A Broadband Signal Recycling Scheme for Approaching the Quantum Limit from Optical Losses
<p>This figure shows the noise spectral densities of optical losses and the shot noise limited sensitivity with parameters from aLIGO [<a href="#B7-galaxies-09-00003" class="html-bibr">7</a>]. We assumed 1000 ppm signal-recycling cavity (SRC) loss, 100 ppm arm cavity loss and 10% external loss. The blue line illustrates the shot noise of aLIGO. The purple line is with ∼9 dB observed squeezing (15dB squeezing in the arm cavities). The black line illustrates the resulting shot noise of the aLIGO configuration with the BSR scheme discussed in this work. It approaches the SRC loss limit at high frequencies and arm cavity loss limit at low frequencies.</p> "> Figure 2
<p>(<b>Left</b>): Gravitational-wave detector with the proposed BSR scheme and input/output filter cavities. The carrier laser is at <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>0</mn> </msub> </semantics></math> (red). The optomechanical filter cavity is pumped with a laser at <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>ω</mi> <mi>m</mi> </msub> </mrow> </semantics></math> (blue), which comes from modulating the input carrier and transmits to the dark port under the Schnupp asymmetry. The resonant frequency of the mechanical oscillator is <math display="inline"><semantics> <msub> <mi>ω</mi> <mi>m</mi> </msub> </semantics></math>. The blue beam is filtered with an output mode cleaner. The input and output filter cavities are used for frequency dependent squeezing and variational readout. (<b>Right</b>): Simplified schematic of the broadband signal recycling scheme. Inside the SRC, the phase of sideband upon reflection from the arm cavity is cancelled, therefor the SRC is on resonance in a broad frequency band. The SRC is converted to be an amplifier for the signal coming out from the arm cavity with a gain of <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <msqrt> <msub> <mi>T</mi> <mi>SRM</mi> </msub> </msqrt> </mrow> </semantics></math>.</p> "> Figure 3
<p>This figure shows the quantum noise spectral densities of aLIGO and with BSR scheme (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>Q</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>13</mn> </mrow> </msup> </mrow> </semantics></math>). 15 dB squeezing is assumed in the arm cavity and ∼9 dB squeezing is observed under 10% external loss.</p> ">
Abstract
:1. Introduction
2. Design Concept and Quantum Noise
3. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Braginsky, V.B.; Khalili, F.Y.; Thorne, K.S. Quantum Measurement; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar] [CrossRef]
- Helstrom, C. Minimum mean-squared error of estimates in quantum statistics. Phys. Lett. A 1967, 25, 101–102. [Google Scholar] [CrossRef]
- Braginsky, V.B.; Gorodetsky, M.L.; Khalili, F.Y.; Thorne, K.S. Energetic quantum limit in large-scale interferometers. AIP Conf. Proc. 2000, 523, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Tsang, M.; Wiseman, H.M.; Caves, C.M. Fundamental Quantum Limit to Waveform Estimation. Phys. Rev. Lett. 2011, 106, 090401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, H.; Adhikari, R.X.; Ma, Y.; Pang, B.; Chen, Y. Towards the Fundamental Quantum Limit of Linear Measurements of Classical Signals. Phys. Rev. Lett. 2017, 119, 050801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, H.; Smith, N.D.; Evans, M. Quantum Limit for Laser Interferometric Gravitational-Wave Detectors from Optical Dissipation. Phys. Rev. X 2019, 9, 011053. [Google Scholar] [CrossRef] [Green Version]
- Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Ackley, K.; Ackley, C.; Adams, T.; Addesso, P.; Adhikari, P.X.; et al. Advanced LIGO. Class. Quantum Gravity 2015, 32, 074001. [Google Scholar] [CrossRef]
- Miao, H.; Yang, H.; Martynov, D. Towards the design of gravitational-wave detectors for probing neutron-star physics. Phys. Rev. D 2018, 98, 044044. [Google Scholar] [CrossRef] [Green Version]
