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The LIGO-II gravitational-wave interferometers~ca. 2006–2008! are designed to have sensitivities near the
standard quantum limit~SQL! in the vicinity of 100 Hz. This paper describes and analyzes possible designs for
subsequent LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad
band interferometer~without signal recycling!, except for new input and/or output optics. Three designs are
analyzed:~i! a squeezed-input interferometer~conceived by Unruh based on earlier work of Caves! in which
squeezed vacuum with frequency-dependent~FD! squeeze angle is injected into the interferometer’s dark port;
~ii ! a variational-outputinterferometer~conceived in a different form by Vyatchanin, Matsko and Zubova!, in
which homodyne detection with FD homodyne phase is performed on the output light; and~iii ! a squeezed-
variational interferometerwith squeezed input and FD-homodyne output. It is shown that the FD squeezed-
input light can be produced by sending ordinary squeezed light through two successive Fabry-Pe´rot filter
cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the
output light through two filter cavities before ordinary homodyne detection. With anticipated technology
~power squeeze factore22R50.1 for input squeezed vacuum and net fractional loss of signal power in arm
cavities and output optical traine* 50.01) and using an input laser powerI o in units of that required to reach
the SQL~the planned LIGO-II power,I SQL), the three types of interferometer could beat the amplitude SQL at

100 Hz by the following amountsm[ASh/ASh
SQL and with the following corresponding increaseV51/m3 in

the volume of the universe that can be searched for a given noncosmological source:Squeezed input—m
.Ae22R.0.3 andV.1/0.33.30 usingI o /I SQL51. Variational-output—m.e

*
1/4.0.3 andV.30 but only if

the optics can handle a ten times larger power:I o /I SQL.1/Ae* 510. Squeezed varational—m
51.3(e22Re* )1/4.0.24 andV.80 usingI o /I SQL51; andm.(e22Re* )1/4.0.18 andV.180 usingI o /I SQL

5Ae22R/e* .3.2.
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I. INTRODUCTION AND SUMMARY

In an interferometric gravitational-wave detector, las
light is used to monitor the motions of mirror-endowed te
masses, which are driven by gravitational wavesh(t). The
light produces two types of noise: photonshot noise, which it
superposes on the interferometer’s output signal, and flu
ating radiation-pressure noise, by which it pushes the tes
masses in random a manner that can mask their gra
wave-induced motion. The shot-noise spectral density sc
with the light powerI o entering the interferometer asSh

shot

}1/I o ; the radiation-pressure noise scales asSh
rp}I o .

In the first generation of kilometer-scale interferomet
@e.g., the Laser Interferometric Gravitational Wave Obser
tory’s LIGO-I interferometers, 2002–2003@1##, the laser
power will be low enough that shot-noise dominates a
radiation-pressure noise is unimportant. Tentative plans
the next generation interferometers~LIGO-II, ca. 2006–
2008! include increasingI o to the point that,Sh

rp5Sh
shot at the

interferometers’ optimal gravitational-wave frequenc

*Present address: Department of Astronomy, University of C
fornia, Berkeley, California 94720.
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V/2p;100 Hz. The resulting net noiseSh5Sh
rp1Sh

shot

52Sh
shot is the lowest that can be achieved with conventio

interferometer designs. Furtherincreasesof light power will
drive the radiation-pressure on upward, increasing the
noise, whilereductionsof light power will drive the shot
noise upward, also increasing the net noise.

This minimum achievable noise is called the ‘‘standa
quantum limit’’ ~SQL! @2# and is denotedSh

SQL[hSQL
2 . It can

be regarded as arising from the effort of the quantum pr
erties of the light to enforce the Heisenberg uncertainty p
ciple on the interferometer test masses, in just the manne
the Heisenberg microscope. Indeed, a common derivatio
the SQL is based on the uncertainty principle for the t
masses’ position and momentum@3#: The light makes a se
quence of measurements of the differencex of test-mass po-
sitions. If a measurement is too accurate, then by state re
tion it will narrow the test-mass wave function so tightly (Dx
very small! that the momentum becomes highly uncerta
~large Dp), producing a wave function spreading that is
rapid as to create great position uncertainty at the time of
next measurement. There is an optimal accuracy for the
measurement—an accuracy that produces only a factorA2
spreading and results in optimal predictability for the ne
measurement. This optimal accuracy corresponds tohSQL.

i-
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Despite thisapparentintimate connection of the SQL to
test-mass quantization, it turns out that the test-mass qu
zation hasno influence whatsoeveron the output noise in
gravitational-wave interferometers@4#. The sole forms of
quantum noise in the output are photon shot noise and p
ton radiation-pressure noise.1

Braginsky~the person who first recognized the existen
of the SQL for gravitational-wave detectors and other hig
precision measuring devices@5#! realized, in the mid 1970s
that the SQL can be overcome, but to do so would requ
significant modifications of the experimental design. Brag
sky gave the name quantum nondemolition~QND! to de-
vices that can beat the SQL; this name indicates the abilit
QND devices to prevent their own quantum properties fr
demolishing the information one is trying to extract@6#.

The LIGO-I interferometers are now being assembled
the LIGO sites, in preparation for the first LIGO
gravitational-wave searches. In parallel, the LIGO scient
community~LSC! is deeply immersed in research and dev
opment for the LIGO-II interferometers@7#, and a small por-
tion of the LSC is attempting to invent practical designs
the third generation of interferometers, LIGO-III. This pap
is a contribution to the LIGO-III design effort.

In going from LIGO-II to LIGO-III, a large number of
noise sources must be reduced. Perhaps the most seriou
the photon shot noise and radiation pressure noise~‘‘optical
noise’’!, and thermal noise in the test masses and their
pensions@7,8#. In this paper we shall deal solely with th
shot noise and radiation pressure noise~and the associate
SQL!; we shall tacitly assume that all other noise sourc
including thermal noise, can be reduced sufficiently to ta
full advantage of the optical techniques that we propose
analyze.

