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The LIGO-II gravitational-wave interferometefsa. 2006—2008are designed to have sensitivities near the
standard quantum lim{iSQL) in the vicinity of 100 Hz. This paper describes and analyzes possible designs for
subsequent LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad
band interferometefwithout signal recycling except for new input and/or output optics. Three designs are
analyzedi(i) a squeezed-input interferomet@onceived by Unruh based on earlier work of Cavieswhich
squeezed vacuum with frequency-dependE) squeeze angle is injected into the interferometer’s dark port;

(i) a variational-outputinterferometer(conceived in a different form by Watchanin, Matsko and Zubpia

which homodyne detection with FD homodyne phase is performed on the output lighiiiaredsqueezed-
variational interferometemwith squeezed input and FD-homodyne output. It is shown that the FD squeezed-
input light can be produced by sending ordinary squeezed light through two successive Fabrijitee
cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the
output light through two filter cavities before ordinary homodyne detection. With anticipated technology
(power squeeze facta 2R=0.1 for input squeezed vacuum and net fractional loss of signal power in arm
cavities and output optical traie, =0.01) and using an input laser powgrin units of that required to reach

the SQL(the planned LIGO-II powel,sq), the three types of interferometer could beat the amplitude SQL at

100 Hz by the following amountg= \/§/\/$1S_QL and with the following corresponding increase 1/u® in
the volume of the universe that can be searched for a given noncosmological sBqueszed inputu
= \Je"?R=0.3 andV=1/0.3=30 usingl ,/| so,= 1. Variational-output—u= €y *=0.3 andV=30 but only if
the optics can handle a ten times larger poweép/lsg = 1/Je, =10. Squeezed varationatu
=1.3(e" *Re, ) *=0.24 andV=80 usingl,/lso = 1; andu= (e *Re,)**=0.18 andV~=180 usingl,/l 5o

= Je Fe, =3.2.
DOI: 10.1103/PhysRevD.65.022002 PACS nunt$er04.80.Nn, 03.65.Ta, 42.50.Dv, 95.55.Ym
. INTRODUCTION AND SUMMARY Q/27~100 Hz. The resulting net nois&,=SP+ S

=2S"%s the lowest that can be achieved with conventional
In an interferometric gravitational-wave detector, lasefinterferometer designs. Furthiercreaseof light power will
light is used to monitor the motions of mirror-endowed testqive the radiation-pressure on upward, increasing the net
masses, which are driven by gravitational wabgg). The  nojse, whilereductionsof light power will drive the shot
light produces two types of noise: photshot noisewhich it pgise upward, also increasing the net noise.
superposes on the interferometer’s output signal, and fluctu- This minimum achievable noise is called the “standard
ating rad!atlon—pressure noiseby which it pushes the test guantum limit’ (SQL) [2] and is denote&ﬁQ"EhéQL. It can
masses in random a manner that can mask their gravityse regarded as arising from the effort of the quantum prop-
wave-induced motion. The shot-noise spectral density scalggties of the light to enforce the Heisenberg uncertainty prin-
with the light powerl , entering the interferometer &' ciple on the interferometer test masses, in just the manner of
«1/l,; the radiation-pressure noise scalesSfis |, . the Heisenberg microscope. Indeed, a common derivation of
In the first generation of kilometer-scale interferometersthe SQL is based on the uncertainty principle for the test
[e.g., the Laser Interferometric Gravitational Wave Observamasses’ position and momentU®]: The light makes a se-
tory's LIGO-I interferometers, 2002—200RL]], the laser quence of measurements of the differera# test-mass po-
power will be low enough that shot-noise dominates andsitions. If a measurement is too accurate, then by state reduc-
radiation-pressure noise is unimportant. Tentative plans fotion it will narrow the test-mass wave function so tightlyx
the next generation interferomete(slGO-II, ca. 2006— very smal) that the momentum becomes highly uncertain
2008 include increasing, to the point thatSl’=S"at the  (large Ap), producing a wave function spreading that is so
interferometers’ optimal gravitational-wave frequency, rapid as to create great position uncertainty at the time of the
next measurement. There is an optimal accuracy for the first
measurement—an accuracy that produces only a fa¢or
*Present address: Department of Astronomy, University of Cali-spreading and results in optimal predictability for the next
fornia, Berkeley, California 94720. measurement. This optimal accuracy correspondsstg .
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Despite thisapparentintimate connection of the SQL to LIGO-I to LIGO-II will already (probably entail a mass in-
test-mass quantization, it turns out that the test-mass quantirease, froorm=11 kg tom=30 kg, in large measure be-
zation hasno influence whatsoevein the output noise in cause the SQL at 11 kg was unhappily constraitifigAny
gravitational-wave interferometerst]. The sole forms of large further mass increase would entail great danger of un-
quantum noise in the output are photon shot noise and phercceptably large noise due to energy coupling through the
ton radiation-pressure noise. test-mass suspensions and into or from the overhead supports

Braginsky (the person who first recognized the existence(the seismic isolation systema larger mass would also en-
of the SQL for gravitational-wave detectors and other high+aj| practical problems due to the increased test-mass dimen-
precision measuring devic¢S]) realized, in the mid 1970s, sjons. Accordingly, there is strong motivation for trying to
that the SQL can be overcome, but to do so would requirgyyrsue the QND route.
significant modifications of the experimen_tal design. Bragin- oyr caltech and Moscow University research groups are
sky gave the name quantum nondemoliti@ND) to de-  jointly exploring three approaches to QND interferometer
vices that can beat the SQL; this name indicates the ability ofjesjgn:

QND devices to prevent their own quantum properties from  Fjrst: The conversion of conventional interferometers into
demolishing the information one is trying to extr46{. QND interferometers by modifying their input and/or output

The LIGO-I interferometers are now being assembled apptics(this pape). This approach achieves QND by creating
the LIGO sites, in preparation for the first LIGO and manipulating correlations between photon shot noise and
gravitational-wave searches. In parallel, the LIGO scientificradiation pressure noise; see below. It is the simplest of our
community(LSC) is deeply immersed in research and devel-three approaches, but has one serious drawback: an uncom-
opment for the LIGO-II interferomete{§], and a small por-  fortaply high light powerW,,.=1 MW, that must circulate
tion of the LSC is attempting to invent practical designs forinsjde the interferometers’ arm caviti¢g]. It is not clear
the third generation of interferometers, LIGO-III. This paper\yhether the test-mass mirrors can be improved sufficiently to
is a contribution to the LIGO-IIl design effort. handle this high a power in a sufficiently noise-free way.

In going from LIGO-II to LIGO-IIl, a large number of  secondA modification of the interferometer desigin-
noise sources must be reduced. Perhaps the most serious gfgding using two optical cavities in each arso as to make
the photon shot noise and radiation pressure ndisetical s output signal be proportional to the relative speeds of the
noise”), and thermal noise in the test masses and their sugest masses rather than their relative positidr@s11]. Since
pensions[7,8]. In this paper we shall deal solely with the the test-mass speed is proportional to momentum, and mo-
shot noise and radiation pressure noiaed the associated mentum (unlike position is very nearly conserved under
SQL); we shall tacitly assume that all other noise sourcesfree test-mass evolution on gravity-wave time scales
including thermal noise, can be reduced sufficiently to takq.—0.01 sec), the relative speed is very nearly a “QND ob-
full advantage of the optical techniques that we propose anderyaple”[12] and thus is beautifully suited to QND mea-
analyze. _ ) _surements. Unfortunately, the resultisgeed-meter interfer-

Because LIGO-Il is designed to operate at the SQL, ifymeter like our input-output-modified interferometers,
moving to LIGO-III there are just two ways to reduce the gyffers from a high circulating light powef9], W.
optical noise: increase the massesof the mirrored test =1 pmw.
massesit turns out thahZg, = 1/m), or redesign the interfer- — Third: Radical redesigns of the interferometer aimed at
ometers so they can perform QND. The transition fromachieving QND performance witVg;,. well below 1 MW

[13]. These, as currently conceived by Braginsky, Goro-
detsky and Khalili, entail transfering the gravitational-wave
n brief, the reasons for this are the following: The interferom- signal to a single, small test mass via light pressure, and
eter's measured output, in general, is one quadrature of the electrigsing a local QND sensor to read out the test mass’s motions
field [the b, of Egs.(54) and (10) below], and this output observ- g|ative to a local inertial frame.
able commutes with itself at different times by virtue of E@8. In this paper we explore the first approach. The founda-
with a—b. This means that the digitized data poiftsllected ata  tion for this approach is the realization thétr photon shot

one comsetnes.of this s et reduction of t St of the meej10iSe and radiation-pressure noise together enforce the SQL
ferometer due to data collected at one moment of time will notonly If they are uncorrelatedsee, e.g., Refl4]; (i) when-

X . ever carrier light with side bands reflects off a mirfor our
influence the data collected at any later moment of time. Another se, the mirrors of an interferometer’s arm cavjtidhe
consequence is that, when one Fourier analyzes the interferomet gse, . . S

eflection ponderomotively squeezéise light's side bands,

output, one puts all information about the initial states of the testr . . . .
masses into data points near zero frequency, and when one thénereby creating correlations between their radiation-pressure

filters the output to remove low-frequency noigeoise atf  NOIS€ in one quadrature and shot noise in the otfier these
=Q/27=10 Hz), one thereby removes from the data all informa- COIrelations are not accessed by a conventional interferom-
tion about the test-mass initial states; the only remaining test-masgter because of the particular quadrature that its photodiode
information is that associated with Heisenberg-picture changes dheasures(iv) however, these correlatiorean be accessed
the test-mass positions 10 Hz, changes induced by external by (conceptually simple modifications of the interferom-
forces: light pressure(which is quantizefd and thermal- and eter’s input and/or output optics, and by doing so one can
seismic-noise forcefor which quantum effects are unimportant beat the SQL. These correlations were first noticed explicitly
See Ref[4] for further detail. by Unruh[14], but were present implicitly in Braginsky’s

circ
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FIG. 2. Schematic diagram of a squeezed-variational interfer-
FIG. 1. Schematic diagram of a squeezed-input interferometerometer. A variational-output interferometer differs from this solely
by replacing the input squeezed vacuum by ordinary vacuum.
earlier identification of the phenomenon of ponderomotive

squeezing15,16]. know how to achieve FD homodyne detection in practice, so
In this paper we study three variants of QND interferom-they proposed approximating it by homodyne detection with
eters that rely on ponderomotive-squeeze correlations: a time-dependenTD) homodyne phase. Such TD homo-
(i) Squeezed-input interferometddnruh [14] (building  dyne detection can beat the SQL, kihy contrast with FD
on earlier work of CaveEl7]) invented this design nearly 20 homodyne it is not well-suited to gravitational-wave
years ago, and since then it has been reanalyzed by sevegdarches, where little is known in advance about the gravita-
other researchefd8,19. In this design, squeezed vacuum is tional waveforms or their arrival times. In this pagSec. V
sent into the dark port of the interferomet¢émodified in-  and Appendix ¢, we show that the desired FD homodyne
put”) and the output light is monitored with a photodetectordetection can be achieved by sending the interferometer’s
as in conventional interferometers. output light through two successive Fabryr®tecavities that
For a broad-band squeezed-input interferometer, tha@re essentially identical to those needed in our variant of a
squeeze angle must be a specified function of frequency thgueezed-input interferometer, and by then performing con-
changes significantly across the interferometer’s operatingentional homodyne detection with fixed homodyne angle. A
gravity-wave band.(This contrasts with past experiments schematic diagram of the resulting variational-output inter-
employing squeezed light to enhance interferomg28,2Y,  ferometer is shown in Fig. 2.
where the squeeze angle was constant across the operating(jii ) Squeezed-variational interferometdis designnot
band) Previous papers on squeezed-input interferometergonsidered in the previous literatéyés the obvious combi-
have ignored the issue of how, in practice, one might achievaation of the first two; one puts squeezed vacuum into the
the required frequency-dependeffiD) squeeze angle. In  dark port and performs FD homodyne detection on the out-
Sec. V C, we show that it can be produced via ordinaryput light. The optimal performance is achieved by squeezing
frequency-independent squeezifgg., by nonlinear optics the input at a fixedfrequency-independenangle; filtration
[22]), followed by filtration through two Fabry-Ipet cavities  cavities are needed only at the outgiarr the FD homodyne
with suitably adjusted bandwidths and resonant-frequencyetection and not at the input; cf. Fig. 2.
offsets from the light's carrier frequency. A schematic dia- |n Sec. IV we compute the spectral density of the noise
gram of the resulting squeezed-input interferometer is showror all three designs, ignoring the effects of optical losses.
in Fig. 1 and is discussed in detail below. Our predictedwe find (in agreement with previous analysgs8,19) that,
performance for such an interferometer agrees with that ojvhen the FD squeeze angle is optimized, the squeezed-input

previous research. interferometer has its shot noise and radiation-pressure noise
(i) Variational-output interferometeMyatchanin, Matsko

and Zubova invented this design conceptually in the early———

1990s[23-23. It entails a conventional interferometer input - 2a gesign similar to it has previously been proposed and analyzed
(ordinary vacuum into the dark pgytout a modified output: [24] for a simple optical meter, in which the position of a movable
instead of photodetection, one performs homodyne detectioirror (test masgis monitored by measuring the phase or some
with a homodyne phase that depends on frequency in essesther quadrature of a light wave reflected from the mirror. In this
tially the same way as the squeeze angle of a squeezed-inptifse it was shown that the SQL can be beat by a combination of
interferometer. Watchanin, Matsko and Zubova did notphase-squeezed input light and TD homodyne detection.
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both reduced in amplitudéat fixed light powey by e R,  ~ e ?R=0.3(wheree ?R=0.1 is a likely achievable value

whereR is the (frequency-independensqueeze factor; see of the power squeeze facjor

Fig. 2 below. This enables a lossless squeezed-input interfer- The variational-outputand squeezed-variationahterfer-
ometer to beat the SQL by a facter ® (when the power is  ometers are strongly affected by losses in the interferom-
optimized but no more. By contrast, the lossless, eter's arm cavities and in the output optical trémost seri-
variational-output interferometer, with optimized FD homo- ously: a circulator, the two filter cavities, the mixing with the
dyne phase, can have its radiation-pressure noise completeipmodyne detector’s local-oscillator field, and the photodi-
removed from the output signal, and its shot noise will scalesde inefficiency. The net fractional loss, of signal power
with light power as 1{1, as for a conventional interferom- and (for squeezed-variationathe squeeze factae 2R for
eter. As a result, the lossless variational-output interferometénput power together determine the interferometer’s opti-
can beat the SQL in amplitude bﬂSQL/ZIO, wherelgq is mized performance: The amplitude SQL can be beat by an
the light power required by a conventional interferometer toamountu = (e~ 2Re, )4, and the input laser power required

reach the SQL. The optimized, lossless, squeezed-variationgd gchieve this optimal performancelis/l so = ‘/efZR/E*_
interferometgr has its rf_;\diation-press_ure no_ise completely rgp, particular, the variational-output interferometeo input
move_d, and !ts shot noise reducedéy?, so it can beat the squeezinge 2R=1), with the possibly achievable loss level
SQL in amplitude bye ™ R\1gq/2l,. €, =0.01, can beat the SQL by the same amount as our es-
Imperfections in squeezing, in the filter cavities, and intimate for the squeezed-input interferometer= eX'*=0.3,
Fhe homodyne local-oscillator phase will produce_errMe but requires ten times higher input optical powky/lsq.
in the FD squeeze angla({2) of a squeezed-input or =1//e, =10—which could be a very serious problem. By
squeezed-variational interferometer, andin the FD homo-  contrast, the squeezed-variational interferometer with
dyne phase{((2) of a variational-output or squeezed- the above parameters has an optimized performamce
variational interferometer. At the end of Sec. VI E, we shaII:(o_lx 0.01)"4=0.18 (substantially better than squeezed-
show that, to keep these errors from seriously compromisingnput or variational-outpuf and achieves this with an opti-
the most promising interferometer’s performance) | must mizing input powerl,/l s =0.1/0.0:3.2. If the input
be no larger than-0.05 radian, andA | must be no larger power is pulled down from this optimizing value to
than ~0.01 radian. This translates into constraints of orde Nsq=1 so it is the same as for the squeezed-input inter-
five percent on the accuracies of the filter cavity finesses anfgrometer, then the squeezed-variational performance is de-
about 0.01 on their fractional frequency offsets and on thejjitated by a factor 1.3, tau=0.24, which is still somewhat
homodyne detector’s local-oscillator phase. better than for squeezed-input.