- Martynov, D.; Miao, H.; Yang, H.; Vivanco, F.H.; Thrane, E.; Smith, R.; Lasky, P.; East, W.E.; Adhikari, R.; Bauswein, A.; et al. Exploring the sensitivity of gravitational wave detectors to neutron star physics. Phys. Rev. D 2019, 99, 102004. [Google Scholar] [CrossRef] [Green Version]
- Braginsky, V.B.; Vorontsov, Y.I.; Thorne, K.S. Quantum Nondemolition Measurements. Science 1980, 209, 547–557. [Google Scholar] [CrossRef]
- Chen, Y.; Danilishin, S.L.; Khalili, F.Y.; Müller-Ebhardt, H. QND measurements for future gravitational-wave detectors. Gen. Relativ. Gravit. 2011, 43, 671–694. [Google Scholar] [CrossRef] [Green Version]
- Kimble, H.J.; Levin, Y.; Matsko, A.B.; Thorne, K.S.; Vyatchanin, S.P. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 2001, 65, 022002. [Google Scholar] [CrossRef] [Green Version]
- Adya, V.B.; Yap, M.J.; Töyrä, D.; McRae, T.G.; Altin, P.A.; Sarre, L.K.; Meijerink, M.; Kijbunchoo, N.; Slagmolen, B.J.J.; Ward, R.L.; et al. Quantum enhanced kHz gravitational wave detector with internal squeezing. Class. Quantum Gravity 2020, 37, 07LT02. [Google Scholar] [CrossRef]
- Korobko, M.; Kleybolte, L.; Ast, S.; Miao, H.; Chen, Y.; Schnabel, R. Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation. Phys. Rev. Lett. 2017, 118, 143601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Aritomi, N.; Capocasa, E.; Leonardi, M.; Eisenmann, M.; Guo, Y.; Polini, E.; Tomura, A.; Arai, K.; Aso, Y.; et al. Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors. Phys. Rev. Lett. 2020, 124, 171101. [Google Scholar] [CrossRef] [PubMed]
- McCuller, L.; Whittle, C.; Ganapathy, D.; Komori, K.; Tse, M.; Fernandez-Galiana, A.; Barsotti, L.; Fritschel, P.; MacInnis, M.; Matichard, F.; et al. Frequency-Dependent Squeezing for Advanced LIGO. Phys. Rev. Lett. 2020, 124, 171102. [Google Scholar] [CrossRef] [PubMed]
- Ackley, K.; Adya, V.B.; Agrawal, P.; Altin, P.; Ashton, G.; Bailes, M.; Baltinas, E.; Barbuio, A.; Beniwal, D.; Blair, C.; et al. Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. arXiv 2020, arXiv:2007.03128. [Google Scholar] [CrossRef]
- Rinkleff, R.H.; Wicht, A. The Concept of White Light Cavities Using Atomic Phase Coherence. Phys. Scr. 2005, 85. [Google Scholar] [CrossRef]
- Miao, H.; Ma, Y.; Zhao, C.; Chen, Y. Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters. Phys. Rev. Lett. 2015, 115, 211104. [Google Scholar] [CrossRef]
- Page, M.A.; Goryachev, M.; Miao, H.; Chen, Y.; Ma, Y.; Mason, D.; Rossi, M.; Blair, C.D.; Ju, L.; Blair, D.G.; et al. Gravitational wave detectors with broadband high frequency sensitivity. arXiv 2020, arXiv:2007.08766. [Google Scholar]
- Mason, D.; Chen, J.; Rossi, M.; Tsaturyan, Y.; Schliesser, A. Continuous force and displacement measurement below the standard quantum limit. Nat. Phys. 2019, 15, 745–749. [Google Scholar] [CrossRef] [Green Version]
- Danilishin, S.L.; Khalili, F.Y.; Miao, H. Advanced quantum techniques for future gravitational-wave detectors. Living Rev. Relativ. 2019, 22, 2. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, R.X.; Arai, K.; Brooks, A.F.; Wipf, C.; Aguiar, O.; Altin, P.; Barr, B.; Barsotti, L.; Bassiri, R.; Bell, A.; et al. A cryogenic silicon interferometer for gravitational-wave detection. Class. Quantum Gravity 2020, 37, 165003. [Google Scholar] [CrossRef]
- The ET Science Team. Einstein Gravitational Wave Telescope Conceptual Design; European Commission: Luxembourg, 2011. [Google Scholar]
- ET Steering Committee Editorial Team. Einstein Telescope Design Report Update 2020; Einstein Telescope Collaboration: Cascina, Italy, 2020. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 2017, 34, 044001. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Bentley, J.; Miao, H. A Broadband Signal Recycling Scheme for Approaching the Quantum Limit from Optical Losses. Galaxies 2021, 9, 3. https://doi.org/10.3390/galaxies9010003
Zhang T, Bentley J, Miao H. A Broadband Signal Recycling Scheme for Approaching the Quantum Limit from Optical Losses. Galaxies. 2021; 9(1):3. https://doi.org/10.3390/galaxies9010003
Chicago/Turabian StyleZhang, Teng, Joe Bentley, and Haixing Miao. 2021. "A Broadband Signal Recycling Scheme for Approaching the Quantum Limit from Optical Losses" Galaxies 9, no. 1: 3. https://doi.org/10.3390/galaxies9010003