Because LIGO-II is designed to operate at the SQL,
moving to LIGO-III there are just two ways to reduce th
optical noise: increase the massesm of the mirrored test
masses~it turns out thathSQL

2 }1/m), or redesign the interfer
ometers so they can perform QND. The transition fro

1In brief, the reasons for this are the following: The interfero
eter’s measured output, in general, is one quadrature of the ele
field @the bz of Eqs. ~54! and ~10! below#, and this output observ
able commutes with itself at different times by virtue of Eqs.~7!
with a→b. This means that the digitized data points~collected at a
rate of 20 kHz! are mutually commuting Hermitian observable
One consequence of this is that reduction of the state of the in
ferometer due to data collected at one moment of time will
influence the data collected at any later moment of time. Ano
consequence is that, when one Fourier analyzes the interferom
output, one puts all information about the initial states of the t
masses into data points near zero frequency, and when one
filters the output to remove low-frequency noise~noise at f
5V/2p&10 Hz), one thereby removes from the data all inform
tion about the test-mass initial states; the only remaining test-m
information is that associated with Heisenberg-picture change
the test-mass positions atf *10 Hz, changes induced by extern
forces: light pressure~which is quantized! and thermal- and
seismic-noise forces~for which quantum effects are unimportant!.
See Ref.@4# for further detail.
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LIGO-I to LIGO-II will already ~probably! entail a mass in-
crease, fromm511 kg to m530 kg, in large measure be
cause the SQL at 11 kg was unhappily constraining@7#. Any
large further mass increase would entail great danger of
acceptably large noise due to energy coupling through
test-mass suspensions and into or from the overhead sup
~the seismic isolation system!; a larger mass would also en
tail practical problems due to the increased test-mass dim
sions. Accordingly, there is strong motivation for trying
pursue the QND route.

Our Caltech and Moscow University research groups
jointly exploring three approaches to QND interferome
design:

First: The conversion of conventional interferometers in
QND interferometers by modifying their input and/or outp
optics~this paper!. This approach achieves QND by creatin
and manipulating correlations between photon shot noise
radiation pressure noise; see below. It is the simplest of
three approaches, but has one serious drawback: an un
fortably high light power,Wcirc*1 MW, that must circulate
inside the interferometers’ arm cavities@9#. It is not clear
whether the test-mass mirrors can be improved sufficientl
handle this high a power in a sufficiently noise-free way.

Second: A modification of the interferometer design~in-
cluding using two optical cavities in each arm! so as to make
its output signal be proportional to the relative speeds of
test masses rather than their relative positions@10,11#. Since
the test-mass speed is proportional to momentum, and
mentum ~unlike position! is very nearly conserved unde
free test-mass evolution on gravity-wave time scale
(;0.01 sec), the relative speed is very nearly a ‘‘QND o
servable’’ @12# and thus is beautifully suited to QND mea
surements. Unfortunately, the resultingspeed-meter interfer-
ometer, like our input-output-modified interferometer
suffers from a high circulating light power@9#, Wcirc
*1 MW.

Third: Radical redesigns of the interferometer aimed
achieving QND performance withWcirc well below 1 MW
@13#. These, as currently conceived by Braginsky, Go
detsky and Khalili, entail transfering the gravitational-wa
signal to a single, small test mass via light pressure,
using a local QND sensor to read out the test mass’s mot
relative to a local inertial frame.

In this paper we explore the first approach. The foun
tion for this approach is the realization that:~i! photon shot
noise and radiation-pressure noise together enforce the
only if they are uncorrelated; see, e.g., Ref.@4#; ~ii ! when-
ever carrier light with side bands reflects off a mirror~in our
case, the mirrors of an interferometer’s arm cavities!, the
reflection ponderomotively squeezesthe light’s side bands,
thereby creating correlations between their radiation-pres
noise in one quadrature and shot noise in the other;~iii ! these
correlations are not accessed by a conventional interfer
eter because of the particular quadrature that its photod
measures;~iv! however, these correlationscan be accessed
by ~conceptually! simple modifications of the interferom
eter’s input and/or output optics, and by doing so one c
beat the SQL. These correlations were first noticed explic
by Unruh @14#, but were present implicitly in Braginsky’s
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CONVERSION OF CONVENTIONAL GRAVITATIONAL- . . . PHYSICAL REVIEW D 65 022002
earlier identification of the phenomenon of ponderomot
squeezing@15,16#.

In this paper we study three variants of QND interfero
eters that rely on ponderomotive-squeeze correlations:

~i! Squeezed-input interferometer. Unruh @14# ~building
on earlier work of Caves@17#! invented this design nearly 2
years ago, and since then it has been reanalyzed by se
other researchers@18,19#. In this design, squeezed vacuum
sent into the dark port of the interferometer~‘‘modified in-
put’’ ! and the output light is monitored with a photodetec
as in conventional interferometers.

For a broad-band squeezed-input interferometer,
squeeze angle must be a specified function of frequency
changes significantly across the interferometer’s opera
gravity-wave band.~This contrasts with past experimen
employing squeezed light to enhance interferometry@20,21#,
where the squeeze angle was constant across the ope
band.! Previous papers on squeezed-input interferome
have ignored the issue of how, in practice, one might achi
the required frequency-dependent~FD! squeeze angle. In
Sec. V C, we show that it can be produced via ordina
frequency-independent squeezing~e.g., by nonlinear optics
@22#!, followed by filtration through two Fabry-Pe´rot cavities
with suitably adjusted bandwidths and resonant-freque
offsets from the light’s carrier frequency. A schematic d
gram of the resulting squeezed-input interferometer is sho
in Fig. 1 and is discussed in detail below. Our predic
performance for such an interferometer agrees with tha
previous research.