The performance will be seriously constrained ,by un-- it will require considerable research and development to
squeezed vacuum that leaks into the interferometer’s opticg|ctyally achieve performances at the above levels, and there
train at all locations where there are optical losses, whethegguid be a number of unknown pitfalls along the way. For
those losses are fundamentally irreversitele., absorpth)q’ example, ponderomotive squeezing, which underlies all three
or reversible(e.g., finite transmissivity of an arm cavity’s of gur QND configurations, has never yet been seen in the

end mirro). We explore the effects of such optical losses injgporatory and may entail unknown technical difficulties.

tion occur in the interferometer’s arm cavities and FD filteryacyum via nonlinear optics is rather well develogéd]

cavities. The filter cavities’ net losses and noise will domi-3nd has even been used to enhance the performance of inter-
nate unless the number of bounces the light makes in them i‘érometers[ZO,Z]]. Moreover, much effort is being invested
minimized by making them roughly as long as the arm caviiy the development of low-loss test-mass suspensions, and
ties. This suggests that they be 4 km long and reside in thiyis gives the prospect for negponderomotive methods of
beam tubes allongsu.je the interferometer’s arm.cavmes. T@eneraﬁng squeezed light that may perform better than tra-
separate the filters’ inputs and outputs, they might best bgjtional nonlinear optics. These facts, plus the fact that, in a
triangular cavities with two mirrors at the corner station andsqueezed-input configuration, the output signal is only mod-
one in the end station. _ estly squeezed and thus is not nearly so delicate as the
Our loss calculations reveal the following: highly-squeezed output of an optimally performing
The squeezed-inpuinterferometer is little affected by squeezed-variational configuration, make us feel more confi-
losses in the interferometer’'s arm cavities or in the outpulent of success with squeezed-input interferometers than
optical train, so long as the fractional energy less small  \yith squeezed-variational ones.
compared to the squeeze facer™®, as is likely to be the On the other hand, the technology for a squeezed-
case. However, losses in the input optical traimost seri-  yariational interferometer is not much different from that for
ously the filter cavities and a circulajanfluence the noise 4 squeezed-input one: Both require input squeezing and both
by constraining the net squeeze faceor™™ of the light en-  require filter cavities with roughly the same specifications;
tering the arm cavities. The resulting noise, expressed ifhe only significant differences are the need for conventional,
terms ofe?F, is the same as in a lossless squeezed-inputequency-independent homodyne detection in the squeezed-
interferometer(discussed aboyeWith the light power opti-  yariational interferometer, and its higher-degree of output
mized sol,=lsq., the squeezed-input interferometer cansqueezing corresponding to higher sensitivity. Therefore, the
beat the amplitude SQL by a factou= \/§/ \/§QL squeezed-variational interferometer may turn out to be just
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T the input and output fields as functions of tirfm®t time and
position at the common centers of the beams as they strike
the splitter.

L+X), At the beam splitter’'s bright port the input is a carrier

field, presumed to be in a perfectly coherent state with power
I,~10 kW (achieved via power recyclin@9]), angular fre-
quencyw,=1.78< 10" sec'! (1.06 micron light, and ex-
~ citation confined to the cos(t) quadraturei.e., the mean
Power: I, { field arriving at the beam splitter is proportional to aog]].

\ At the dark port the input is &quantizedl electromagnetic
allp L+X, field with the positive-frequency part of the electric field
given by the standard expression

Sl

FIG. 3. Gravitational-wave interferometer with two inputke
carrier which has powek, entering the bright port, and quantum
field a entering the dark porand one relevant outp(the quantum
field b leaving the dark pojt

EG)= e let—. 1)

© 27ho - dw

f Ac o 2m
Here A is the effective cross sectional area of the beam and

as practical as the squeezed-input, and may achieve signifk, is the annihilation operator, whose commutation relations
cantly better overall performance at the same laser power. are

This paper is organized as follows: In Sec. Il we sketch
our mathematical description of the interferometer, including [a,,a,]=0, [a, ,al,]=2w5(w—w’). 2)
our use of the Caves-Schumakes,27] formalism for two-
photon quantum optics, including light squeezinfy Appen-
dix A); and we write down the interferometer’s input-output
relation in the absence of losq4é=. (16); cf. Appendix B for
derivation. In Sec. lll, relying on our general lossless input-
output relation(16), we derive the noise spectral density

S, (f) for a conventional interferometer and elucidate thereby - : ; : -
the SQL. In Sec. IV, we describe mathematically our threefre:q/\lljeer?g:) thiieal)d(j)ﬂm\tatﬁlg%eb_zgﬂz 3283;;2%;?;”6
(o) o— L]

QD Itererometer desino and. Using ou 155lss Ui grautaiona wave range 60 10 6000 sc' (10 1
P ' p 1000 H2, and we define

sities. In Sec. V, we show that FD homodyne detection can
be achieved by filtration followed by conventional homo-
dyne detection, and in Appendix C we show that the required
filtration can be achieved by sending the light through two
successive Fabry’Ret cavities with suitably chosen cavity AS in Eq.(2), we continue to use a prime on the subscript to
parameters. We list and discuss the required cavity parantlenote frequencyQ)’: a.,=a, .q:. Correspondingly,
eters in Sec. V. In Sec. VI, we compute the effects of opticathe commutation relation§2) imply for the only nonzero
losses on the interferometers’ noise spectral density; outommutators
computation relies on an input-output relati@Y) and(102)
derived in Appendix B. In Sec. VII we discuss and compare g, ,ai,]zzwg(g_gf), [a_,a ,]=278(Q-Q');
the noise performances of our three types of inteferometers. (%)
Finally, in Sec. VIl we briefly recapitulate and then list and
briefly discuss a number of issues that need study, as founyg expressiofil) for the dark-port input field becomes
dations for possibly implementing these QND interferom-
eters in LIGO-III. o " d0

This paper assumes that the reader is familiar with mod-  E(*) = /_OefiwotJ (a e M+a_ et _—,
ern quantum optics and its theoretical tools as presented, for Ac 0 2m

Throughout this paper we use the Heisenberg picture, so
E(™) evolves with time as indicated. However, our creation
and annihilation operatos,, anda;', are fixed in time, with
their usual Heisenberg-picture time evolutions always fac-
tored out explicitly as in Eq(l).

a+anO+Q ' a,anO,Q . (3)

example, in Refs[28]. ()
Here (and throughout this papewe approximatewy= ()

Il. MATHEMATICAL DESCRIPTION OF THE =, inside the square root, sind®/w,~3x10 3 is so
INTERFEROMETER small; and we formally extend the integrals o¥erto infin-

ity, for ease of notation.
Because the radiation pressure in the optical cavities pro-
Figure 3 shows the standard configuration for aduces squeezing, and because this ponderomotive squeezing
gravitational-wave interferometer. In this subsection we fo-is central to the operation of our interferometers, we shall
cus on the beam splitter’s input and output. In our equationéind it convenient to think about the interferometer not in
we idealize the beam splitter as infinitesimally thin and writeterms of the single-photon modes, whose annihilation opera-

A. Input and output fields
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tors area, anda_, but rather in terms of the correlated TABLE I. Interferometer parameters and their fiducial values.
two-photon modegAppendix A and Refs[26,27]) whose

field amplitudes are Parameter Symbol Fiducial value
light frequency o) 1.8x 10" st
T _at o
al:w——a’, 32_&- (6)  arm cavityz-bandwidth y 2mx100 st
\/E \/Ei gravitational wave frequency Q —
) ) ) ) mirror mass m 30 kg
The commutation relation&4) imply the following values . length L 4 km
for the commutators of these field amplitudes and their adﬁght power to beam splitter | .
. . . o
joints: light power to reach SQL IsoL 1.0x10° W
s — 24 -12
s R KRNI ety
P ping (Io/lsq27*
and all others vanisHthough some would be of order 0%(y?+07?)
(Qwy) if we had not approximatee,* Q)=w, inside the ¢ v, signal-power loss & 0.01
square root in Eq(S); cf. [26,27]]: max power squeeze factor e 2R 0.1

[a1,a1/1=[ay.,a;,1=[a] ;a;,1=[a1,8>/1=[a] ,a},]1=0,
(7b) binaries—sources that emit roughly equal power into all log-
arthmic frequency intervala()/Q~1 in the LIGO band
~10 Hz=f=Q/27=<1000 Hz. Optimization turns out to
entail making the lowest point in the interferometer’s dimen-
sionless noise spectrumx S, (f) as low as possible. Be-
Ein:Ei(:)JrEi(nf) cause of the relative contributions of shot noise, radiation

pressure noise, and thermal noise, this lowest point turns out
/477ﬁw0 to be atf=Q/27=100 Hz. To minimize the noise at this

B Ac

o . dQ

+sir(w0t)f (ae'M+alet ) _—

0 2

and similarly with %-2. In terms of these two-photon am-
plitudes, Eq(5) andE()=ET imply that the full electric
field operator for the dark-port input is

e .dQ
COS(wot)f (aje™ "+ aIeﬂm)z— frequency, one makes the end mirrors of the interferometer’s
0 ™ AT . : :
arm cavitiegFig. 3) as highly reflecting as possiblere shall
idealize them as perfectly reflecting until Sec.)Vand one
: (8)  gives their corner mirrors transmisivitiéé=0.033, so the
cavities’ half bandwidths are

Thus, we see that; is the field amplitude for photons in the Te
Ccosw.t quadrature ané, is that for photons in the siagt yEI:brx 100 Hz. (1)
quadraturd26,27. These and other quadratures will be cen-

tral to our analysis. Here L=4 km is the cavities’ lengththe interferometer

The output field at the beam splitter’s dark port is de"‘arm length”). We shall refer toy as the interferometer’s
scribed by the same equations as the input field, but with the” gthe). Y as ;
annihilation operatora replaced byb: for example, optimal frequency and when analyzing QND interferom-

eters, we shall adjust their parameters so as to beat the SQL
yr— ” dQ by the maximum possible amount@t= vy. In Table | we list
_ ThWo S10t, ptatian 2tE ; L i i}
Eou= cogwot) | (be™ ™ +bje™™) v,L and other parameters that appear extensively in this pa
Ac | 0 2m per, along with their fiducial numerical values.
In this and the next few sections we assume, for simplic-
9) ity, that the mirrors and beam splitter are lossless; we shall

study the effects of losses in Sec. VI below. We assume that

o ) ) o _the carrier light(frequencyw,) exites the arm cavities pre-
We shall find it convenient to introduce explicitly the cosine cisely on resonance.

and sine quadratures of the output fielgh(t) and E(t), We presume that all four mirror&'test masses) have
defined by massesn=30 kg, as is planned for LIGO-II.
B . . We label the two arms for north ande for east, and
Eou=E1(t)Cod wol) +Ea(t)SiN(w,ot); denote byX,, and X, the changes in the lengths of the cavi-
ties induced by the test-mass motions. We denote by

oc - dQ
+sin(w,t) f (bye "4 pletit _—|
0 2

Arhw,
Ac

= .00
fo (bje™'Y+ble™_—. (10

Bi()= 2

X=Xp— Xe (12
the changes in the arm-length difference, and we regas
a quantum mechanical observalitaough it could equally

LIGO’s interferometers are generally optimized for the well be treated as classicpd]). In the absence of external
waves from inspiraling neutron-star and black-holeforces, we idealizex as behaving like a free magso pen-

B. Interferometer arms and gravitational waves
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dular restoring forces This idealization could easily be re- h . ,
laxed, but because all signals belewl0 Hz are removed in  b2=Ab,+ 2K h—e'ﬁ, Ab,=(a,~Ka,)e*”. (16)
the data analysis, the pendular forces have no influence on et
the interferometer’s ultimate performance. Here and below, for any operatdr, AA=A—(A). This
The arm-length difference evolves in response to thenput-output equation and the quantities appearing in it re-
gravitational wave and to the back-action influence of theguire explanation.
Iight's_ fluctuating radiation pressure. Accordingly, we can The quantitiesAb; are the noise-producing parts bf,
write it as which remain when the gravitational-wave signal is turned
. 40 off. The a impinge on the arm cavities_ at a frequen@y_
X(t) =X, + &HJ (Lh+xgae ®—. (13 +Q thatis qff resonance, so they acquire the phase spift 2
m/4 o 2 upon emerging, where

Herex, is the initial value ofx when a particular segment of p=arctartQ}/y). 17)
data begins to be collecte@, is the corresponding initial
generalized momenturm/4 is the reduced ma$associated
with the test-mass degree of freedan is the Fourier trans-
form of the gravitational-wave field

If the test masses were unable to move, thdn would just

be ajez'ﬁ; however, the fluctuating light pressure produces
the test-mass motiorg, , thereby inducing a phase shift in
the light inside the cavity, which shows up in the emerging
light as the term-Ka; in b,. (cf. Appendix B. The quantity

+eo .dQ
h(t)=f he"mz, (14) ,
- 1,/1 2
K= —("2 SZQL) u (18)
andxg, is the influence of the radiation-pressure back action. Q(y*+Q9)

Notice our notationx, Xga , andh are the()-dependent Fou-
rier transforms oi(t), xga(t), andh(t).

Elsewherd 4] we discuss the fact that, andp, influence
the interferometer output only near zero frequerizy-0,
and their influence is thus removed when the output data a
filtered. For this reason, we ignore them and rewxite) as

is the coupling constant by which this radiation-pressure
back-action converts inpw#; into outputAb,. In this cou-
pling constant|sq, is the input laser power required, in a
r(éonventional interferometdSec. ll), to reach the standard
quantum limit:

2.4

0
+oo dQ leoL = ~1.0x10" W. 19
x(t)=f (Lh+xg)e 15— (15) SO 4, (19

In Eq. (16), the gravitational-wave signal shows up as the
classical piece/2KCh/hgq, of b,. Here, as we shall see be-

low,
Because we have idealized the beam splitter as infinitesi-

mally thin, the input field emerging from it and traveling 8h 07 1

toward the arm cavities has the coherent laser light in the hso= "\ a7 z=2%10 7'y Hz (20
same cos,t quadrature as the dark-port field amplituale

We further idealize the distances between the beam splittgg the standard quantum limit for the square root of the
and the arm-cavity input mirrors as integral multiples of thesjngle-sided spectral density bft), /S,

carrier wavelength\,=2xc/w, and as small compared to

27rc/y~ 300 m..(These iQeaIizations could easily be relaxed Ill. CONVENTIONAL INTEREEROMETER

without change in the ultimate results.

