.00 | ||||||
OC | 1.31 | 1.54 | 0.85 | 0.39 | 0.91 | 1.41 | 0.65 | 0.52 | 2.67 | 1.29 | 2.08 | 0.04 | ||||||
BS | 0.11 | 0.04 | 2.85 | 0.00 | 0.08 | 0.04 | 2.30 | 0.02 | 0.07 | 0.03 | 2.29 | 0.02 |
Criteria | OLS | SAR | ESF |
---|---|---|---|
RSE | 0.1576 | 0.0746 | 0.0593 |
Residual’s MC | 0.31 | 0.2 | −0.09 |
R-Squared | 0.2993 | 0.6323 | 0.6268 |
Adjusted R-Squared | 0.2952 | 0.6301 | 0.5891 |
Pseudo R-squared | 0.30 | 0.37 | 0.63 |
DF | 1017 | 1017 | 925 |
AIC (Akaike information criterion) | −2234.94 | −2441.44 | −2847.47 |
Number of Cores | Time Cost (Seconds) | Speed-Up Ratio |
---|---|---|
1 | 4770.20 | 1 |
2 | 2621.02 | 1.8 |
4 | 1470.16 | 3.2 |
Variable | OLS | SAR | ESF | |||
---|---|---|---|---|---|---|
Number | Percent | Number | Percent | Number | Percent | |
Intercept | 53 | 82.81% | 45 | 70.31% | 43 | 67.19% |
DEM | 57 | 89.06% | 55 | 85.94% | 56 | 87.50% |
PREC | 49 | 76.56% | 44 | 68.75% | 31 | 48.44% |
RHU | 44 | 68.75% | 44 | 68.75% | 49 | 76.56% |
DAYP | 47 | 73.44% | 40 | 62.50% | 44 | 68.75% |
OC | 36 | 56.25% | 34 | 53.13% | 34 | 53.13% |
BS | 36 | 56.25% | 34 | 53.13% | 28 | 43.75% |
OLS | SAR | ESF | |
---|---|---|---|
DEM | |||
PREC | |||
RHU | |||
DAYP | |||
OC | |||
BS |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Chen, Y.; Chen, M.; Yang, F.; Yao, M. A Segmented Processing Approach of Eigenvector Spatial Filtering Regression for Normalized Difference Vegetation Index in Central China. ISPRS Int. J. Geo-Inf. 2018, 7, 330. https://doi.org/10.3390/ijgi7080330
Yang J, Chen Y, Chen M, Yang F, Yao M. A Segmented Processing Approach of Eigenvector Spatial Filtering Regression for Normalized Difference Vegetation Index in Central China. ISPRS International Journal of Geo-Information. 2018; 7(8):330. https://doi.org/10.3390/ijgi7080330
Chicago/Turabian StyleYang, Jiaxin, Yumin Chen, Meijie Chen, Fan Yang, and Ming Yao. 2018. "A Segmented Processing Approach of Eigenvector Spatial Filtering Regression for Normalized Difference Vegetation Index in Central China" ISPRS International Journal of Geo-Information 7, no. 8: 330. https://doi.org/10.3390/ijgi7080330