~ii ! Variational-output interferometer. Vyatchanin, Matsko
and Zubova invented this design conceptually in the ea
1990s@23–25#. It entails a conventional interferometer inp
~ordinary vacuum into the dark port!, but a modified output:
instead of photodetection, one performs homodyne detec
with a homodyne phase that depends on frequency in es
tially the same way as the squeeze angle of a squeezed-
interferometer. Vyatchanin, Matsko and Zubova did n

FIG. 1. Schematic diagram of a squeezed-input interferome
02200
e

-

ral

r

e
at
g

ting
rs
e

,

y
-
n

d
of

ly

on
n-

put
t

know how to achieve FD homodyne detection in practice,
they proposed approximating it by homodyne detection w
a time-dependent~TD! homodyne phase. Such TD homo
dyne detection can beat the SQL, but~by contrast with FD
homodyne! it is not well-suited to gravitational-wave
searches, where little is known in advance about the grav
tional waveforms or their arrival times. In this paper~Sec. V
and Appendix C!, we show that the desired FD homodyn
detection can be achieved by sending the interferomet
output light through two successive Fabry-Pe´rot cavities that
are essentially identical to those needed in our variant o
squeezed-input interferometer, and by then performing c
ventional homodyne detection with fixed homodyne angle
schematic diagram of the resulting variational-output int
ferometer is shown in Fig. 2.

~iii ! Squeezed-variational interferometer. This design~not
considered in the previous literature2! is the obvious combi-
nation of the first two; one puts squeezed vacuum into
dark port and performs FD homodyne detection on the o
put light. The optimal performance is achieved by squeez
the input at a fixed~frequency-independent! angle; filtration
cavities are needed only at the output~for the FD homodyne
detection! and not at the input; cf. Fig. 2.

In Sec. IV we compute the spectral density of the no
for all three designs, ignoring the effects of optical loss
We find ~in agreement with previous analyses@18,19#! that,
when the FD squeeze angle is optimized, the squeezed-i
interferometer has its shot noise and radiation-pressure n

2A design similar to it has previously been proposed and analy
@24# for a simple optical meter, in which the position of a movab
mirror ~test mass! is monitored by measuring the phase or som
other quadrature of a light wave reflected from the mirror. In t
case it was shown that the SQL can be beat by a combinatio
phase-squeezed input light and TD homodyne detection.

r.
FIG. 2. Schematic diagram of a squeezed-variational inter

ometer. A variational-output interferometer differs from this sole
by replacing the input squeezed vacuum by ordinary vacuum.
2-3
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KIMBLE, LEVIN, MATSKO, THORNE, AND VYATCHANIN PHYSICAL REVIEW D 65 022002
both reduced in amplitude~at fixed light power! by e2R,
whereR is the ~frequency-independent! squeeze factor; se
Fig. 2 below. This enables a lossless squeezed-input inte
ometer to beat the SQL by a factore2R ~when the power is
optimized! but no more. By contrast, the lossles
variational-output interferometer, with optimized FD hom
dyne phase, can have its radiation-pressure noise compl
removed from the output signal, and its shot noise will sc
with light power as 1/AI o as for a conventional interferom
eter. As a result, the lossless variational-output interferom
can beat the SQL in amplitude byAI SQL/2I o, whereI SQL is
the light power required by a conventional interferometer
reach the SQL. The optimized, lossless, squeezed-variati
interferometer has its radiation-pressure noise completely
moved, and its shot noise reduced bye2R, so it can beat the
SQL in amplitude bye2RAI SQL/2I o.

Imperfections in squeezing, in the filter cavities, and
the homodyne local-oscillator phase will produce errorsDl
in the FD squeeze anglel(V) of a squeezed-input o
squeezed-variational interferometer, andDz in the FD homo-
dyne phasez(V) of a variational-output or squeezed
variational interferometer. At the end of Sec. VI E, we sh
show that, to keep these errors from seriously compromis
the most promising interferometer’s performance,uDlu must
be no larger than;0.05 radian, anduDzu must be no larger
than ;0.01 radian. This translates into constraints of or
five percent on the accuracies of the filter cavity finesses
about 0.01 on their fractional frequency offsets and on
homodyne detector’s local-oscillator phase.

The performance will be seriously constrained by u
squeezed vacuum that leaks into the interferometer’s op
train at all locations where there are optical losses, whe
those losses are fundamentally irreversible~e.g., absorption!
or reversible~e.g., finite transmissivity of an arm cavity’
end mirror!. We explore the effects of such optical losses
Sec. VI. The dominant losses and associated noise pro
tion occur in the interferometer’s arm cavities and FD fil
cavities. The filter cavities’ net losses and noise will dom
nate unless the number of bounces the light makes in the
minimized by making them roughly as long as the arm ca
ties. This suggests that they be 4 km long and reside in
beam tubes alongside the interferometer’s arm cavities
separate the filters’ inputs and outputs, they might bes
triangular cavities with two mirrors at the corner station a
one in the end station.

Our loss calculations reveal the following:
The squeezed-inputinterferometer is little affected by

losses in the interferometer’s arm cavities or in the out
optical train, so long as the fractional energy losse is small
compared to the squeeze factore22R, as is likely to be the
case. However, losses in the input optical train~most seri-
ously the filter cavities and a circulator! influence the noise
by constraining the net squeeze factore22R of the light en-
tering the arm cavities. The resulting noise, expressed
terms ofe22R, is the same as in a lossless squeezed-in
interferometer~discussed above!: With the light power opti-
mized so I o5I SQL, the squeezed-input interferometer c

beat the amplitude SQL by a factorm[ASh/ASh
SQL
02200
er-

,

ely
e

er

o
al

e-

l
g

r
d

e

-
al
er

c-
r
-
is

i-
e
o
e

t

in
ut

.Ae22R.0.3 ~wheree22R.0.1 is a likely achievable value
of the power squeeze factor!.