Relying on these idealizations, we show in Appendix B In an (idealized conventional interferometer, the beam-
that the annihilation operatots for the beam splitter’'s out- ~ splitter's output quadrature field,(t) is measured by means
put quadrature field&;(t) are related to the input annihila- of conventional photodetectiénThe Fourier transform of
tion operatorsa; and the gravitational-wave signalby the
linear relations

C. Output field expressed in terms of input

) “Here and throughout this paper we regard some particular
bl:Abl:alGZIBv quadratureE(t) as being measured directly. This corresponds to
superposing ore,(t) carrier light with the same quadrature phase
asE, and then performing direct photodetection, which produces a
3In each arm of the interferometer, the quantity measured is th@hotocurrent whose time variations are proportiondt {@t). For a
difference between the positions of the two mirrors’ centers ofconventional interferometer the carrier light in the desired quadra-
mass; this degree of freedom behaves like a free particle with reture, that ofE,(t), can be produced by operating with the dark port
duced massn,=mxm/(m+m)=m/2. The interferometer output biased slightly away from the precise dark fringe. In future research
is the difference, between the two arms, of this free-particle degre& might be necessary to modify the QND designs described in this
of freedom; that difference behaves like a free particle with reducegbaper so as to accommodate the modulations that are actually used
massm,/2=m/4. in the detection process; see Sec. VIII and especially footnote 13.
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this measured quadrature is proportional to the field ampli- 10.
tude b,=Ab,+ 2K (h/hgq)e'?; cf. Egs. (10) and (16). 5
Correspondingly, we can think &f,=b,({)) as the quantity \/S_h 5
measured, and when we compute, from the output, the Fou- hor () 1
rier transformh=h({) of the gravitational-wave signal, the SQE G 5
noise in that computation will be '
0.2
h 0.1 variational-output
_ NsoL i :
hn(Q)= \/ﬁAbze 2. (21) 0.05 squeezed-variational

01 02 0.5 g;/ 2
. L . Y
This noise is an operator for the Fourier transform of a
random process, and the corresponding single-sided spectral FIG. 4. The square root of the spectral densif@, of the

densityS,(f) associated with this noise is given by the stan-gravitational-wave noise for several interferometer designs, as a

dard formula[3,26,27
%2775(9 —Q7")Sy(f) :<in| hn(Q)h;g(Q,)“rwsym- (22

Here f=Q/27 is frequency]in) is the quantum state of the
input light field (the field operatorg; anda,), and the sub-
script “sym” means “symmetrize the operators whose ex-
pectation value is being computed,” i.e., replace
ha(2)ha(Q') by 3(h,(Q)h}(Q')+h}(Q")hy(Q)). Note
that when Eq(21) for h,, is inserted into Eq(22), the phase
factore'# cancels, i.e., it has no influence on the ndige
This allows us to replace E@21) by

hsaL

V2K

hy(Q)= Ab,. (23

For a conventional interferometer, the dark-port input is in

its vacuum state, which we denote by
|in> = |0a>-

For this vacuum input, the standard relatioms |0,)
=a_|0,)=0, together with Eqs(6) and(7), imply [26,27

(29

1
<oa|ajal,|oa>5ym=§2w5(9—n')5jk. (25)

Comparing this relation with Eq22) and its generalization
to multiple random processes, we see ttiathen |in)
=10,))a1(Q) and a,(Q) can be regarded as the Fourier

function of angular frequenc§2, with optical losses assumed neg-
ligible; V'S, is measured in units of the standard quantum limit at
frequency) = v, and() is measured in units of. The noise curves
shown are:(i) the standard quantum limit itselhgq (Q2) [Eg.
(20)]; (ii) the noise for aconventionalinterferometer with laser
powerl =15 [EQ. (29)]; (iii) the noise for asqueezed-inpunter-
ferometer withl,=1gq , Squeeze factoe ?R=0.1, and(a) opti-
mized FD squeeze angle=—d(Q) [Eq. (49); solid curve, (b)
optimized frequency-independent squeeze afhgkp (52); dashed
curvel; (iv) the noise for avariational-outputinterferometer with
I,=1015o_ and optimized frequency-dependent homodyne phase
{=®(Q) [Eqg. (59)]; and (v) the noise for asqueezed-variational
interferometer withl ,=10sq, input squeeze factoe 2R=0.1,
and optimized input squeeze angle= 7/2 and output homodyne
phase/=®(Q) [Eq. (73)].

) 87

ShZ hSQL:W' (28)

Recall thatkC is a function of frequency) and is propor-
tional to the input laser powdg, [Eq. (18)]. In our conven-
tional interferometer, we adjust the laser powert §& I 5o,
[Eq. (19)], thereby makingC(Q2=y)=1, which minimizes
Sy at the interferometer’s optimal frequendy=-y. The
noise spectral density then beconjet Eqgs.(27) and(18)]

4y 24

_ Q¥+ 07
Sh_ m LZQZ[QZ( 72+QZ) +

2‘y4

(29

This optimized conventional noise is shown as a curve in
Fig. 4, along with the standard quantum lirhi¢o, and the
noise curves for several QND interferometers to be discussed

transforms of classical random processes with single-sidegg|ow, This conventional noise curve is currently a tentative

spectral densities and cross-spectral density givepdby

So, (=S, (=1, S, (F)=0. (26)
Combining Eqs(16) and(23)—(25) [or, equally well, Egs.
(16), (23), and(26)], we obtain for the noise spectral density

of the conventional interferometer

|

This spectral density is limited, at all frequenci@s by the
standard quantum limit

1

K

2
hSQL

5 (27)

goal for LIGO-II, when operating without signal recycling

[7].

IV. STRATEGIES TO BEAT THE SQL, AND THEIR
LOSSLESS PERFORMANCE

A. Motivation: Ponderomotive squeezing

The interferometer’s input-output relations, = a,; e?#,
Ab,=(a,—Ka;)e?# can be regarded as consisting of the
uninteresting phase shié?'?, and a rotation in théa, ,a,}
plane(i.e., {coswt,sinwt} plane, followed by a squeeze:

b;=S'(r,¢)R'(— 0)a;e? R(— 0)S(r,¢). (30
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HereR(— 0) is the rotation operator arf8(r, ¢) the squeeze outlanguage, the light has been squeezed at the ahgled
operator for two-photon quantum optics; see Appendix A forsqueeze-factor given by Eq.(31). This squeezing is pro-
a very brief summary, and Refi®6,27] for extensive detail. duced by the back-action force of fluctuating radiation pres-
The rotation angled, squeeze anglé and squeeze factar  sure on the test masses. That back action has the character of
are given by a ponderomotive nonlinearity first recognized by Braginsky
and Manukin[15].° The correlations inherent in this squeez-
ing form the foundation for the QND interferometers dis-
cussed below.
(31 One can also deduce this ponderomotive squeezing from

_ the in-out relationsAb;=a;e?#?, Ab,=(a,—Ka,)e??
Note that, because the coupling constintiepends on fre- [Eq. (16)], the expressions
guency() [Eq. (18)], the rotation angle, squeeze angle, and
squeeze factor are frequency dependent. This frequency de-
pendence will have major consequences for the QND inter- Ezwé(Q—Q’)Sb_(f)=(in|AbjAbj,*|in>Sym,
ferometer designs discussed below. :

The rotate-and-squeeze transformat{@0) for the two-
photon amplitudes implies corresponding rotate-and-squeeze
relations for the one-photon creation and annihilation opera-
tors

1
f=arctaniK/2), o= Earcco(IC/Z), r =arcshinlixC/2).

1 T
E(AblAbzr

1
E2775(9—(2')sblbz(f)=<in

b. =S'(r, )R (— O)a.e 2BR(— 0)S(r,¢). (32 +AbJAb,))

in> (37
sym

Denote by|Oa+) the vacuum for thén mode at frequency
wo+Q, by |0, ) that for thein mode atw,—, and by andb,, and the spectral densitie, =S, =1, S, =0

|0a:> the_ vgcuum for one or the other of these modes; an(qus.(ZG)]. These imply that for a conventional interferom-
denote similarly the vacuua for theut modes,|0y..). Then  gter

|04, ) is the state annihilated by.. and|0y_) is that anni-
hilated byb... Correspondingly, the rotate-squeeze relation S, =1, Sb2=1+IC2, Sp,p,= — K. (38
(32) implies that

for the spectral densities and cross spectral densitids; of

+2i 1
b. |0y, )=S'R'a.e*? R0, )=0, (33 RotatingAb; through the angles= > arccot(C/2) to obtain
where the parameters of the squeeze and rotation operators , ) , )
are those given in Eq$31) and(32). This equation implies by =b;cosp+b,sing, by=b,cos¢—b;sing,
thate*?#R90,_) is annihilated bya.. and therefore is the (39

: : O
in vacuum|0,_) for thein mode w,* Q) and using Eqs(37) and (38), we obtain

e*?PrR90, )Y=10, ). (34)
§05.)=10a.) Sp=e 2 =(VI+ (K22~ KI2?=1K it  K>1,
Applying R" and noting thaR'|0, )=|0,_) (the vacuum is
tati i I btai , = +2r 2 2 =
rotation invariant, we obtain Sy =e (V1+(KI2)2+KI2)?, Shr; =0, (40)

0a,)=€"2#S(r,$)[0p_). (35) _ , , -
- - which represents a squeezing of the input vacuum noise in
Thus, the in vacuum is equal to a squeezedt vacuum, the manner described formally by Eq86) and (31).
aside from an uninteresting, frequency-dependent phase This ponderomotive squeezing is depicted by the noise
shift The meaning of this statement in the context of a con£€llipse of Fig. 5. For a conventional interferometep (nea-

ventional interferometer is the fo”owing. sured via phOtOdeteCtiB}] the Signal is the arrow along the
For a conventional interferometer, tirestate is b, axis, and the square root of the noise spectral deity
. is the projection of the noise ellipse onto thg axis. For a
liny=|0,_,)=e"2"#S(r,$)|0p, ); (36)  detailed discussion of this type of graphical representation of

_ _ _ noise in two-photon quantum optics see, e.g., R24].
and because we are using the Heisenberg picture where the

state does not evolve, the light emerges from the interferom————

eter in this state. However, in passing through the interfer- Specently it has been recognized that this ponderomotive nonlin-
ometer, the light's quadrature amplitudes evolve frapto  earity acting on a movable mirror in a FabryrBeresonator may
b;. Correspondingly, at the output we should discuss therovide a practical method for generating bright squeezed light
properties of the unchanged state in terms of a basis bui[Bo].

from the out vacuum|0y, ). Equation(35) says that in this  °See footnote 4.
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signal [Eq. (22)], where h,¢ is the squeezedgravitational-wave
s¢ noise operator
by
hns= ST(Ry)\)hnS(RJ\) (43
\‘\ _by
‘Xz”q) d and h;=h,(Q’). By inserting expressioii21) for h, into
b, Eq. (43) and then combining the interferometer’s pondero-
motive squeeze relatioab,=(a,— Ka,)e®# with the ac-
tion of the squeeze operator @y and a, [Eq. (A8)], we
obtain
FIG. 5. Noise ellipses for a conventional interferometesft: h
Noise for vacuum that enters the interferometer’s dark gright: h..=——2 1+ /2)eh
Noise for ponderomotively squeezed vacuum that exits at the dark ns 2K ( )
port along with the gravitational-wave signal; the ponderomotive )
squeeze has moved the poift to the new pointP’ [b; X(a;{coshR cos® —sinhRcog ® —2(P +\)]}

=a,, b,=a,—Kay, Egs.(16)]. These noise ellipses have dimen- . . .
sioﬁs andzshazpes d;scgbed by the noise spectrrz)il derigje$39) —ap1c0shR sin® —sinhR i & —2(® + M) 1),
and (40), and by the squeeze equatiof¥) and (31). The minor (44
radius of the output noise ellipse @: e ', and its major radius

is \/§é= e*", wherer is the squeeze factor; cf. Eq&1) and(40).  Where

The conventional interferometer measul®s which contains the

indicated noise[cf. Eq. (23)] and the b?ﬁdicated signa] 6b, ®=arccoik. (45)
=v2Kh/hgg; cf. Eq. (16)]. For a detailed discussion of noise

ellipses in 2-photon quantum optics see. e.q.. 2], We can read the spectral density of the gravitational-wave

noise off of Eq.(44) by recalling that in thd0,) vacuum
state[which is relevant because of E@2)], a; anda, can

B. Squeezed-input interferometer be regarded as random processes with spectral serSjtlies

Interferometer designs that can beat the SQB) are  —g -1 and vanishing cross spectral dengiggs. (26)]:
sometimes called “QND interferometers.” Unryi4] has 2
devised a QND interferometer design basedipputting the h2 1
input electromagnetic fluctuations at the dark pat énd sh:%(EJF/C (cosh R—cog2(\+®)]sinh 2R).

a,) into a squeezed state, afid using standard photodetec-
tion to measure the interferometer’s output field. We shall
call this asqueezed-input interferometéfhe squeezing of
the input has been envisioned as achieved using nonline
crystals [20,21], but one might also use ponderomotive
squeezing.

The squeezed-input interferometer is identical to the con- MQ)=—d(Q)=—arccot(Q). (47)
ventional interferometer of Sec. Ill, except for the choice of
the in state|in) for the dark-port field. Whereas a conven- The result is
tional interferometer hafin)=|0,), the squeezed-input in-
terferometer has

(46)

It is straightforward to verify that this noise is minimized by
aking it proportional to cosh2-sinh R=e" 2R which is
achieved by choosing for the input squeeze angle

1+IC
K

2
hSQL

lin)=S(R,\)|0,), (41) 2

) , This says thathe squeezed-input interferometer has the
whereR is the Igrgestzquueezg factor that the experimentersame noise spectral density as the conventional interferom-
are able to achievee(“"~0.1 in the LIGO-IIl time fram@,  gter except for an overall reduction by &, whereR is the
and\A=\({) is a squeeze angle that depends on side-bangdy,eeze factor for the dark-port input figkl result deduced
frequency. One adjusts({2) so as to minimize the noise in - py ynruh[14] and later confirmed by Jaekel and Reynaud
the output quadrature amplitude, which (i) contains the [1g] using a different methddsee Fig. 4. This result implies
gravitational-wave signal andi) is measured by standard that the squeezed-input interferometer can beat the amplitude
photodetection. As we shall see, the optimizets strongly gL py a factore™ R.
frequency dependent. By contrast, we shall idealize the \when the laser power, of the squeezed-input interfer-
squeeze factoR as independent of side-band freque®y  gmeter is optimized for detection at the frequen€y

except when otherwise stateBlecs. IVD and VIF- .=y (I,=IsqL as for a conventional interferometerthe
The gravitational-wave noise for such an interferometer i, qise spectrum becomes

proportional to

e R (48)

4 [ 29 0%(y?+0?)

. . = —-2R
(infhphp[in) = (04 Nyshng [04) (42) Sh mLZQZ[92(72+Qz)+ 24 e (49
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a b, 1signal héQL 1 ) )
S=—-| gtk [(coshR cos® —sinhR sin®)?
"nois\:e
b7 \ +(coshR sin® — sinhR cos®)?] (52)
Bl
b, [Eq. (46), translated into gravitational-wave noise via Eg.
N (23)]. This noise spectrum is shown as a dashed curve in Fig.

4, for e ?R=0.1. The SQL is beat by the same facfor

=/e 2R=0.32 as in the case of a fully optimized squeezed-
FIG. 6. Noise ellipses for a squeezed-input interferoméseft: ~ input interferometer, but the frequency band over which the

Noise for squeezed vacuum that enters the interferometer’s darkQL is beat is significantly smaller than in the optimized

port. The field is squeezed at the angle —®. Right: Noise for ~ case, and the noise is worse than for a conventional interfer-

the field that exits at the dark port along with the gravitational-waveometer outside that band.

signal. This output field results from the interferometer’s pondero- (i) Caves[17], in a paper that preceeded Unruh’s and

motive squeezing of the input fielé.qg., pointP goes to poinP’ in formed a foundation for Unruh’s ideas, proposed a squeezed-

accord withby=a;, b,=a,—Kay; Egs.(16)]. If the input field  input interferometer with the squeeze angle sehtow/2

had been vacuum as in a conventional interferorr‘l(étig. 5), then independent of frequency_ In this case, E%)’ translated

the output would have been squeezed in the manner of the dashggto gravitational-wave noise via E¢R3), says that
ellipse. The two squeezémput and ponderomotiyeresult in the

shaded ellipse, whose projection along the axis measured by the h2 1
photodetector If, axis has been minimized by the choice of :ﬂ-( - +e2RIC). (53)
squeeze angley=—®. 2 ek

. . . - _ Since K is proportional to the input laser powgy, Caves’
2R_ )
This optimized noise is shown in Fig. 4 fer **=0.1, along interferometer produces the same noise spectral density as a

\é\{ggsthe noise spectra for other optimized interferometer debonventional interferometefEq. (27)] but with an input

. . . . : ower that is reduced by a facter 2R. This is a well-known
In previous discussions of this squeezed-input schem

[14,18,19, no attention has been paid to the practical prob- esult,

lem of how to produce the necessary frequency dependence
C. Variational-output interferometer

0.4 Watchanin, Matsko and ZuboJ23—-29 have devised a
MQ)=—P(Q)=— arccot% (500  QND interferometer design based Ghleaving the dark-port
Q¥+ Q%) input field in its vacuum statein) =|0,), and (ii) changing

the output measurement from standard photodete¢tizza-

; fb,) to homodyne detection at an appropriate,
of the squeeze angle. In Sec. V C, we shall show that thi urement ofb, X
N(Q) can be achieved by squeezing at a frequencyiequency-depender(ﬂ:D) homodyne phasg(() - i.e.,

independent squeeze andlgsing, e.g., a nonlinear crystal measurement of

for which the squeeze angle will be _essenually frequency— b,=b, cos{+ b, sing. (54)
independent because the gravity-wave bandwidth,

<1000 Hz, is so small compared to usual optical band
widths ) and then filtering through two Fabry-R¢ cavities.
This squeezing and filtering must be performed before injec
tion into the interferometer’s dark port; see Fig. 1 for a sche
matic diagram.