The variational-outputandsqueezed-variationalinterfer-
ometers are strongly affected by losses in the interfero
eter’s arm cavities and in the output optical train~most seri-
ously: a circulator, the two filter cavities, the mixing with th
homodyne detector’s local-oscillator field, and the photo
ode inefficiency!. The net fractional losse* of signal power
and ~for squeezed-variational! the squeeze factore22R for
input power together determine the interferometer’s op
mized performance: The amplitude SQL can be beat by
amountm5(e22Re* )1/4, and the input laser power require

to achieve this optimal performance isI o /I SQL.Ae22R/e* .
In particular, the variational-output interferometer~no input
squeezing;e22R51), with the possibly achievable loss lev
e* 50.01, can beat the SQL by the same amount as our
timate for the squeezed-input interferometer,m.e

*
1/4.0.3,

but requires ten times higher input optical power,I o /I SQL

.1/Ae* .10—which could be a very serious problem. B
contrast, the squeezed-variational interferometer w
the above parameters has an optimized performancem
.(0.130.01)1/4.0.18 ~substantially better than squeeze
input or variational-output!, and achieves this with an opti
mizing input powerI o /I SQL5A0.1/0.01.3.2. If the input
power is pulled down from this optimizing value t
I o /I SQL51 so it is the same as for the squeezed-input in
ferometer, then the squeezed-variational performance is
bilitated by a factor 1.3, tom.0.24, which is still somewha
better than for squeezed-input.

It will require considerable research and developmen
actually achieve performances at the above levels, and t
could be a number of unknown pitfalls along the way. F
example, ponderomotive squeezing, which underlies all th
of our QND configurations, has never yet been seen in
laboratory and may entail unknown technical difficulties.

Fortunately, the technology for producing squeez
vacuum via nonlinear optics is rather well developed@22#
and has even been used to enhance the performance of
ferometers@20,21#. Moreover, much effort is being investe
in the development of low-loss test-mass suspensions,
this gives the prospect for new~ponderomotive! methods of
generating squeezed light that may perform better than
ditional nonlinear optics. These facts, plus the fact that, i
squeezed-input configuration, the output signal is only m
estly squeezed and thus is not nearly so delicate as
highly-squeezed output of an optimally performin
squeezed-variational configuration, make us feel more co
dent of success with squeezed-input interferometers t
with squeezed-variational ones.

On the other hand, the technology for a squeez
variational interferometer is not much different from that f
a squeezed-input one: Both require input squeezing and
require filter cavities with roughly the same specification
the only significant differences are the need for convention
frequency-independent homodyne detection in the squee
variational interferometer, and its higher-degree of out
squeezing corresponding to higher sensitivity. Therefore,
squeezed-variational interferometer may turn out to be
2-4
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CONVERSION OF CONVENTIONAL GRAVITATIONAL- . . . PHYSICAL REVIEW D 65 022002
as practical as the squeezed-input, and may achieve sig
cantly better overall performance at the same laser powe

This paper is organized as follows: In Sec. II we ske
our mathematical description of the interferometer, includ
our use of the Caves-Schumaker@26,27# formalism for two-
photon quantum optics, including light squeezing~cf. Appen-
dix A!; and we write down the interferometer’s input-outp
relation in the absence of losses@Eq. ~16!; cf. Appendix B for
derivation#. In Sec. III, relying on our general lossless inpu
output relation~16!, we derive the noise spectral densi
Sh( f ) for a conventional interferometer and elucidate there
the SQL. In Sec. IV, we describe mathematically our th
QND interferometer designs and, using our lossless inp
output relation~16!, derive their lossless noise spectral de
sities. In Sec. V, we show that FD homodyne detection
be achieved by filtration followed by conventional hom
dyne detection, and in Appendix C we show that the requi
filtration can be achieved by sending the light through t
successive Fabry-Pe´rot cavities with suitably chosen cavit
parameters. We list and discuss the required cavity par
eters in Sec. V. In Sec. VI, we compute the effects of opti
losses on the interferometers’ noise spectral density;
computation relies on an input-output relation~97! and~101!
derived in Appendix B. In Sec. VII we discuss and compa
the noise performances of our three types of inteferomet
Finally, in Sec. VIII we briefly recapitulate and then list an
briefly discuss a number of issues that need study, as fo
dations for possibly implementing these QND interfero
eters in LIGO-III.

This paper assumes that the reader is familiar with m
ern quantum optics and its theoretical tools as presented
example, in Refs.@28#.

II. MATHEMATICAL DESCRIPTION OF THE
INTERFEROMETER

A. Input and output fields

Figure 3 shows the standard configuration for
gravitational-wave interferometer. In this subsection we
cus on the beam splitter’s input and output. In our equati
we idealize the beam splitter as infinitesimally thin and wr

FIG. 3. Gravitational-wave interferometer with two inputs~the
carrier which has powerI o entering the bright port, and quantum
field a entering the dark port! and one relevant output~the quantum
field b leaving the dark port!.
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the input and output fields as functions of time~not time and
position! at the common centers of the beams as they st
the splitter.

At the beam splitter’s bright port the input is a carri
field, presumed to be in a perfectly coherent state with po
I o;10 kW ~achieved via power recycling@29#!, angular fre-
quencyvo.1.7831015 sec21 ~1.06 micron light!, and ex-
citation confined to the cos(vot) quadrature@i.e., the mean
field arriving at the beam splitter is proportional to cos(vot)#.

At the dark port the input is a~quantized! electromagnetic
field with the positive-frequency part of the electric fie
given by the standard expression

Ein
(1)5E

0

`A2p\v

Ac
ave2 ivt

dv

2p
. ~1!

HereA is the effective cross sectional area of the beam
av is the annihilation operator, whose commutation relatio
are

@av ,av8#50, @av ,av8
†

#52pd~v2v8!. ~2!

Throughout this paper we use the Heisenberg picture,
E(1) evolves with time as indicated. However, our creati
and annihilation operatorsav andav

† are fixed in time, with
their usual Heisenberg-picture time evolutions always f
tored out explicitly as in Eq.~1!.

We split the field~1! into side bands about the carrie
frequencyvo , v5vo6V, with side-band frequenciesV in
the gravitational-wave range;60 to ;6000 sec21 ~10 to
1000 Hz!, and we define

a1[avo1V , a2[avo2V . ~3!

As in Eq.~2!, we continue to use a prime on the subscript
denote frequencyV8: a18[avo1V8 . Correspondingly,
the commutation relations~2! imply for the only nonzero
commutators

@a1 ,a18
†

#52pd~V2V8!, @a2 ,a28
†

#52pd~V2V8!;
~4!

and expression~1! for the dark-port input field becomes

Ein
(1)5A2p\vo

Ac
e2 ivotE

0

`

~a1e2 iVt1a2e1 iVt!
dV

2p
.