The signal and noise for this squeezed-input interferom
eter are depicted in Fig. 6.

We comment, in passing, on two other variants of ady
squeezed-input interferometer:

(i) If, for some reason, the filter cavities cannot be imple
mented successfully, one can still inject squeezed vacuum
the dark port with a frequency-independent phase that is o
timized for the lowest point in the noise cun@,=v; i.e.,
(with the input power optimized tb,=1gq):

Tn their explorations of this idea, Watchanin, Matsko and
Zubova[23-29 did not identify any practical scheme for
achieving such a FD homodyne measurement, so they ap-
proximated it by homodyne detection with a homodyne
phase that depends on time rather than frequency—a tech-
nique that they call a “quantum variational measurement.”
In Sec. V below, we show that the optimized FD homo-
ne measurement can, in fact, be achieved by filtering the
interferometer output through two FabryfBecavities and
“then performing standard, balanced homodyne detection at a
‘f’rtequency-independent homodyne phase; see Fig. 2 for a
Rschematic diagram. We shall call such an scheme a
variational-output interferometerThe word “variational”
refers to(i) the fact that the measurement entails monitoring
a frequency-varying quadrature of the output field, as well as
N=—®(y)=—7l4, (51 (i) the fact that the goal is to measure variations of the
classical force acting on the interferometer’s test niéss
original Watchanin-Matsko-Zubova motivation for the
cf. Eq. (50). In this case the noise spectrum is word).
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I, exceedd gq . Figure 4 shows this noise, along with the
noise spectra for other optimized interferometer designs.

It is interesting that the optimal frequency-dependent ho-
modyne phasé for this variational-output interferometer is
the same, aside from sign, as the optimal frequency-
dependent squeeze angle for the squeezed-input interferom-
eter; cf. Eq.(47).

a
P, 2

y
A

D. Comparison of squeezed-input and variational-output

FIG. 7. Noise ellipses for a variational-output interferometer. interferometers

Left: Noise for the ordinary vacuum that enters the interferometer’s The squeezed-input and variational-output interferometers
dark port.Right: Noise for the field that exits at the dark port along described above are rather idealized, most especially because
with the gravitational-wave signal. These noise ellipses are théhey assume perfect, lossless optics. When we relax that as-
same as for a conventional interferometer, Fig. 5, but here the quasumption in Sec. VI below, we shall see that, for realistic
tity measured is the quadrature ampliturewith frequency depen-  squeeze factors™ 2R and losseg, , the two interferometers
dent phaseb=arccot. It is informative to compare the measured pgye essentially the same performance, but the variational-
phase ® with the angle of ponderomotive squeezé  oyiput intefermometer requires-10 times higher input

=3z arccot{C/2). They are related by tah=3tan2¢=tan¢/(1  powerl, . In this section we shall seek insight into the phys-
—tarf¢), so ® is always larger tharp; but for large/C (strong s of these interferometers by comparing them in the ideal-
beating of the SQJ, they become small and nearly equal. ized, lossless limit.

Various comparisons are possible. The noise curves in
Fig. 4 illustrate one comparison: When the FD homodyne
angle has been optimized, a lossless variational-output inter-
ferometer reduces shot noise below the SQL and completely
removes back-action noise; by contrast, when the FD
squeeze angle has been optimized, a squeezed-input interfer-

The monitored FD amplitudé, [Eq. (54)] can be ex-
pressed in terms of the interferometer’s dark-port input am
plitudes a;, a, and the Fourier transform of the
gravitational-wave fieldh as

b,=sin¢ 2K _h e‘ﬁ+[a2+(cot§—IC)al]e2‘5 : ometer reduces shot noise and reduces but does not remove
hsqL back-action noise; cf. Eq$58) and(498).
(55) In variational-output interferometers, after optimizing the

. . FD homodyne angle, the experimenter has further control of
cf. Egs.(16) and(54). Correspondingly, the operator describ- j,qt one input/output parameter: the laser intensity or equiva-
ing .th_e Fourier tran;form of the interferometer’s lently 1,/1s0,=K(Q=7). Whenl,/lso, is increased, the
gravitational-wave noise is shot noise decreases; independent of its value, the back-
h action noise has already been removed completely; cf. Eq.
_ 'SQL _ ) (58). By contrast, in squeezed-input interferometers, after op-
()= —==e"as+ay(cot{—K)]; (56) timizing the FD squeeze phase, the experimenter has control
of two parameterst,/lsq_, which moves the minimum of
cf. Eq. (23). the noise curve back and forth in frequency but does not
The radiation-pressure-induced back action of the mealower its minimum([17], and the squeeze fact®, which
surement on the interferometer’s test masses is embodied feduces the noise by 2%; cf. Eq. (48).
the — Ka, term of this equation; cf. Eq16) and subsequent ~ Present technology requires tiibe approximately con-

discussion. It should be evident thHat choosing stant over the LIGO frequency band. However, in the same
spirit as our assumption that the FD homodyne phase can be
{=®d=arccotk, (57)  optimized at all frequencies, it is instructive to ask what can

be achieved with an unconstrained, frequency-dependent
we can completely remove the back-action noise from thé=D) squeeze factoR({)), when coupled to an uncon-
measured interferometer outpuef. Fig. 7. This optimal strained FD squeeze angi€(}).
choice of the FD homodyne phase, together with the fact that One instructive choice is({2) = —arccotk as in our pre-
the input state is vacuum]in)=|0,), leads to the vious, optimized interferometefEq. (47)], and e 2R(®)

gravitational-wave noise =1/(1+K?). In this case, the squeezed-input interferometer
has precisely the same noise spectrum as the lossless
h&oL 1 1 ( 44 )QZ( Y2+ Q?) variational-output interferometer
N 2 ’C_IO“SQL mLZQZ 2'}/4 (58) h2
Cf. Egs.(22) and(25). 2K

This noise for an optimized variational-output interferom-
eter is entirely due to shot noise of the measured light, anfEq. (58)], and achieves it with precisely the same laser
continues to improve:1/l , even when the input light power power.
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b, squeeze factors should not be surprising. The noise spectrum
a, is a single function of) and it is being shaped jointly by the
two squeeze functions({)) andR(Q).
The fact that the IIS interferometer and the variational
f output interferometer produce the same noise spectra results
a P’KJ b, from areciprocity between the IIS and the variational-output
configurations: The IIS interferometer has its input squeezed
at the angle— ® = —arccotC and it has vacuum-noise out-
P put, whereas the variational-output interferometer has
FIG. 8. Noise ellipses for a squeezed-input interferometer Whoséa(;ujrr-ar]rgf:ﬂénpm and is measured at the homodyne angle
input squeeze is inverse to the interferometer’s ponderomotive ) . . .
squeezd*“IIS interferomter”). Note that the IIS interferometer has a different input
squeeze anglen (Q) = —1/2 arccot{(/2); cf. Eq.(31)] from

Another instructive choice is an input squeeze that is in{hat of theangle-optimizecsqueezed-input interferometer of
verse to the interferometer’s ponderomotive squdazeon-  S€¢: IV B[A ()= —arccotk’; cf. Eq. (47)]. This difference
figuration we shall call “inversely input squeezed” or IS shows clearly in the noise ellipses of Fig(t8e IIS interfer-

Let the dark-port input field before squeezing be describe@Metel and Fig. 6 (the angle-optimized interferomier
by annihilation operators.. , so Moreover, this difference implies that by optimizing the

IIS interferometer’s squeeze anglehanging it to\(Q)
c-|in)=0, (60) = —arccotK), while keeping its squeeze factor unchanged
[R(Q)=arcshinh(C/2); cf. Eq. (31)], we can improve its
i.e., the pre-squeeze field is vacuum. Then, denoting byoise performance slightly. The improvement is from Eq.
C1,C, the quadrature amplitudes of this pre-squeeze field, thés3) to
[IS input squeezing is

Pt

.
arctan K 'fa/’
7
/

2
a;=Cq, 32:C2+ ICCJ_, (61) Sh—hSQL 1+’C2 (64)
2K 1
where K(Q) is the interferometer’'s frequency-dependent 1+ §(K2+ KVK?+4)
coupling constant(18). The interferometer’s ponderomo-
tively squeezed output noise is then

[which can be derived by setting({}) = —® = —arccot
Ab;=a,e?P=c,e?B,  Ab,=(a,—Ka,)e?P=c,e?? and R(Q)=arcshinh{C/2) in Eq. (46), or by inserting
(62  R(Q)=arcshinh(C/2) into Eq.(48—note that(48) is valid
for any angle-optimized, squeezed-input interferometer but
[cf. Eq.(16)], i.e., the noise of the output light is that of the not for the IIS interferometér The improvement factor in
vacuum with a phase shift, but since the vacuum state igsquare brackets is quite modest; it lies between 0.889 and
insensitive to phase, it is actually just the noise of theunity.
vacuum. We reiterate, however, that the above comparison of inter-
Figure 8 illustrates this: The IIS input light is squeezed inferometer designs is of pedagogical interest only. In the real
a manner that gets perfectly undone by the ponderomotivgorld, the noise of a QND interferometer is strongly influ-
squeeze, so the output light has no squeeze at all. The faghced by losses, which we consider in Sec. VI below.
that the input squeeze is inverse to the ponderomotive
squeeze shows up in this diagram as an input noise ellipse
that is the same as the output ellipse of the ponderomotively
squeezed vacuum, Fig. 5, except for a reflection in the hori- The squeezed-input and variational-output techniques are

E. Squeezed-variational interferometer

zontal axis. complementary. By combining them, one can beat the SQL
Because the output of the IS interferometebis(ordi-  more strongly than using either one alone. We call an inter-
nary photodetectignand the output light’s state is the ordi- ferometer that uses the two techiques simultaneously a
nary vacuum, its gravitational-wave noise is squeezed-variational interferometer

The dark-port input of such an interferometer is squeezed

héQL by the maximum achievable squeeze fadgoat a (possibly

Sh:T; (63 frequency dependensqueeze anglie({), so
cf. Egs.(23), (22) and(26) (with a; replaced byb;). Notice lin)=S(R,A)[0,). (65)

that this is identically the same noise spectral density as for

our previous exampl¢Eqg. (59)] and as for a variational- The dark-port output is subjected to FD homodyne detection

output interferometer, and it is achieved in all three casesvith (possibly frequency dependéftomodyne anglé((2);

with the same light power. i.e., the measured quantity is the same output quadrature as
The fact that our two squeezed-input examples producéor a variational-output interferometeds, [Eq. (55)], so the

the same noise spectrum using different squeeze angles agthvitational-wave noise operator is also the same
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heol . _
hn(Q):%e‘ﬁ[aﬁal(cotg—l@]e"g (66)

[Eq. (56)].

As for a squeezed-input interferometer, the gravitational-

wave noise is proportional to

<in|hnhn’|in>:<0a|hnshns’|0a> (67)

[Eqg. (22)], where h,¢ is the squeezed gravitational-wave

noise operator

hns=ST(R,A)h,S(R,\). (68)

By inserting expressiof66) for h, into Eq.(68) and invok-

ing the action of the squeeze operator @nand a, [Eq.
(A8)], we obtain

h =
hps=— —_Z‘;CL\/H K2ei®
X (a;{coshR cos® —sinhR co§ ® — 2(d + )]}
—ay{coshRsin® —sinhRsi ®—2(®+\)]}),
(69)

where

K=K-cot{, = arccotk.. (70

PHYSICAL REVIEW D 65 022002
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FIG. 9. Noise ellipses for a squeezed-variational interferometer.
Left: Noise for the squeezed vacuum that enters the interferometer’s
dark port.Right: Noise for the field that exits at the dark port along
with the gravitational-wave signal.

been completely removed, and the shot noise has been re-
duced by the input squeeze facwr2R.

Because the optimal input squeeze angle is frequency in-
dependent, the squeezed variational interferometer needs no
filter cavities on the input. However, they are needed on the
output to enable FD homodyne detection; see Fig. 2 for a
schematic diagram.

V. FD HOMODYNE DETECTION AND SQUEEZING

Each of the QND schemes discussed above requires ho-

As for a squeezed-input interferomefeee passage fol- Modyne detection with a frequency-dependent piigBeho-
lowing Eq.(45)], we can read the gravitational-wave spectralmodyne detectionand/or input squeezed vacuum with a

density off of Eq.(69) by regardinga; anda, as random

frequency-dependent squeeze an@P squeezed vacuym

processes with unit spectral densities and vanishing crodg this section we sketch how such FD homodyne detection

spectral density. The result is

h2 N -
Sh:S_QL(1+}C2){e‘2R+sinh R[1-cosAD+N\)]}.

2K
(71)

This noise is minimized by setting the input squeeze angle

N\ and output homodyne phageto
N=ml2, (=®d=arccotl, (72

which producesi%zo and\=®= /2, so

2 _
2K mL2Q? 2y

ollsoL

see Fig. 4.
Equation (72) says that, to optimize thglossless

and squeezing can be achieved.

A. General method for FD homodyne detection

The goal of FD homodyne detection is to measure the
electric-field quadrature

[Amh 0 . o, dQ
Eg(t)= %fo (bgeflm_'_bzeﬂm)zy (74)

for which the quadrature amplitude is

b,=bjcos{+b,sing, {={(Q); (75)

cf. Egs.(10) and (54). If ¢ were frequency independent, the
measurement could be made by conventional balanced ho-
modyne detection, with homodyne phageln this subsec-
tion we shall show thatwhen ¢ depends on frequency, the

squeezed-variational interferometer, one should squeeze tieeasurement can be achieved in two steps: first send the
dark-port input field at the frequency-independent squeezkght through an appropriate filter (assumed to be lossless),

angle/= /2 (which ends up squeezing the interferometer'sand then perform conventional balanced homodyne detec-
shot nois¢, and measure the output field at the same FDtion.

homodyne phasé=® as for a variational-output interfer-

ometer; see Fig. 9. Doing so produces an output,(E8), in

The filter puts onto the light a phase shiftthat depends
on frequency. Let the phase shift be for light frequency

which the radiation-pressure-induced back-action noise has,+, anda_ for wg— Q. The input to the filter has am-

022002-14



CONVERSION OF CONVENTIONAL GRAVITATIONAL- . . .

plitudes(annihilation operatopsh.. at these two sidebands,

and the filter output has amplitudédenoted by a tilde

b.=b.e=, (76)
The corresponding quadrature amplitudes are
] b+t b_b+—bi a
1= \/E ’ 27 \/EI

PHYSICAL REVIEW D 65 022002

A4
[=®(Q)=arccotlC= arcco( m)

2 2 2
=arctaV<—Q (YAIQ )), 83)

where
A*=(l4/lsq)2v* (84)

[cf. Egs.(18) and(45)]. Recall thaty=27x100 Hz is the

at the input[Egs. (6)], and the analogous expression with optimal frequency of operation of the interferometer, and to

tildes at the output. Combining Eq&/7) with and without

beat the SQL by a moderate amount will requigdlso.

tildes, and Eq(76), we obtain for the output quadrature am- ~10 soA%~20y*, i.e., A~27y.

plitudes in terms of the input

b, =e€'“n(b; cosa,— b, siney),

b,=e'*m(b, cosa,+ b, sinay). (78)
Here
1 1
amzz(cu—a,), apZE(a++a,). (79

The light with the output amplitudds,, b, is then sub-

jected to conventional balanced homodyne detection with
frequency-independent homodyne anglewhich measures

an electric-field quadrature with amplitude

b,=b, coso+b,sing

=e'*m[ b, cog - ap) +bysin(6—ap)].  (80)

In Appendix C we show that this desired FD phase can be
achieved by filtering the light with two successive lossless
Fabry-Peot filter cavities, followed by conventional homo-
dyne detection at homodyne angle

0=l2 (89
[i.e., homodyne measurement Iof at the filter output; cf.
Eq. (80)].” The two filter cavitiesdenoted | and )l produce
phase shiftsy,- and¢; -~ on thew,* ) side bands, so upon
emerging from the second cavity, the net phase shifts are

(86)

ar=apta)..