~5!

Here ~and throughout this paper! we approximatev06V
.vo inside the square root, sinceV/vo;3310213 is so
small; and we formally extend the integrals overV to infin-
ity, for ease of notation.

Because the radiation pressure in the optical cavities p
duces squeezing, and because this ponderomotive sque
is central to the operation of our interferometers, we sh
find it convenient to think about the interferometer not
terms of the single-photon modes, whose annihilation ope
2-5
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tors area1 and a2 , but rather in terms of the correlate
two-photon modes~Appendix A and Refs.@26,27#! whose
field amplitudes are

a15
a11a2

†

A2
, a25

a12a2
†

A2i
. ~6!

The commutation relations~4! imply the following values
for the commutators of these field amplitudes and their
joints:

@a1 ,a28
†

#52@a2 ,a18
†

#5 i2pd~V2V8! ~7a!

and all others vanish@though some would be of orde
(V/vo) if we had not approximatedvo6V.vo inside the
square root in Eq.~5!; cf. @26,27##:

@a1 ,a18#5@a1 ,a18
†

#5@a1
† ,a18

†
#5@a1 ,a28#5@a1

† ,a28
†

#50,
~7b!

and similarly with 1↔2. In terms of these two-photon am
plitudes, Eq.~5! andE(2)5E(1)† imply that the full electric
field operator for the dark-port input is

Ein5Ein
(1)1Ein

(2)

5A4p\vo

Ac Fcos~vot !E
0

`

~a1e2ıVt1a1
†e1 iVt!

dV

2p

1sin~vot !E
0

`

~a2e2ıVt1a2
†e1 iVt!

dV

2p G . ~8!

Thus, we see thata1 is the field amplitude for photons in th
cosvot quadrature anda2 is that for photons in the sinvot
quadrature@26,27#. These and other quadratures will be ce
tral to our analysis.

The output field at the beam splitter’s dark port is d
scribed by the same equations as the input field, but with
annihilation operatorsa replaced byb; for example,

Eout5A4p\vo

Ac Fcos~vot !E
0

`

~b1e2ıVt1b1
†e1 iVt!

dV

2p

1sin~vot !E
0

`

~b2e2ıVt1b2
†e1 iVt!

dV

2p G . ~9!

We shall find it convenient to introduce explicitly the cosi
and sine quadratures of the output field,E1(t) and E2(t),
defined by

Eout5E1~ t !cos~vot !1E2~ t !sin~vot !;

Ej~ t !5A4p\vo

Ac E
0

`

~bje
2ıVt1bj

†e1 iVt!
dV

2p
. ~10!

B. Interferometer arms and gravitational waves

LIGO’s interferometers are generally optimized for t
waves from inspiraling neutron-star and black-ho
02200
-

-

-
e

binaries—sources that emit roughly equal power into all lo
arthmic frequency intervalsDV/V;1 in the LIGO band
;10 Hz& f [V/2p&1000 Hz. Optimization turns out to
entail making the lowest point in the interferometer’s dime
sionless noise spectrumf 3Sh( f ) as low as possible. Be
cause of the relative contributions of shot noise, radiat
pressure noise, and thermal noise, this lowest point turns
to be at f [V/2p.100 Hz. To minimize the noise at thi
frequency, one makes the end mirrors of the interferomet
arm cavities~Fig. 3! as highly reflecting as possible~we shall
idealize them as perfectly reflecting until Sec. VI!, and one
gives their corner mirrors transmisivitiesT.0.033, so the
cavities’ half bandwidths are

g[
Tc

4L
.2p3100 Hz. ~11!

Here L54 km is the cavities’ length~the interferometer
‘‘arm length’’!. We shall refer tog as the interferometer’s
optimal frequency, and when analyzing QND interferom
eters, we shall adjust their parameters so as to beat the
by the maximum possible amount atV5g. In Table I we list
g,L and other parameters that appear extensively in this
per, along with their fiducial numerical values.

In this and the next few sections we assume, for simp
ity, that the mirrors and beam splitter are lossless; we s
study the effects of losses in Sec. VI below. We assume
the carrier light~frequencyvo) exites the arm cavities pre
cisely on resonance.

We presume that all four mirrors~‘‘test masses’’! have
massesm.30 kg, as is planned for LIGO-II.

We label the two armsn for north ande for east, and
denote byXn andXe the changes in the lengths of the cav
ties induced by the test-mass motions. We denote by

x[Xn2Xe ~12!

the changes in the arm-length difference, and we regardx as
a quantum mechanical observable~though it could equally
well be treated as classical@4#!. In the absence of externa
forces, we idealizex as behaving like a free mass~no pen-

TABLE I. Interferometer parameters and their fiducial values

Parameter Symbol Fiducial value

light frequency vo 1.831015 s21

arm cavity 1
2 -bandwidth g 2p3100 s21

gravitational wave frequency V —
mirror mass m 30 kg
arm length L 4 km
light power to beam splitter I o —
light power to reach SQL I SQL 1.03104 W
gravitational wave SQL hSQL 2310224 (g/V)Hz21/2

opto-mechanical coupling const K ~Io /ISQL!2g4

V2~g21V2!

fractional signal-power loss e* 0.01
max power squeeze factor e22R 0.1
2-6
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dular restoring forces!. This idealization could easily be re
laxed, but because all signals below;10 Hz are removed in
the data analysis, the pendular forces have no influence
the interferometer’s ultimate performance.

The arm-length difference evolves in response to
gravitational wave and to the back-action influence of
light’s fluctuating radiation pressure. Accordingly, we c
write it as

x~ t !5xo1
po

m/4
t1E

2`

1`

~Lh1xBA!e2 iVt
dV

2p
. ~13!

Herexo is the initial value ofx when a particular segment o
data begins to be collected,po is the corresponding initia
generalized momentum,m/4 is the reduced mass3 associated
with the test-mass degree of freedomx, h is the Fourier trans-
form of the gravitational-wave field

h~ t !5E
2`

1`

he2 iVt
dV

2p
, ~14!

andxBA is the influence of the radiation-pressure back acti
Notice our notation:x, xBA , andh are theV-dependent Fou-
rier transforms ofx(t), xBA(t), andh(t).

Elsewhere@4# we discuss the fact thatxo andpo influence
the interferometer output only near zero frequencyV;0,
and their influence is thus removed when the output data
filtered. For this reason, we ignore them and rewritex(t) as

x~ t !5E
2`

1`

~Lh1xBA!e2 iVt
dV

2p
. ~15!

C. Output field expressed in terms of input

Because we have idealized the beam splitter as infinit
mally thin, the input field emerging from it and travelin
toward the arm cavities has the coherent laser light in
same cosvot quadrature as the dark-port field amplitudea1.
We further idealize the distances between the beam sp
and the arm-cavity input mirrors as integral multiples of t
carrier wavelengthlo52pc/vo and as small compared t
2pc/g;300 m.~These idealizations could easily be relax
without change in the ultimate results.!

Relying on these idealizations, we show in Appendix
that the annihilation operatorsbj for the beam splitter’s out-
put quadrature fieldsEj (t) are related to the input annihila
tion operatorsaj and the gravitational-wave signalh by the
linear relations

b15Db15a1e2ib,

3In each arm of the interferometer, the quantity measured is
difference between the positions of the two mirrors’ centers
mass; this degree of freedom behaves like a free particle with
duced massmr5m3m/(m1m)5m/2. The interferometer outpu
is the difference, between the two arms, of this free-particle deg
of freedom; that difference behaves like a free particle with redu
massmr /25m/4.
02200
on

e
e

.

re
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e

er

b25Db21A2K h

hSQL
eib, Db25~a22Ka1!e2ib. ~16!

Here and below, for any operatorA, DA[A2^A&. This
input-output equation and the quantities appearing in it
quire explanation.

The quantitiesDbj are the noise-producing parts ofbj ,
which remain when the gravitational-wave signal is turn
off. The aj impinge on the arm cavities at a frequencyvo
1V that is off resonance, so they acquire the phase shiftb
upon emerging, where

b[arctan~V/g!. ~17!

If the test masses were unable to move, thenDbj would just
be aje

2ib; however, the fluctuating light pressure produc
the test-mass motionxBA , thereby inducing a phase shift i
the light inside the cavity, which shows up in the emergi
light as the term2Ka1 in b2. ~cf. Appendix B!. The quantity

K[
~ I o /I SQL!2g4

V2~g21V2!
~18!

is the coupling constant by which this radiation-press
back-action converts inputa1 into outputDb2. In this cou-
pling constant,I SQL is the input laser power required, in
conventional interferometer~Sec. III!, to reach the standard
quantum limit:

I SQL5
mL2g4

4vo
.1.03104 W. ~19!

In Eq. ~16!, the gravitational-wave signal shows up as t
classical pieceA2Kh/hSQL of b2. Here, as we shall see be
low,

hSQL[A 8\

mV2L2.2310224
g

V
Hz21/2 ~20!

is the standard quantum limit for the square root of t
single-sided spectral density ofh(t), ASh.

III. CONVENTIONAL INTERFEROMETER

In an ~idealized! conventional interferometer, the beam
splitter’s output quadrature fieldE2(t) is measured by mean
of conventional photodetection.4 The Fourier transform of

e
f
e-

e
d

4Here and throughout this paper we regard some partic
quadratureEz(t) as being measured directly. This corresponds
superposing onEz(t) carrier light with the same quadrature pha
asEz and then performing direct photodetection, which produce
photocurrent whose time variations are proportional toEz(t). For a
conventional interferometer the carrier light in the desired quad
ture, that ofE2(t), can be produced by operating with the dark po
biased slightly away from the precise dark fringe. In future resea
it might be necessary to modify the QND designs described in
paper so as to accommodate the modulations that are actually
in the detection process; see Sec. VIII and especially footnote
2-7
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KIMBLE, LEVIN, MATSKO, THORNE, AND VYATCHANIN PHYSICAL REVIEW D 65 022002
this measured quadrature is proportional to the field am
tude b25Db21A2K(h/hSQL)e

ib; cf. Eqs. ~10! and ~16!.
Correspondingly, we can think ofb25b2(V) as the quantity
measured, and when we compute, from the output, the F
rier transformh5h(V) of the gravitational-wave signal, th
noise in that computation will be

hn~V!5
hSQL

A2KDb2e2 ib. ~21!

This noise is an operator for the Fourier transform o
random process, and the corresponding single-sided spe
densitySh( f ) associated with this noise is given by the sta
dard formula@3,26,27#

1

2
2pd~V2V8!Sh~ f !5^ inuhn~V!hn

†~V8!u in&sym. ~22!

Here f 5V/2p is frequency,u in& is the quantum state of th
input light field ~the field operatorsa1 anda2), and the sub-
script ‘‘sym’’ means ‘‘symmetrize the operators whose e
pectation value is being computed,’’ i.e., repla
hn(V)hn

†(V8) by 1
2 „hn(V)hn

†(V8)1hn
†(V8)hn(V)…. Note

that when Eq.~21! for hn is inserted into Eq.~22!, the phase
factore2 ib cancels, i.e., it has no influence on the noiseSh .
This allows us to replace Eq.~21! by

hn~V!5
hSQL

A2KDb2 . ~23!

For a conventional interferometer, the dark-port input is
its vacuum state, which we denote by

u in&5u0a&. ~24!

For this vacuum input, the standard relationsa1u0a&
5a2u0a&50, together with Eqs.~6! and ~7!, imply @26,27#

^0auajak8
† u0a&sym5

1

2
2pd~V2V8!d jk . ~25!

Comparing this relation with Eq.~22! and its generalization
to multiple random processes, we see that~when u in&
5u0a&)a1(V) and a2(V) can be regarded as the Fouri
transforms of classical random processes with single-s
spectral densities and cross-spectral density given by@4#

Sa1
~ f !5Sa2

~ f !51, Sa1a2
~ f !50. ~26!