Each cavity =1 or Il) is characterized by two param-
eters: its decay rat@andwidth 25, (with J=1or Il), and its
fractional resonant-frequency offset from the light's carrier
frequencyw,,

W™ Wregg

&= 5 (87)

If we adjust the filter and the constant homodyne phase so

that
1
9—ap59—§(a++a7)=£(9), (81)

then, aside from the frequency-dependent phase sahjft

Here w,.; is the resonant frequency of cavily In terms of
these parameters, the phase shifts produced inwthe()
side bands by cavity are

The filters’ parameters must be adjusted so that the net phase

the output quadrature amplitude will be equal to our desiredhift (86), together with the final homodyne angbe= 7/2,

FD amplitude:

by=¢€'mb, . (82)

produce the desired FD phase, E(&l) and (83).

In Appendix C we derive the following values for the
filter parameters,, &,, &,, and§, as functions of the pa-
rametersA and y that appear in the desired FD homodyne

The phase shiftr,(Q) is actually unimportant; it can be Phase. Define the following four functions &f and y:
removed from the signal in the data analylgs can be the 4 5
phase shif{3(}) produced by the interferometer’s arm cavi- p— ﬂ Q=1+ 1+P (89a
ties). ot N 2

To recapituateFD homodyne detection with homodyne
phase({)) can be achieved by filtering and conventional
homodyne detection, with the filter's phase shifts (at o
=w,*{)) and the constant homodyne phageadjusted to
satisfy Eq. (81).

"The fact that only two cavities are needed to produce the desired
FD homodyne phas@3) is a result of the simple quadratic form of
tand(Q?). If the desired phase were significantly more compli-
cated, a larger number of filter cavities would be needed; cf. Eq.
(C3) and associated analysis. It would be interesting to explore
what range of FD homodyne phases can be achieved, with what
accuracy, using what number of cavities.

B. Realization of the filter

The desired FD homodyne phase is
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25 cavities’ stored light encounters the mirrors a minimum num-
2 £, _ber of timeg. This suggests placing the fi_Iter cavi_ties in the
15 e interferometer’'s 4-km-long arms, alongside the interferom-
} I eter's arm cavities.
0.5 //ﬁf/y/'
0 C. Squeezing with frequency-dependent squeeze angle
0.5 i Just as the variational-output and squeezed-variational in-
A terferometers require homodyne detection at a FD phase, so a
03 ! 42 10. 80. squeezed-input interferometer requires squeezing at a FD
(At =21 150
anglen(Q).

FIG. 10. The parameters characterizing the two Fabrptpe '€ nonlinear-optics techniques currently used for
cavities that are used, together with conventional homodyne dete§dueezing will produce a squeeze angle that is nearly con-
tion at phaseg=/2, to produce FD homodyne detection at the Stant over the very narrow frequency band of gravitational-
desired frequency-dependent ph&88). The quantitiest, and &, wave interferometers, |o— w,|=<(a few)x y~10 *w,.
are the filters’ fractional frequency offsets from the light's carrier What we need is a way to change the squeeze angle from its
frequency(87); 6,/y and &, /y are the filters’ half bandwidths in constant nonlinear-optics-induced value to the desired
units of the half-bandwidth of the interferometer’s identical arm frequency-dependent valug=—®(Q) [Eq. (50)].

cavities. The functional forms of these parameters are B. Just as FD homodyne detection can be achieved by send-
ing the light field through appropriate filters followed by a
Q Q frequency-independent homodyne device, so also FD
A:=Q+\ 5 A-=Q-\ 5 (89 squeezing can be achieved by squeezing the input field in the

standard frequency-independent way, and then sending it

Then in terms of these functions, the filter parameters are through appropriate filters. Moreover, since the necessary
squeeze anglé50) has the same frequency dependence

1 1 —®(Q) as the homodyne pha$b7) and (18) (aside from
=5 T\t 2A? (890  sign and the value of a multiplicative constant ), the
- - filters needed in FD squeezing are nearly the same as those
1 1 needed in FD homodyne detection: The filtering can be
E1= o — \ [1+ — (89d  achieved by sending the squeezed input field through two
2A (2A-) Fabry-Peot cavities before injecting it into the interferom-

eter, and the cavity parameters are given by H§93-—

5._ [ P (899 (89f), with certain sign changes and wikh= 8:
Y 8§|\/6’

65
Q=1+ \/; A.=—Q= \/g, (903
8 P
2o\ — (89f)
v VB(-&)\Q

1 1
=———\/1+t 90b)
Note that, when the cavity half-bandwidthi are ex- é 2A. (2A.) (900
1
1 [

pressed in terms of the half-bandwidthof the interferom-

eter’s arm cavities, as in Eq89¢ and(89f), then the filter 1

parameters depend on only one characteristic of the desired E1= =+ \ [1+ . (900
FD homodyne phase: the quantith/y)*=21,/lsq. . Fig- 2A_ (2A-)

ure 10 depicts the filter parameters as functions of this quan-

tity.

As Fig. 10 shows, the half-bandwidths of the two filter i: . / 1 (900)

cavities are within a factor 2 of that of the interferometer’s 0% (— &) \/6

arm cavities. This is so for the entire range of laser powers,

lo/1sqL, that are likely to be used in QND interferometers,

at least in the early year®.g., LIGO-IIl; ca. 2008—2010 oy [ 1

Moreover, the filter cavities’ fractional frequency offsets 7: m

are of order unity £ 0.5<&;=<2). Thus, the desired proper- I

ties of the filter cavities are not much different from those of

the interferometer’s arm cawvities. The details of the calculations are essentially the same as
In Sec. VI below, we shall see that the most serious limi-Appendix C, but with Eq(C1) changed into the following

tation on the sensitivities of variational-output and squeezedexpression for the initial frequency-independent squeeze

variational interferometers is optical loss in the filter cavities.angle # and the cavities’ frequency-dependent phase shifts

To minimize losses, the cavities should be very ldsg the  «;. :

(908
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Q2(y?>+Q?) It is essential to pursue research and development with the
tan®(Q)=— T aim of driving these fractional photon losses down to
a ta_ta . ta)_ Ecirc™ €bs™ €mm™ €lo~ €pg™ 0.001. (92
=tar< 0— 5 (91

These loss levels are certainly daunting. However, it is well

to keep in mind that attaining the absolute lowest loss levels

will likely be an essential component of any advanced inter-
VI. INFLUENCE OF OPTICAL LOSSES ON QND ferometer that attempts to challenge and surpass the SQL. In

INTERFEROMETERS the current case, discussions with Stan Whitcomb and the
laboratory experience of one of the auth@isJ.K) lead us
to suggest that it may be technically plausible to achieve the
It is well known that, when one is working with squeezed |evels of Eq.(92) in the LIGO-III time frame, though a vig-
light, any source of optical lossvhether fundamentally irre-  orous research effort will be needed to determine the actual
versible or not can debilitate the light's squeezed state. Thisfeasibility.
is because, wherever the squeezed light can leave one’s op- The arm cavities are a dangerous source of losses because
tical system, vacuum field cafand must enter by the in-  the light bounces back and forth in them so many times. We
verse route; and the entering vacuum field will generally ijenote by£ the probab|||ty that a photon in an arm Ca\/ity
unsqueezed31]. gets lost during one round-trip through the cavity, due to
All of the QND interferometers discussed in this paperscattering and absorption in each of the two mirrors and
rely on squeezed-light correlations in order to beat th&ransmission through the end mirror. With much research and
SQL—with the squeezing always produced ponderomotivel\jevelopment by the LIGO-III time frame thiess coefficient
inside the interferometer and, in some designs, also preseper round trip may be as low as
in the dark-port input field. Thus, optical loss is a serious
issue for all the QND interferometers. L~20X1078. (93)
In this section we shall study the influence of optical
losses on the optimized sensitivities of our three types 0}‘0\ fraction
QND interferometers.

A. The role of losses

2L L
= =0.0012 (99

B. Sources of optical loss
P € 2yL/c

The sources of optical loss in our interferometers are the

foIIo_wing: Co , n of the carrier photons that impinge on each arm cavity gets
(i) For light |n§|de the interferometer’'s arm cavities and ot in the cavity[cf. Eq.(B25) on resonance sé= e]. (Note
inside the Fabry-Ret filter cavities: scattering and absorp- iha apsence of any subscript on this particéarFor side-

tion on the mirrors and finite transmissivity through the end, ;4 light the net fractional logglenoted(Q)); Eq. (100
mirrors. We shall discuss these quantitatively at the end ogelow] is also of ordere. T

the present subsectiofin addition, wave front errors and Each filter cavity,J=1 or II, has an analogous loss coef-

birefringence produced in the arm cavities and filters, €.9-icient L£,=L and fractional loss of resonant photons
via power-dependent changes in the shapes and optical prop-

erties of the mirrors, will produce mode missmatching and or r

thence losses in subsequent elements of the output optical EJE_Jz__

train.) Ty 26,L,/c
(i) For squeezed vacuum being injected into the interfer-

ometer: fractional photon losses;. in the circulator® used ~ Because(as we shall see the filter cavities’ losses place

to do the injection, in the beam splittes, and in mode-  severe limits on the interferometer sensitivity, we shall mini-

matching into the interferometet,,,. mize their net fractional loss in our numerical estimates by
(iii ) For the signal light traveling out of the interferom- making the filter cavities as long as possible;=L

eter: In addition to losses in the arm cavities and filter cavi-=4 km. Then the ratio of Eq$95) and(94) gives

ties, also fractional photon losses in the beam spléggr in

the circulatoreg., in mode matching into each of the filter e;=¢€(yl5;)~(0.5 to 2e. (96)

cavities €,,n, In mode matching with the local-oscillator

light used in the homodyne detectiey, and in the photo-

diode inefficiencyeq.

(95

C. Input-output relation for lossy interferometer

We show in Appendix B that, accurate to first order in the
arm-cavity lossegand ignoring beam-splitter losses which
8The circulator is a four-port optical device that separates spatiallyve shall deal with separately belpwthe relation between
the injected input and the returning output from the interferometerthe input to the interferometer’s beam splittéield ampli-
see Fig. 1. It can be implemented via a Faraday rotator in conjundudesa;) and the output from the beam splittgield ampli-
tion with two linear polarizers. tudesb;) takes the following form:

022002-17



KIMBLE, LEVIN, MATSKO, THORNE, AND VYATCHANIN PHYSICAL REVIEW D 65 022002

h . b Lossy Filters, b§ b | Losses E Lossless bg
b;=Ab;, b,=Ab,+ 2K — P 9 — Homodyne & —» — —p —» Optical f—»
1 1 2 2 * hSQL (97) 7] I Photodetector £oTEpEn ain
a

[cf. the last sentence of Appendix B; also the lossless input-
output relation(16) and Fig. 3. Here, accurate to first order

) FIG. 11. The output lighb is sent through a lossy output optical
in e,

train, including a beam splitter, circulator, cavity filters | and I, a
mixer with local oscillator light and a photodiode. The regakide
B Earctaré Qfly B— €/2 (98) from an unimportant phase shift,) is the desired measured quan-
* - . .
1+€l2 Qfy+ ylQ tity b, ). This actual process, sketched on the left side of the
equality sign, is mathematically equivalent to the idealized process

is th? .Ioss-.modifie‘ﬂ pha§eﬁ [Eg. (17)], and the coupling  sketched on the right side: The cavities’ loss effects are introduced
coefficient is reduced slightly by the lossés: first, producingb, which is then sent through an idealized, lossless
optical train including the filters.

*

lo/lso)2y* 1
= (20 squ) 27’ . :K(l_ig) (99
QT Ty (1+el2)"+07] of loss-noise fieldy/n; . The phase shifg that the interfer-

ometer cavities put onto the loss-noise field is half that put
onto the dark-port input field because of the different routes
242 2¢ by which thea; andn; get into the arm cavities.
= 7102 e=1+(9/ 2 (100 The radiation-pressure back-action force on the test mass
Y Y is produced by a beating of the laser’s carrier light against

is the net fractional loss of sideband photons in the arm cavi'Ehe in-phase quadrature of the inside-cavity noise feld

ties[cf. Eq. (B25)]. Accurate to first order in the losses, the Vflznl' Thus, itisa; + Ve/2n, that appears in the output
output quadrature noise operators in E2f) have the form  Ight's back-action noisélast term ofAb,).

[cf. Eq. (18)], where

&

+ \/Eeiﬁnl, D. Noise from losses in the output optical train and the
homodyne filters

. 1
Abj_: a1e2|ﬁ< 1_ Eg

, 1 . The output quadrature operatdos get fed through an
Ab,=a,e”#| 1~ 55) +\/Ee'Pn, output optical train including the beam splitter, circulatir
present, filter cavities(if present in the output as opposed to
— K, (ay+ el2n,)e? P (101  the inpu}, local-oscillator mixer, and photodiode. Losses in

all these elements will modify thab; . In analyzing these

[cf. last sentence of Appendix B and cf. H46)]. Heren,;  modifications, we shall not assume, initially, that the FD ho-
andn, are the net quadrature field amplitudes that impingenodyne phase i®({2); rather, we shall give it an arbitrary
on the interferometer’s arm cavities at their various sites ofvalue {({}) (as we did in our lossless analysis, Sec. I/ C
optical loss. We shall cali; the quadrature amplitudes of the and shall optimize at the end. The optimd] will turn out to
arm cavities’loss-noise fieldThey are complete analogs of be affected negligibly by the losses; i.e., it will still be
the input and output fields’ quadrature amplitudesndb; : d(Q)=arccotk.
they are related to the loss-noise field’s annihilation and cre- By analogy with the effects of arm-cavity losdéactorsE
ation operators1, andn’ in the standard wayanalog of in Egs.(101)], the effects of the optical-train losses on the
Egs.(6)], they have the standard commutation relatiarsa-  output fieldsb; can be computed in the manner sketched in
log of Egs.(7)], and they commute with the dark-port input Fig. 11: The process of sending the quadrature amplitbges
field amplitudesa; . through the optical train is equivalent ) sending b;

Equations(101) have a simple physical interpretation. through a “loss device” to obtain loss-modified fields,
The dark-port input field; at frequencyw, () gets attenu- 5 then(ii) sendingb; through the lossless optical tralh.
ated by a frgctlonal amourdi/2 while in the_ interferometer Because the filter cavities have frequency offsgtshat
(corresponding to a photon-number fractional 183s and  make their losses different in the upper and lower side bands,
the lost field gets replaced, in the output light, by a small bitie influence of the losses is most simply expressed in terms

of the annihilation operators for the side barims, rather

°The loss modification, i.e., the difference betweep and 33, than in terms of the quadrature amplitudgs In terms of
turns out to influence the gravitational-wave noise only at second+ » the equation describing the influence of losses is iden-
order ine and thus is unimportant; see footnote 12 below. tical to that in the case of the arm cavities with fixed mirrors,
1075 js discussed in footnote 16, in E¢Q9) for K, , strictly ~ EQs.(101) with £=0:
speaking/, is not the input power to the interferometer, but rather
is the input power reduced by the losses that occur in the input
optics, beamsplitter, and arm cavities. We ignore this delicacy since *Yanbei Cher{32] has shown that it does not matter whether the
its only effect in our final formulas is a slight renormalization gf losses are placed before or after the lossless train.
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o 1
bo=|1-22 &- (102
24

b+ V& nye.
J

Here (i) the sum is over the two filter cavitied=I and Il
(which must be treated speciglland over the rest of the
output optical train, denoted=OT; (ii) &; is the net frac-
tional loss of photons in elemedt (iii ) n;- is the annihila-
tion operator for the loss-noise field introduced by elendent
(iv) for each filter | or 1l, the analog of the phase factg af

PHYSICAL REVIEW D 65 022002

1
Eotr=> 2 (E34+E50)

1
=&ort §(5|++5|7+5||++5u7)

¥l 6;
~Eort "9 (106
ot erzI,II 5:2,7 14 (£&;+s016y) (10§

is the net,Q)-dependent loss factor for the entire output op-

Eq. (101) gets put onto the light in the subsequent losslessica| train including the filter cavities. From Eq@4), (104

filter and thus is absent here; af@ we have absorbed a
phase factor into the definition of;-. .

The net fractional photon loss in a filter cavity must be

identical to that in an arm cavity, Eq100), if written in
terms of the cavity’s half bandwidthy(for arm cavity, 5, for

filter cavity) and the difference between the field's frequency

w=w,=Q and the cavity’s resonant frequenay,.s (@
—wes= £Q for arm cavity; w — we= £;6;=Q for filter
cavity). Therefore, Eq(100 implies that

ZEJ

SJi:l+(§JiQ/5J) for J=I1l. (103

and (106 and Fig. 10, we infer that

Eote—0.009 (107
with only a weak dependence on frequency, which we shall
neglect.

In Egs. (1053, (105h the termsi X (quantity linear in
&y.)b; [the b, term inb, and theb, term in b,] will con-
tribute amounts second order in the Ioss<e§§) to the sig-
nal and/or noise, and thus can be neglected. We shall flag our
neglect of these terms below, when they arise.

E. Computation of noise spectra for variational-output and
squeezed-variational interferometers

For the remainder of the optical train, the net fractional pho-

ton loss&qt is the sum of the contributions from the various

elements and is independent of frequency:

EOTt = EOT: 6b3+ Ecirc+ 2€mm+ €|0+ Epd"‘ 0.006.
(104

By expressingd. andn;. in terms ofb; andny; (for j
=1,2) via the analog of E(q6), inserting these expressions

into Eq. (102, then computing); via the analog of Eq(6),
we obtain

. 1 i
by=| 1- S€ore|b1— 7 2 (&4 —&)by
J

L
2

; [(VEys +VE N +i(VEr = VE Nk,

(1053

i
byt 7 2 (£3:=E)by
J

o 1
b= 1~ EEOTF

L
2

2 [(VE+ +VE N —i (V& —VE )Nyl

(105b

Here

The output of a squeezed-variational interferometer or
variational-output interferometer is the frequency-dependent
quadratured, depicted in Fig. 11. This quantity, when split

into signaloch plus noiseocAk'Jg, takes the following form:

b,=b, cos¢+b,sin¢

Ab,

1 h
=gj — —__¢elB
sing \/ZIC*(l 250TF>hSQLe +sin§

(108

cf. Egs.(97) and (10539, (105h. Here we have omitted an
imaginary part of the factor 4 % Eqre [arising from theb,
term inb,, Eq. (1053] because its modulus is second order
in the Iossesc@é’ﬁ) and therefore it contributes negligibly to
the signal strength.

Equation(108) implies that the gravitational-wave noise
operator is

hsaoL

V2K

e "Bx(Ab,+ Ab, cotf),
(109

h,=

1 1
1+ E(c;o‘n:‘f‘ Zg

where we have used E9) for K, .

For a squeezed-variational interferometer, the dark-port
input field a; is in a squeezed state, with squeeze fa&or
and squeeze anghg)) (which, after optimization, will turn
out to beN=m/2 as for a lossless interferometeFor a
variational-output interferometes; is in its vacuum state,
which corresponds to squeezing with=0 so we lose no
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generality by assuming a squeezed input. Since all the noise
fields excepta; are in their vacuum states, the light's full

input state is

[in)=10,)®|0n, }®[0,)@|0, )@ S(R,M)[04), (110

NoT

where the notation should be obvious.
The gravitational-wave noise is proportional to
<in|hnhn’lin>:<o|hnshns’|0> (111)

where |0) is the vacuum state of all the noise fieldsn,

PHYSICAL REVIEW D 65 022002

2
_ hSQL

Sh_ﬁ (1+K?)

( 1
1-5¢
x{e~2R+sinh 2R[1—cos AP +\)]}

+IC2§+(1—I~Ccot§)8+(1+coF§)€OTF (114

where

I~C=IC—cot§, d = arccotk (115

Not, Ny, andn; andh, is the usual squeezed noise opera-[Eq. (70)]. In Eq.(114), the first two lines come frora; and

tor

hns=ST(RA)hS(R,\). (112

a, [squeezed vacuum entering the dark port; cf. &4)]
modified by losses in the arm cavitigthe factor 1-£/2)];
the first two terms on the third line come from andn,
[shot noise due to vacuum entering at loss points in the arm

We bring this squeezed-noise operator into an explicit forncavities; and the last term comes from;; and nj, [shot

by (i) inserting Eq.(109 into Eq. (112), then(ii) replacing
theABj 's by expression$1053, (105b [with A put onto all
theb’s, i.e., with the signal removédgdthen(iii) replacing the
Abj’s by expressiongl01), and ther(iv) invoking Eqs.(A8)

for the action of the squeeze operators ondfie. The result
is

X[Eq.(69)]

1
hps=| 1- 7€

h ) ) )
+ %[ (—Ke'B\Jel2+ \JEcot)e'Pn, + Ee'Pn,

5

1
5 2 L&+ & )eotd —i(VEs. =& ) Inyy

1
T3 EJ: [VE+ +VE-FiI(NE = VE;-)cotdIny,
(113

where we have omitted terms, arising frdopin Eq. (1053
and fromb; in Eq. (105b), which contribute amount®(£3)
to S,; and we have omitted a teffproportional tos,
— B which contributes an amouid®(€?).

noise due to vacuum entering at loss points in the output
optical train, including the filteris
As for the lossless interferometdqgs.(72) and(73)], the
noise(114) is minimized by setting the input squeeze angle
and output homodyne phageto
A=1/2,

{=d=arccotlC (116

[aside from a neglible correctiof=(£+2Eqp)e 2R/(K
+K~Y]. This optimization producesC=0 and \=®
=1/2, SO

1
( 1- ES) e Rt &+ Eore
+K

57 5OTF)
(117

Note that the optimization has entailed a squeezed input
with frequency-independent squeeze phase, as in the lossless
interferometer; so no filters are needed in the input. The out-
put filters must produce a FD homodyne angte® () that
is the same as in the lossless case and therefore can be
achieved by two long, Fabry-Re cavities.

It is instructive to compare the noigdl17) for a lossy
squeezed-variational interferometer with that of E£B) for

S=" K

By virtue of Eq.(111) and the argument preceding Egs. one without optical losses. In the absence of losses, the out-
(26), we can regard all of the quadrature noise operatorput's FD homodyne detection can completely remove the

a.j, nj,

ny; in this h,g as random processes with unit radiation-pressure back-action noise from the signal; only the

spectral densities and vanishing cross-spectral densities. Cahot noise=1/Kx=1/l,, remains. Losses in the interferom-
respondingly, the gravitational-wave noise is the sum of theeter’s arm mirrors prevent this back-action removal from be-
squared moduli of the coefficients of the quadrature noiséng perfect: they enable a bit of vacuum figldo leak into

operators in Eq(113):

2This term is an imaginary part,i@3, — B)K=— 3i ek sin 28,
of the quantityK, which enters Eq(69) via Eq. (70). Because this
imaginary part produces a correction to the loss-free palnt,dhat
is 90° out of phase with the loss-free part and is of oreeit
produces a correction t8,, that is quadratic ine and thus negli-
gible.

the arm cavities, and this field produces radiation-pressure
noise that remains in the output after the FD homodyne de-
tection (the Ke/2 term in Eq.(117)].

The KEqte noise in Eq(117) has the same dependence on
laser powerx x|, as the radiation-pressure noise. Never-
theless, it is actually shot noise, not radiation pressure noise.
It is produced by the vacuum loss-noise fields that leak into
the output signal light when it encounters each lossy optical
element. Those fields’ shot noise gets weighted by the factor
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cot{=cot®=K in the homodyne process, which accountspositiong and by tuning the local oscillator phase or equiva-

for their proportionality tofCocl . lently 6. Finesse errors as large as five per céAtd;|/ s,

A reasonable estimate for the amount of input-light=0.05, can be compensated to yield the requitad|
squeezing that might be achieved in LIGO-III[B3] =0.01 by tuning the offsets and homodyne phase to one

percent accuracyA &5|<0.01, A#=<0.01[Egs.(83), (C),

e 2R=0.1. (1189  (C2) and Fig. 1Q. These requirements are challenging.

By contrast, Eqs(94), (96), (100 and(106) suggest F. Computation of the noise spectrum for a squeezed-input

(E+Eorp) ~0.01. (119 interferometer
) ) ) R For a squeezed-input interferometer, as for squeezed-
This motivates our neglecting+ £orr compared t@ “"in - yariational, the losses in the input optical tréincluding the
expression(117), and rewriting the nois€l17) as filter cavitieg influence the noise only through their impact
on the squeeze facta 2R~0.1 of the dark-port vacuum
’ (120  When it enters the arm cavities—an impact that may niake
frequency dependenR=R({)). By contrast, losses in the
arm cavities and in the output optical train will produce noise
in much the same manner as they do for a squeezed-
6 variational interferometer. More specifically:
E*E§+50TF~0_0010; (121 The effect of arm-cavity and output-train losses on the
squeezed noise operatof can be read off of the squeezed-
of. Egs.(94) and (107). variational formula(113 as follows: (i) Set (= /2 so the

Equation(120) is our final form for the noise spectrum of guantity measured i, [no output filtering; Eq(108]; (ii)
a lossy squeezed-variational interferometer. When we set theorrespondingly set cdt=0, K=K, and ®=®=arccotk
input squeeze factor to unitg, 2R=1, it becomes the noise [Egs.(115]; (iii) in the sum oved include onlyJ=OT and

e72R

K

2
hSQL

2

+Ke,

where

spectrum for a lossy variational-output interferometer: not J=1, Il since there are no output filters. The result is
h3o [ 1 1 h
__'sQL SQL i
Sh= | ¢t Kex |- (122 hns=| 1- Z€| X[Eq.(44)]+ \/R(—K\/GIZez'ﬁnl
Errors AN=\—m/2 in the input squeeze angle andd’ +EePn,+ \EqrnoTy). (124

= —arccot in the output homodyne phase will increase
the noise spectral density. By performing a power series exHere the prime on the subscript OT indicates that we must
pansion of expressiofil4), we obtain for the noise increase omit losses due to mode matching into the output filters and

5 mixing with the local oscillator, since there are no output

Ash:hsTQL sinh 2RAN?— 2(1+ K 2)sinh 2RANA filters or homodyne detection. Correspondingly,
gOT’ = Ebs+ ecirc+ Epd~0'003 (125)
(1+K)%e™R . : : : .
+ TA?} is the net fractional photon loss in the output optical train.
Treating the quadrature noise operators as random pro-
thL cesses with unit spectral density and vanishing cross spectral
= ReZR[A)\—(lﬂLKz)Ag]Z, (123  densities, we read off, from Eq. (124):
2
where the second expression is accurate in the lgffit :@' 5+50T'+E;C+(1_Eg)(i+/c)
>e~ 2R Numerical evaluations show that, fer>R=0.1 and ? K 2 27J\K

€, =0.01(see abovg and forC~1 to 3 (the range of great-
est interest; cf. Sec. VIJ A\/S, will be less thani /S, so x{cosh R—cog 2(\ + ®)]sinh 2R}
long as: (i) the input squeeze angle is accurate |0\ |

=0.05, andii) the FD output homodyne phase is accurate toag in the lossles case, the noise is minimized by squeezing
|A{]=<0.01. At K=1 the FD phase’s required accuracy is the dark-port input at the FD anglen(Q)=—®=
reduced tdA{|=<0.04. The FD phasé is determined by the _ grccotkc [Eq. (47)]. The result is

filter cavities’ half bandwidthss; and fractional frequency

. (129

offsets¢;, and the local oscillator phase or equivalently the héQL 13\/1 g, ET&or €
final, conventional homodyne detector’s homodyne phtase Si=— || 17 3¢) g HKje T —— 35K
The filter cavities’ half bandwidthg; (or equivalently their (127

finessepare fixed by the mirror coatings. Coating-produced
errors in 8 can be compensated to some degree by tuningor our estimated squeezirey ?R~0.1 and losse€qyr~&
the fractional frequency offset&; (via adjusting the mirror ~€=<0.003 in the LIGO-III time frame, the loss parameters
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FIG. 12. Universal noise curve for conventional and QND in- @y

terferometergEqgs. (130)].
+Eqs-(130] FIG. 13. Universal noise curve plotted as a function of angular

are small compared to the squeeze, and thus contribute neggquencyﬂ for various values of the dimensionless frequency pa-
metero.

ligibly to the noise, sd5, is well approximated by the loss-

less formula
Q Q [1+0%° (130D
h2 1 = N7 o
Shz%(E'FIC) eiZR. (128) Y 2

o _ _ ) andhgq () is given by Eq.(20). Notice that(), =1 when
However, it is important to keep in mind that the input o—,~100 Hz; O, =(Q/y)/y2 when Q<7y, and Q,
squeeze factog™ 2R is constrained not only by the physics of _ (Q/7)2/2 whenQ> .
the squeezing apparatus, but also by frequency dependent this yniversal noise curve is plotted as a functior(kf
losses ir_l_the input optical train and mode matching into thg, Fig. 12. Its two parameters are the minimum vajuef
arm cavities. _ , the noise, i.e., the minimum amplitude noise in units of the
By expanding expressioit126 in powers of AN=MA g and the dimensionless frequeneyin units of 2, ) at
+arccotk, we see that the fractional increase in noise due tQhich the noise takes on this minimum value.
errors in the FD squeeze angle is Figure 13 shows this universal noise curve plotted as a
5 &R furction(of aggtl:lar freq;;)encgza l;l)otict:]e thst, bec:fiuks]e of the
R 2 2 relation (130b between(), and (), the shape of the noise
A V \/_—Sh_e sinh RS\ = 7A7‘ : 129 cyrve depends modestly on the locati@rof its minimum.

The values of the parametegs and o for our various
interferometer configurations are shown in Table Il. Notice
the following details of this tablgi) The minimum noiseu
(the optimal amount by which the SQL can be hestinde-
pendent of the laser input powegg in all cases; it depends
only on the level of input squeezirng 2R and the level of
losses, . (ii) For our estimated loss level and squeeze level,
H?e squeezed-input interferometer and variational-output in-

Fore 2R=0.1, this fractional noise increase will be less than
1/4 so long asA\ is less than 0.07. This translates into
accuracies of~7 percent for the prefilter squeeze angle,
~15 percent for the filter cavities’ fractional frequency off-
sets (A&;|=0.15), and~10 percent for the cavities’ half
bandwidths or equivalently their finessea §;/6;<0.1).
These constraints are significantly less severe than those f
a squeezed-variational interferometend of Sec. VI E but, o )
as we shall see, the potential performance of this squeezed- IABLE Il. The values of the parameteys=(minimum noise)

input interferometer is poorer by a facterl.5—2 than that 2nd o=(frequency of minimum) for various interferometer
of the squeezed-variational one (“IFO” ) configurations: Conv= Conventional broadbandlEq.