Combining Eqs.~16! and~23!–~25! @or, equally well, Eqs.
~16!, ~23!, and~26!#, we obtain for the noise spectral densi
of the conventional interferometer

Sh5
hSQL

2

2 S 1

K 1KD . ~27!

This spectral density is limited, at all frequenciesV, by the
standard quantum limit
02200
i-

u-

tral
-

-

d

Sh>hSQL
2 5

8\

mV2L2 . ~28!

Recall thatK is a function of frequencyV and is propor-
tional to the input laser powerI o @Eq. ~18!#. In our conven-
tional interferometer, we adjust the laser power toI o5I SQL
@Eq. ~19!#, thereby makingK(V5g)51, which minimizes
Sh at the interferometer’s optimal frequencyV5g. The
noise spectral density then becomes@cf. Eqs.~27! and ~18!#

Sh5
4\

mL2V2F 2g4

V2~g21V2!
1

V2~g21V2!

2g4 G . ~29!

This optimized conventional noise is shown as a curve
Fig. 4, along with the standard quantum limithSQL and the
noise curves for several QND interferometers to be discus
below. This conventional noise curve is currently a tentat
goal for LIGO-II, when operating without signal recyclin
@7#.

IV. STRATEGIES TO BEAT THE SQL, AND THEIR
LOSSLESS PERFORMANCE

A. Motivation: Ponderomotive squeezing

The interferometer’s input-output relationsDb15a1e2ib,
Db25(a22Ka1)e2ib can be regarded as consisting of t
uninteresting phase shifte2ib, and a rotation in the$a1 ,a2%
plane~i.e., $cosvot,sinvot% plane!, followed by a squeeze:

bj5S†~r ,f!R†~2u!aje
2ibR~2u!S~r ,f!. ~30!

FIG. 4. The square root of the spectral densityASh of the
gravitational-wave noise for several interferometer designs, a
function of angular frequencyV, with optical losses assumed neg
ligible; ASh is measured in units of the standard quantum limit
frequencyV5g, andV is measured in units ofg. The noise curves
shown are:~i! the standard quantum limit itself,hSQL(V) @Eq.
~20!#; ~ii ! the noise for aconventionalinterferometer with laser
powerI o5I SQL @Eq. ~29!#; ~iii ! the noise for asqueezed-inputinter-
ferometer withI o5I SQL, squeeze factore22R50.1, and~a! opti-
mized FD squeeze anglel52F(V) @Eq. ~49!; solid curve#, ~b!
optimized frequency-independent squeeze angle@Eq. ~52!; dashed
curve#; ~iv! the noise for avariational-output interferometer with
I o510I SQL and optimized frequency-dependent homodyne ph
z5F(V) @Eq. ~58!#; and ~v! the noise for asqueezed-variationa
interferometer withI o510I SQL, input squeeze factore22R50.1,
and optimized input squeeze anglel5p/2 and output homodyne
phasez5F(V) @Eq. ~73!#.
2-8
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CONVERSION OF CONVENTIONAL GRAVITATIONAL- . . . PHYSICAL REVIEW D 65 022002
HereR(2u) is the rotation operator andS(r ,f) the squeeze
operator for two-photon quantum optics; see Appendix A
a very brief summary, and Refs.@26,27# for extensive detail.
The rotation angleu, squeeze anglef and squeeze factorr
are given by

u5arctan~K/2!, f5
1

2
arccot~K/2!, r 5arcshinh~K/2!.

~31!

Note that, because the coupling constantK depends on fre-
quencyV @Eq. ~18!#, the rotation angle, squeeze angle, a
squeeze factor are frequency dependent. This frequency
pendence will have major consequences for the QND in
ferometer designs discussed below.

The rotate-and-squeeze transformation~30! for the two-
photon amplitudes implies corresponding rotate-and-sque
relations for the one-photon creation and annihilation ope
tors

b65S†~r ,f!R†~2u!a6e62ibR~2u!S~r ,f!. ~32!

Denote byu0a1
& the vacuum for thein mode at frequency

vo1V, by u0a2
& that for the in mode atvo2V, and by

u0a6
& the vacuum for one or the other of these modes;

denote similarly the vacuua for theout modes,u0b6&. Then
u0a6

& is the state annihilated bya6 and u0b6
& is that anni-

hilated byb6 . Correspondingly, the rotate-squeeze relat
~32! implies that

b6u0b6
&5S†R†a6e62ibRSu0b6

&50, ~33!

where the parameters of the squeeze and rotation oper
are those given in Eqs.~31! and ~32!. This equation implies
that e62ibRSu0b6

& is annihilated bya6 and therefore is the

in vacuumu0a6
& for the in modevo6V:

e62ibRSu0b6
&5u0a6

&. ~34!

Applying R† and noting thatR†u0a6
&5u0a6

& ~the vacuum is
rotation invariant!, we obtain

u0a6
&5e62ibS~r ,f!u0b6

&. ~35!

Thus, the in vacuum is equal to a squeezedout vacuum,
aside from an uninteresting, frequency-dependent ph
shift. The meaning of this statement in the context of a c
ventional interferometer is the following.

For a conventional interferometer, thein state is

u in&5u0a6
&5e62ibS~r ,f!u0b6

&; ~36!

and because we are using the Heisenberg picture where
state does not evolve, the light emerges from the interfer
eter in this state. However, in passing through the inter
ometer, the light’s quadrature amplitudes evolve fromaj to
bj . Correspondingly, at the output we should discuss
properties of the unchanged state in terms of a basis b
from the out vacuumu0b6

&. Equation~35! says that in this
02200
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out language, the light has been squeezed at the anglef and
squeeze-factorr given by Eq.~31!. This squeezing is pro-
duced by the back-action force of fluctuating radiation pr
sure on the test masses. That back action has the charac
a ponderomotive nonlinearity first recognized by Bragins
and Manukin@15#.5 The correlations inherent in this squee
ing form the foundation for the QND interferometers di
cussed below.