(271, SI = Squeezed-InputEq. (128)], VO = Variational-Output
[Eg. (122)], and SV= Squeezed-VariationdEq. (120)]. The nu-

VII. DISCUSSION OF THE INTERFEROMETERS’ NOISE merical values are foe~2R=0.1 ande, =0.01.
SPECTRA
. . IFO " a
The noise spectra for our three lossy QND interferom-
eters, Egs(120), (122 and(128), all have the same univer-
sal form—a form identical to that for a conventional broad- Conwv. 1 Vo/TsoL
band interferometer, E¢27). Only the parameterg ando g Je R=0.32 Vo/Tsor
characterizing the noise differ from one interferometer to any,o e4=0.32
other. This universal form can be written as * Jlellsa fo/lsaL
e, 10

SO _ 1
hsa (@) # V2

02 g2 sV (e Re,)=0.18 w i
— 4 , (1303 o/1sQL - o/1sqQL
o> 02 Ve e, V 32

where(), is the following function of angular frequency
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frequency of the noise minimum, i.e. the largerist fixed
M, the larger will be the 8N for inspiraling binaries.

A second factor dictates using large in particular o
=1. This is thermal noise in the interferometer’s test-mass
suspension fibers. The thermal noise scales with frequency as
VO STEM () o ()2 or =)~ depending on the nature of
the dissipation 35]; see the steep dashed curve in Fig. 14. It
seems realistic to expect, in LIGO-III, that this thermal noise
will be at approximately the level shown in the figure, so it
compromises the performance of QND interferometers at
02 05 1 5 5 10 0 =<0.5y=50 Hz[7,36]. Correspondingly, to avoid the ther-

Qry mal noise significantly debilitating th&/N for inspiraling
binaries, it will be necessary to have=1.

FIG. 14. Noise curves for SQL interferometers with noise Becauseo scales as/l ./l am /ISQL for all interferometer de-
ini = i . . 0 .
minima x=0.18 and various values of the frequency parameter signs, larges entails large laser power. In particular=1

The vertical axis is weighted by(/vy so the curves give an indi- requireSIOZISQL; cf. Table II. For our fiducial parameters

cation of the relative noise in searches for waves from |nsp|ralmz(r.|_able ), 1sqi=10 KW, which corresponds to an optical

binaries; see text. The noise curves are labeled by the pow . . . ) .
. o . power circulating in each of the interferometer’s arm cavities
Io/lsqL required by a squeezed-variational interferometer to

achieve the givew.

SQL: | SQL/Z _ mCLy3
e = L/c | 8wy

=0.62 MW. (132
terferometer achieve the same=0.32, while the squeezed-

vanatmn_ql interferometer achieves a r_noderately _Iov,uer To construct mirrors capable of handling this huge power
=0.18. (iii) The frequency), =o at which the minimum iy e an enormous technical challenggven though this is
noise is achieved is proportional tdl o /1 sqL- (Recall that 555 5ximately the circulating power contemplated for LIGO-
IsqL is the input power required for a conventional interfer- ) 1o operate with a circulating power much larger than this
ometer to reach the SQat the angular frequencf)=y  might not be possible. Therefore, it may be important in
=2mx100 Hz, i.e. afl,=1; to do so, the conventional | |GO.Iil to achieves=1 while keepingl /1 5o not much
interferometer must haver=1. (iv) For I,=Isq , the larger than unity.

squeezed-input interferomet_er ha_sl, but the variational- The squeezed-input interferometer, with dts- /—IO/ISQL
output and squeezed-variational interferometers heavel,  (raple 1)) is the most attractive from this point of vieland
which means that the minimum of the noise curve if)at 550 in terms of its required filter and squeeze-phase accura-
<y=100 Hz. To pusfr up to unity, i.e,, to push the noise- cijes; cf. end of Sec. VI Fand the variational-output with its
curve minimum up taf) =y, requireslo/lsq, e, =10 o=\ \/ZIO/ISQ,_: V0.1, /15, is the least attractive. The

in a variational-output interferometer, and,/lsq. squeezed-variational D rferometer with
= e R/e, =3.2 in a squeezed-variational interferometer. q ' 7

The importance of pushing up to unity or higher is = e, le” R, /15qi=10.32,/I 5oL requires a modestly
explained in Fig. 14. This figure requires some discussion: higher laser power to reactt=1 than the squeezed-input

The most promising gravitational waves for LIGO are [and requires better filter and squeeze-phase acculaoigs
those from the last few minutes of inspiral of black-hole—it is capable of a lower noise minimuny= (e ?Re, )"
black-hole binaries, black-hole—neutron-star binaries, ang=0.18 vsu=/e 2R=0.32 for squeezed-input.
neutron-star—neutron-star binaries. The amplitude signal-to- This suggests a research and development strategy: Focus

noise ratioS/N produced by these waves is given by on input squeezing as a key foundation for LIGO-il is
needed both for squeezed-input and squeezed-variational in-
s? =[h|? dQ = |Qh|? dinQ terferometers and in paralleli) develop the technology and
W:4Jo §§=4j_mﬁ oy (13D techniques for the FD homodyne detection required by

squeezed-variational configuratioris) work to drive down
- ) optical losses to the levelg~ €~ €ps™~ €mm™ €10 €pg
whereh is the Fourier treinsform of the waveforht). For g o1 [Eq. (92)], and (since ponderomotive squeezing,
the inspiraling binary|Qh| is nearly independent of fre- which underlies all our QND interferometers, has never been
quency throughout the LIGO bar®4], so the signal-to- seen (iii) carry out experiments in a small test appratus to
noise ratio is optimized by makingS,(€2) as small as pos- demonstrate ponderomotive squeezing and to search for un-

sible over as wide a range of {h as possible. expected obstacles and imperfections in it.
Figure 14 plotsyQS,(Q) as a function ofQ)/y using If both input squeezing and FD homodyne detection can

logarithmic scales on both axes, and using the minimumbe implemented successfully, then the squeezed-variational
noise parameteru=0.18 corresponding to our fiducial interferometer is likely to achieve better performance than
squeezed-variational interferometdthough the specific any other configuration discussed in this paper, despite its
value of u is irrelevant to our present discussjoffirom the  apparent need for higher laser powerg.,l,/lgq=3.2 to
shapes of the curves it should be evident thatlarger is the  achieveo=1 compared td,/Isq =1 for squeezed input,
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with our fiducial parameteyslif powers as high as,/lsq. (i) What accuracies and other characteristics are needed
=3.2 cannot be handled, then we can operate the squeezd@* the interferometers’ new elements: the circulator, filter
variational interferometer with a lower power without much cavities* and input squeezing? How can these be achieved?
loss of performance. For example, how stable must be the local oscillator for the
Consider, for example,\/ﬁlthL evaluated atQQ=0¢  conventional homodyne detector, and can it be achieved sim-
=2mwx100 Hz, as a function of,/lsq in a squeezed- ply by tapping some light off the interferometer’s output or
variational interferometer with our fiduci@ 2®=0.1 and input beam?
€, =0.01. The optimal /I 5o, =3.2 produces,/Sy(y)/hsq. (iii) If the filter cavities are placed in the same long
=0.18; pushind,/l 5o down by a factor 2, to 1.6, increases vacuum tubes as the interferometer’s arm cavitieigh their
the noise af) =y by only 10 percent, to 0.20; pushing down enormous circulating powgrwhat will be the nature and
all the way tol,/lsq =1 increases the noise to only level of noise due to scattering of light from the test-mass
VSh(¥)/hsq=0.23, which is still significantly lower noise cavites to the filter cavitiesdVe thank Eanna Flanagan for
than the optimized squeezed-input interferomd®B2 at  raising this issue.
lo/lsqL=1). (iv) Can the filter cavities be made to serve multiple pur-
It is worth recalling that for noncosmological sourcesposes? For example, is it possible to use a single optical
(sources at distances3 Gpc), the volume of the universe cavity for both filters, e.g., with the two filters based on two
that can be searched for a given type of source scales as thiferent polarization stategfor which the filter might be
inverse cube of the amplitude noise, so a noise levelade to behave differently via birefringencer with the
VSi/hsqu=0.18 corresponds to search-volume increase ofyo filters based on different, adjacent longitudinal modes?
1/0.18=180 over a SQL-limited interferometer, i.e., over os another example, could an output filter cavity be used as
LIGO-II. a source of ponderomotively squeezed vacuum for input into
the interferometer’s dark pof?
VIIl. CONCLUSIONS (v) Signal recycling via resonant-sideband extraction

In this paper we have explored three candidate ideas fofRSE) [38] is likely to be a standard tool in LIGO-II7].
QND LIGO-II interferometers: squeezed-input, variational- 1OW can one best implement RSE simultaneously with the
output, and squeezed variational. The squeezed-input aH:oD_ homodyne detection(and Input squeezing of a
squeezed-variational interferometers both look quite promisvariational-output(or squeezed-variationainterferometer?
ing. For our estimated levels of optical loss and levels ofl 37] How can one best achieve the FD homodyne’s filtration
squeezing, and for an input laser power/lsq =1 (the  [which will entail a different frequency dependendg(})
LIGO-II level), the squeezed-input interferometer couldfrom that in this paper’s non-RSE desigps
achieve a noisgx=0.32 of the SQL, with a corresponding (vi) In this paper’s analysis we have made a number of
increaseV=1/0.32=30 over LIGO-II in the volume of the simplifying approximations[e.g., our approximating the
universe that could be searched for a given source, at nophase of the coefficient df in Eq. (B24) by 23 an approxi-
cosmological distances. The squeezed-variational interfemation that fails by a frequency-dependent amount which
ometer could achievg.=0.23 of the SQL with a search- can be nearly as large as one per ¢eAt what level of
volume increase over LIGO-II ob’=80. If the optics can sensitivity do these approximations become problematic
handle a laser powef,/lsq=3.2, then the squeezed- (e.g., for our proposed two-cavity way of achieving the nec-
variational interferometer could reagh=0.18 of the SQL essary FD homodyne detectjprand how can the resulting
and a search-volume increase W#180. These numbers problems be overcome?
scale with the losses, squeezing, and laser power as shown in (vii) Our analysis is based on the crucial assumption that
Table II. the interferometer’s output is strictly linear in its input].

The squeezed-input and squeezed-variational designs akatsko and Vatchani[89] have shown that this is not quite
therefore sufficiently promising to merit serious further correct. In the interferometer’s arms the back-action-induced
study. Some of the issues that need theoretical analysis arenirror displacemeniX produces a phase shift of reflected

(i) How can one incorporate into these interferometer detight given by e ?®¥'¢, which our linearized analysis ap-
signs the various light modulations that are required, in a regbroximates as +2iQX/c [cf. Eq. (B10)]; when the better
gravitational-wave interferometer, (0 make the interferom-  approximation +2iQX/c—2(QX/c)? is used, the result is
eter be shot-noise limiteput the gravitational-wave signal additional, nonlinear noise, which limits the cancellation of
into ~100 Hz sidebands of a MHz modulatidn (i) con-
trol the mirror positions and orientations, ef87].

The filter cavities will require a mechanical stability far less than
that of the arm cavities, since the carrier power in the output light is
13L1GO scientists are currently exploring the possibility of achiev- small and filter mirror displacements of magnitudéiL therefore

ing shot-noise-limited performance in LIGO-Il without this do notimprint a significant signal on the light.
modulation-demodulation. The modulation-demodulation may, in **For ponderomotively squeezed vacuum, the squeeze angle is
fact, be replaced in LIGO-II by homodyne detection at the interfer-frequency dependent, witd¢/d() of the opposite sign to that
ometer output, making it more nearly like our paper’s LIGO-IIl needed by a squeezed-input interferometer. This must be compen-
designs. sated by a filtering different from that discussed in Sec. V.
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the back-action noise by the shot noise and produces a limEundamental Research grants No. 96-02-16319a and No. 97-

[39] 02-0421g(S.P.V).
h3 APPENDIX A: ROTATION AND SQUEEZE OPERATORS
S~ ﬁg—%x 107%h2g, (133 _ (_9
SQL In this paper we make extensive use of squeeze operators

. ) ~and some use of rotation operators. In this appendix we list
on the sensitivity that any of our QND designs can achieveproperties of these operators that are useful in verifying
Here statements made in the text. This appendix is based on the
formalism for 2-photon quantum optics developed by Caves

lsot  1[Tclw,)” . and Schumake26,27.
NSQL:;L%YZE N ~2x10? (134 The rotation operatoR(6¢), which acts on the Hilbert
space of the modes with frequencies- w,= (), is defined
is the number of quanta entering a SQL interferometer inby
time y '~2 ms. The nonlinear limitatior{133) is suffi- R(9)=exd —i6(ata,+a’a )] (A1)

ciently far below the SQL that we need not be concerned

about it. Are there any other, more serious sources of Nongq. (4.33 of [26]]; herea. are the annihilation operators,
linearity that might compromise the performance of these,nq 41 the creation operators for photons in these modes.

interferor_neters? . . This operator is unitary and has the inverse
Experimental studies are also needed as foundations for
any possible implementation of variational-output or R0 =R (6)=R(— ). (A2)

squeezed-variational interferometéd®]. Examples are

(i) Studies of the debilitating effects of very high circulat- The effect of a rotation on the modes’ annihilation operators
ing powers,Wo~ a few MW, and how to control them. is

(ii) A continuation of efforts to achieve large squeezing, _
robustly, via nonlinear optic§33], and exploration of the R(#)a.R'(g)=a.e" (A3)
possibility to do so ponderomotive[#l—44. ]

(i) A continuation of efforts to achieve low levels of [Ed.(4.39 of [26]], and its effect on the two-photon quadra-
losses in optical cavities and interferometers, so as to miniture amplitudesEgs. (6)] is
mize the contamination of squeezed light by ordinar .
vacuum[45]. q g y y R(6)a;R"(9)=a, cosd—a,siné,

(iv) Prototyping of FD homodyne detection by the tech- o .
nigue proposed in this paper: filtration followed by conven- R(0)a;R'(8)=a, sinf+a, coso (Ad)
tional homodyne detection.

In the meantime, and in parallel with such studies, it is[Eq' (4.36 of [26]].
important to push hard on the effort to find practical QND
designs that entail circulating light powers well below 1 MW
[13], and that might be much less constrained by optical r d)=exdr(a.a e 2¢—al af e?¢ A5
losses than the designs explored in this paper. Sr.¢) Hr(a.a- A )] (A5)

The squeeze operator also acts on the Hilbert space of
modes with frequencie® = w,* (2, and is defined by

[Eq. (4.9 of [26]; Eq.(1.8) of [27]]. This squeeze operator is
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o < E2
s lo= g AC=H10sD%, 83
B &
@ °’°§ where the overbar means time averagdote thatD? has
S dimensions Hz= 1/sec)
D&e , D/IN2 & g For all other fielc_js Fhe cla_ssical a_mplitude and sideband
amplitudes are as indicated in the figure; for example, the
D&d DI\2 & fe field going toward the east cavity has classical amplitude
D/\/2 and quadrature amplitudé$, fS.
a b With an appropriate choice of conventid#$], the fields’
junction conditions at the splitter are
FIG. 15. Field amplitudes entering and leaving the beam splitter fn:di *a; fe— dJ 4
(which here is idealized as losslgsShe various amplitudes are ] \E ' ] \/f ’
defined in Egqs(B1)—(B4).
n e n e
APPENDIX B: INPUT-OUTPUT RELATIONS FOR b=J 9 e:gj+9,— (B4)
INTERFEROMETERS N N

In this appendix we shall derive the input-output relations
for the fieldsa; andb; that enter and leave the interferom-
eter's dark port. From the outset we shall include optical
losses in our derivation, thereby obtaining the lossy input-
output relationg97) and(102); the lossless input-output re-  The east and north arm cavities are presumed to be iden-

Herej=1 or 2.

2. Arm cavities and fields

lations (16) then follow by settinge=0. tical, with power reflection and transmission coefficieRts
. . andT for the front mirror, ancR andT for the back mirror.
1. Fields at beam splitter The amplitude reflection and transmission coefficients are

We describe the field amplitudes entering and leaving thehosen be real, with sign§+ VT,— VR, {+VT,— VR}
beam splitter by the notation shown in Fig. (&. Fig. 3.  for light that impinges on a mirror from outside the cavity;
We idealize the beam splitter as lossless in this appendix, anghq {+ (T, + (R}, {+ N \/E} for light that impinges
deal with its losses in the body of the paper in the mannef,om inside the cavity.
sketched in Fig. 11. The amplitude& d of the field enter- — The dominant optical losses are for light impinging on
ing the beam splitter from the laser are defined by the folyyjrrors from inside the cavitycf. Sec. VI B. The influence
lowing formulas for the positive-frequency part of the elec-qf the |osses on the interferometer’s signal and noise are
tric field independent of the physical nature of the losses—whether it

is light scattering off a mirror, absorption in the mirror, or

2mhe D+ fm(d+e“m+d e+i0t)@} transmission through the end mirréWe ignore the effects
0 B 2

(+) = —oe_i“‘ot
" Ac of mirror heating. For computational simplicity, we model
(B1) all the losses as due to finite transmissivity=T+0 of the

end mirror, and correspondingly we set

[cf. Eq. (5)] and for the total electric field

[Amho, R+T=1, R+T=1. (B5)
E =
" Ac The fractional loss of photons in each round trip in the cavity
% do is thenT, and the net fractional loss of photons in the arm
X cog wqt) \/§D+f (dle_lﬂt+d1e+lﬂt)ﬂ cavities is
0
w 4o 20 2T
; —10t Ta+tiQty_ " - =
+Sln(w0t)f0 (d,e +dje )277}. (B2) €= T (B6)

Thus, D is the classical amplitude of the laser liglearrier  cf. Egs.(93) and (94). Recall thatT=0.033 ande~0.0012,
with frequencyw,), d. are the annihilation operators for and also that)~y=Tc/4L [Egs. (11), (94)]; correspond-
the w,= Q) sidebands, and; andd, are the quadrature am- ingly, we shall make the approximations

plitudes for the side bandENotice that the factor out front is

a+/27 in Eq.(B1) but V4 in Eq. (B2), and notice the/2D T<T=4yL/c~QL/c<1 (B7)
in Eg. (B2).] The light powerl, impinging on the beam
splitter is related to the classical amplitubeby throughout our analysis.
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L+X Adrhw, |2
2D 4 ; Ecarrie™ Ac ?\/ED cogw,[t—2X(t)/c])

D ¢ 2D 4 ;0L
5 f 0 J 7P & jelsaic

" Adrhw, [4 D( )

i . . =1/———1\/= D| cosw
D 2 D . 0
Fes Vgpar 2D el Ac VT
. 20 [t .. .dQ

FIG. 16. Field amplitudes entering and leaving an arm cavity. +sin wotTf_ Xe 'mﬁ)- (B9)

The cavity’s front-port input and output amplitudBs f, andg are

defined in Eqs(B3) and(B4) and Fig. 15, and its back-portinpgt  Comparing with the standard expression for the field at the
is defined in Eq(B11). location of the unperturbed end mirrpEq. (B2) with the

i ) ) amplitude changes indicated in the lower right of Fig. 16,
Figure 16 shows an arm cavity and the amplitudes of th%—>(2/\/§)(D/\/§) and d,-—>kje*'m’°], we obtain the fol-

fields that impinge on or depart from its mirrors. The ampli-|,\ing expression for the field fed from the carri2into the
tudes are those at thfront or back mirror location, and the sideband amplitudel;

mirrors, like the beam splitter, are idealized as infinitesimally
thin. 2 ®

For pedagogical simplicity, the distance from the beam Sk;=0, Sky=-——=D—
splitter to the front mirror of each arm cavity is set to an VT
integral multiple of the carrier wavelength and is assumed t@rpjs acts as a source term in the standard junction condition
be far smaller thaw/() (the wavelength associated with the o, the back mirror:
sidebandps This means that there are no net phase shifts of
the light in traveling between the beam splitter and the cavi- kje—iQL/C: \/EjjeiﬂL/C+ ﬁqj + 5K . (B11)
ty’s front mirror; i.e., the field amplitude®/\2&f (or _ _ . _
D/+2&q) arriving at(or departing fromthe mirror are the Note t_hatqj is the_ noise-producing vacuum fluctuation that
same as those departing frdor arriving aj the beam split- leaks into the cavity as a result of the optical losses.
ter; cf. Figs. 16 and 15.

The cavity’s length is adjusted to an integral number o
carrier wavelengths so there is no carrier phase shift from By combining the front-mirror and back-mirror junction
one end of the cavity to the other, and inside the cavity theonditions(B8) and (B11) we obtain for the side-band am-
carrier amplitude is amplified by the standard resonance faglitude in the cavity
tor 2/JT. (Losses are small enough to be of little importance
for the carriei. Because the side bands inside the cavity have ﬁfj +JRELE( \qu + 8k;)
a frequency dependengg.-e*'mcos@ot) at the front mirror ji= = .
location [cf. Eq. (B2)], they propagate down the cavity as 1— VRRe? e

gje """ Dcog wy(t—2)] and upon reaching the back mirror Eauati JR= B
h M ) thev h ired the oh quationgB7) and yR=y1-T=1-0.033=1 allow us to
(where Cofwg(t—2)]=cog wt]), they have acquired the phase make the approximationgRe**/°~1 in the numerator and

iQL/c.
[using Eq.(11)]

=X (B10)

f 3. Cavity’s internal field and radiation-pressure fluctuations

(B12)

shift indicated in the figureg;e ; and similarly for thek;
field propagating in the other direction.
The standard junction conditions at the front mirror imply

that 1-VRReZ e~ (2L/c)(y, —iQ), (B13)

v =v(1+€l2) (B14)

ij=VTfi+VRk, g;=—VRfj+\Tk. (BS8)
in the denominatofaccurate to better than 1 percent for all

We denote byX(t) the change of arm length produced by () of interest to uj thereby bringing Eq(B12) into the form
radiation pressure and the gravitational waves, anc lig

Fourier transform. The oscillatini(t) pumps carrier light . JT(fj+ Vel2q) + 5k B1S
into the side bands. More specifically, in traveling from the Ii= (2L/c)(y, —iQ) (15

front mirror z=0 to the perturbed positioa=L + X(t) of _

the back mirror, then reflecting and propagating to the unpemwhere we have usetl=1/2¢T. The cavity’s internal electric

turbed locatiorz=L, the carrier field acquires the fotth field E;, is expressionB2) with D— (2/\T)(D/+/2) [Eq.
(B9)] anddj— j; [expressionB15)]; cf. Fig. 16. The power

%Here we have neglected the attenuation of the carrier field due to
the arm-cavity losses. This neglect is in the same spirit as our igtion factop—i.e., D X (1— 1/2¢) for the effect of arm-cavity losses.
noring attenuation in the input optics, in the beam splitter, and inEquivalently, it would dictate replacing, by I, (1— power at-
mode matching into the arm cavities. Including these attenuationtgenuation factor in &£, K, , and all our formulas for the
would simply changé® in Eq. (B9) to DX (1—1/2 power attenua- gravitational-wave noise.
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circulating in the cavity is thisEﬁnlmr)Ac, and consists of
two parts, a steady classical piece

W ~14D? _2I 12 816
ae=p T Awo=glo=y g (B1O
and a fluctuating piece
Fw ohwo(fatVel2ay) He.
OWeire= (L/c)(y, —iQ) 277
(B17)

where H.c. means Hermitian conjugdsedjoint of the pre-
vious term.

4. Mirror motion
The circulating-power fluctuationd17) produce a fluc-
tuating radiation-pressur@ack-action force

FBAIZMCirC/C (818)

PHYSICAL REVIEW D 65 022002

Below we shall also need the following expression for the
difference of the two arms’ sideband fields produced by the
mirror motions’ coupling to the carrier:

§k” oks \[

This follows from Eqs.(B10), (B3) and(12).

lo wox

B23
hw, C 823

5. Cavity output

The field exiting from the(north or east cavity is ob-
tained by combining Eq¥B8), (B11) and(B12):

\/ﬁezim/c_\/ﬁ . (\/_q]Jr\/—&k)elm/c
gj_l_,/R'“ReziQL/cX 1-JRRe2iOLE

(B24)

Inserting Eq.(B13) for the denominator and analogous ex-
pressions for the numerator, and discarding terms that are
higher order than linear in the losses, we bring @24) into

the form

on each mirror. This force is equal and opposite on the cavi-

ty’'s two mirrors and, along with the gravitational waves, it
produces the following acceleration of the mirror separation:

d?X(t)
dt®

1
:Enne

d?h(t)

46\Ncirc(t)
dt? '

mc

(B19

Hereh(t) is the gravitational-wave fiel@projected onto the
interferometer’s armsand 7, is + 1 for the north arm and
—1 for the east arnfone arm is stretched while the other is
squeezed

Below we will need an expression for tl{Eourier trans-
form of the arm-length differencex=X,,—X.. It can be

obtained by Fourier transforming the equation of motion

(B19), solving for X (i.e., X, or X.), inserting expression
(B17) for 6W,,, and then taking the difference of the north
and east arms. The result is

[cf. Eq.(15)], where
_4\/2|0hw0(a1+ E/an)

mO2L(y, —iQ)

= \/]C*/ZLhSQL(al‘I‘ \/anl)ei‘g*.

XBA™

(B21)

Here we have introduced the quadrature amplitude for the

difference of the arms’ noise fields

qf—ay
n;

V2
and have used EdqB4) for f] andf{, and Eqs(99), (98),

(19) and (20) for the coupling constant, , the phases, ,
the SQL power g and the standard quantum linfitg, .

(B22)

(c/2L)2T

1) . A
i=|1-5€&|e?Pf+ge'Pg; +
9 ( 2 ) J Ve % 'yi—l—Qz

where B, is given by Eq.(98) and & by Eq. (100).

6. Beam splitter output

By combining Egs(B4), (B25), and(B22), we obtain for
the dark-port output of the beam splitter

1 . )
bj: ( 1- 58 ajezlﬁ+ \/Enlelﬁ

(c/2L)?T [ ok}~ oks

v+a?l 2
Inserting 5k7"°=0 [Eq. (B10)] and our expressio(B23) for
the difference of théfk,’s, and inserting EqgB20) for x and

Egs.(99), (20), (B14) for K, , hsoL, v« we obtain for
the output fields:

) elhx, (B26)

1 . .
b1=(1—§5 a,e%8+ \Jen €', (B273)
1 . _
by=| 1- 3¢ a,e2 P+ \[en,e'P
h+Xxga/L)\ .
+V2K, | — BA )e'ﬂ*. (B27b)
SQL

By inserting expressioriB21) for the back-action-induced
mirror displacemenkg,, we obtain the input-output rela-
tions quoted in the text: Eq§97) and(101) with losses, and
Egs.(16) in the lossless limit.
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APPENDIX C: FILTER PARAMETERS Here we have used definitiq@9a of the constanP.
Equations(C6) are four equations for the four unkown

filter parameters: the fractional frequency offséts ¢

and the half bandwidths,, &, . In the next four para-

graphs we shall explore the consequences of these four equa-

In our discussion of FD homodyne detecti@ec. V), we
derived the following requirement for the conventional ho-
modyne phas# and the filter parameteig and §; (with J

=1 and Il; tions, arriving finally at the solutio(89) for &, &,, &,, and
tand(Q)= w: a’_( o apt a|+2a||++a|| o Ig(iqvfar][i(i)nnz(h:%;)eixr:ip|ies ot

(€D 51 Sh=—E&ulé . (C7)
[Eas.(81), (86), and(83)], where Equation (C6b) implies that (1 &&,)%=(&+&,)2. It

turns out that one of the frequency offsets is positive and the
other is negativécf. Fig. 10; we choos€, to be the positive

[Eq. (88)]. In this appendix, we shall show that this require-©ONe- It also turns out thag, + ¢, is positive (cf. Fig. 10.
ment is satisfied by the parameter choices asserted in tffgonsequently, we can take the square root of the above equa-

aj+=arctan&; =0/ 5;) (C2

text: Eqs.(85) and(89). tion to obtain
We initially regard the parametes &;, and §; as un- B
known. By inserting Eq(C2) into Eq. (C1) and invoking 1I=&&u=&+an, (Cy

some trigonometric identities, we obtain the requirement which enables us to express the frequency offsets in terms of

(Ro— o COtA) + (Ry— 1, cOtA) Q2+ Ry Q4 each other.
(Rocotf+1g)+(Rycotd+1,)Q%+R, cotoQ* ; _1-4& _1-¢ 9
Y02+ 04 it N 1+g
= (C3
A* Equation(C60), when combined with Eq$C7) and(C8),
implies that
Here Ry+R,0%+R,0% is the real part andly+1,02 impies tha
is the imaginary part of (%itane,,)(1+itang,_)(1 iy iy 2
+itana ) (1+1i tana, _). More specifically, 8 [ T|H<1_§'2)+ ?I'(l—gﬁ)}
== . (C10
Roe=1- &0~ &~ 46 + €83, (c4a p &t (10
Ro=(1— &)/ 85+ (1— &)1 87, (C4b  We shall now combine this equation with E¢E9) to obtain
Egs. (89 for the frequency offsetg, and &, in terms of P
R,=1/(626%), (C40  =44*A*. Our first step is to defind. by Egs.(89¢ and
(89d), which are equivalent to
lo=2(&+ &) (1=&én), (C40
B & B &
1,=2&,16%+2¢&1 8. (Cde A+=—§|2_1, A-= 21 (C1Y

To get rid of theQ* term in the denominator of E4C3),

we must set Note that the relatioiC9) betweené, and¢, is equivalent to

6=m/2, so cot=0. (C5) 4A A =1. (C12

(We cannot seR,=0 since that would require an infinite BY using Eqs.(C9), (C11) and(C12), we can reexpress the
bandwidth for one or both of the filtejsTo get rid of theQ?  right side of Eq.(C10) solely in terms ofA, :
term in the denominator and the constant term in the numera-

tor, and to make th€? and* terms in the numerator have 8 _ (4A%-1)? (13
the correct coefficients, we must set P A (4A%+1)
1,=0, (C6a  |tis convenient to defin€ by Egs.(89b), which are equiva-
lent to
Ro=0, (C6b)
A, +A_=2Q/P. (C14
R3/(1oR4) =y A4=4IP, (C60
Using EQgs.(C12 and (C14), we can rewrite Eq(C13 in
R,/Ry= 2. (C60d)  terms ofQ instead ofA, :
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2 20 P c1
P~ P 20" (€19
which can be solved fo® as a function ofP
1+1+P2
Q:T' (Cle

This is the relation asserted in the text, E§9a, and it
completes our derivation of Eq$8989—(89d for the fre-
guency offsets, and ¢, in terms ofP.

Turn, finally, to the consequences of EE6d), which
says

V2= 8X(1—E2)+ 83(1— £3). (C17

PHYSICAL REVIEW D 65022002
By eliminating §,, with the aid of Eq.(C7), we obtain

1-§ 1-§
¢ &

(C18

72:5|2§|(

Using Egs.(C11), (C12), and(89b), we can rewrite this as

Y V8gQ

which is the formula for the half bandwidtf given in the
text, Eq.(898. The corresponding formula faf, , Eq.(89f),
follows directly from Egs(C19 and(C7).

(C19
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