One can also deduce this ponderomotive squeezing f
the in-out relationsDb15a1e2ib, Db25(a22Ka1)e2ib

@Eq. ~16!#, the expressions

1

2
2pd~V2V8!Sbj

~ f !5^ inuDbjDbj 8
†u in&sym,

1

2
2pd~V2V8!Sb1b2

~ f !5 K inU 1

2
~Db1Db28

†

1Db1
†Db28!U inL

sym

~37!

for the spectral densities and cross spectral densities ob1
and b2, and the spectral densitiesSa1

5Sa2
51, Sa1a2

50
@Eqs.~26!#. These imply that for a conventional interferom
eter

Sb1
51, Sb2

511K 2, Sb1b2
52K. ~38!

RotatingDbj through the anglef5
1
2

arccot(K/2) to obtain

b185b1 cosf1b2 sinf, b285b2 cosf2b1 sinf,
~39!

and using Eqs.~37! and ~38!, we obtain

Sb
18
5e22r5~A11~K/2!22K/2!2.1/K if K@1,

Sb
28
5e12r5~A11~K/2!21K/2!2, Sb

18b
28
50, ~40!

which represents a squeezing of the input vacuum nois
the manner described formally by Eqs.~36! and ~31!.

This ponderomotive squeezing is depicted by the no
ellipse of Fig. 5. For a conventional interferometer (b2 mea-
sured via photodetection6!, the signal is the arrow along th
b2 axis, and the square root of the noise spectral densitySb2

is the projection of the noise ellipse onto theb2 axis. For a
detailed discussion of this type of graphical representation
noise in two-photon quantum optics see, e.g., Ref.@26#.

5Recently it has been recognized that this ponderomotive non
earity acting on a movable mirror in a Fabry-Pe´rot resonator may
provide a practical method for generating bright squeezed l
@30#.

6See footnote 4.
2-9
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B. Squeezed-input interferometer

Interferometer designs that can beat the SQL~28! are
sometimes called ‘‘QND interferometers.’’ Unruh@14# has
devised a QND interferometer design based on~i! putting the
input electromagnetic fluctuations at the dark port (a1 and
a2) into a squeezed state, and~ii ! using standard photodetec
tion to measure the interferometer’s output field. We sh
call this asqueezed-input interferometer. The squeezing of
the input has been envisioned as achieved using nonli
crystals @20,21#, but one might also use ponderomotiv
squeezing.

The squeezed-input interferometer is identical to the c
ventional interferometer of Sec. III, except for the choice
the in stateu in& for the dark-port field. Whereas a conve
tional interferometer hasu in&5u0a&, the squeezed-input in
terferometer has

u in&5S~R,l!u0a&, ~41!

whereR is the largest squeeze factor that the experimen
are able to achieve (e22R;0.1 in the LIGO-III time frame!,
andl5l(V) is a squeeze angle that depends on side-b
frequency. One adjustsl(V) so as to minimize the noise i
the output quadrature amplitudeb2, which ~i! contains the
gravitational-wave signal and~ii ! is measured by standar
photodetection. As we shall see, the optimizedl is strongly
frequency dependent. By contrast, we shall idealize
squeeze factorR as independent of side-band frequencyV
except when otherwise stated~Secs. IV D and VI F!.

The gravitational-wave noise for such an interferomete
proportional to

^ inuhnhn8u in&5^0auhnshns8u0a& ~42!

FIG. 5. Noise ellipses for a conventional interferometer.Left:
Noise for vacuum that enters the interferometer’s dark port.Right:
Noise for ponderomotively squeezed vacuum that exits at the
port along with the gravitational-wave signal; the ponderomot
squeeze has moved the pointP to the new point P8 @b1

5a1 , b25a22Ka1, Eqs.~16!#. These noise ellipses have dime
sions and shapes described by the noise spectral densities~26!, ~38!
and ~40!, and by the squeeze equations~36! and ~31!. The minor
radius of the output noise ellipse isASb

18
5e2r , and its major radius

is ASb
28
5e1r , wherer is the squeeze factor; cf. Eqs.~31! and~40!.

The conventional interferometer measuresb2, which contains the
indicated noise@cf. Eq. ~23!# and the indicated signal@db2

5A2Kh/hSQL; cf. Eq. ~16!#. For a detailed discussion of nois
ellipses in 2-photon quantum optics see, e.g., Ref.@26#.
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@Eq. ~22!#, where hns is the squeezedgravitational-wave
noise operator

hns5S†~R,l!hnS~R,l! ~43!

and hn8[hn(V8). By inserting expression~21! for hn into
Eq. ~43! and then combining the interferometer’s ponde
motive squeeze relationDb25(a22Ka1)e2ib with the ac-
tion of the squeeze operator ona1 and a2 @Eq. ~A8!#, we
obtain

hns52
hSQL

A2K
A~11K 2!eib

Ã„a1$coshR cosF2sinhR cos@F22~F1l!#%

2a2$coshR sinF2sinhR sin@F22~F1l!#%…,

~44!

where

F[arccotK. ~45!

We can read the spectral density of the gravitational-w
noise off of Eq.~44! by recalling that in theu0a& vacuum
state@which is relevant because of Eq.~42!#, a1 anda2 can
be regarded as random processes with spectral sensitieSa1

5Sa2
51 and vanishing cross spectral density@Eqs.~26!#:

Sh5
hSQL

2

2 S 1

K 1KD „cosh 2R2cos@2~l1F!#sinh 2R….

~46!

It is straightforward to verify that this noise is minimized b
making it proportional to cosh 2R2sinh 2R5e22R, which is
achieved by choosing for the input squeeze angle

l~V!52F~V![2arccotK~V!. ~47!

The result is

Sh5
hSQL

2

2 S 1

K 1KDe22R. ~48!

This says thatthe squeezed-input interferometer has t
same noise spectral density as the conventional interfer
eter, except for an overall reduction by e22R, whereR is the
squeeze factor for the dark-port input field~a result deduced
by Unruh @14# and later confirmed by Jaekel and Reyna
@18# using a different method!; see Fig. 4. This result implies
that the squeezed-input interferometer can beat the ampli
SQL by a factore2R.

When the laser powerI o of the squeezed-input interfer
ometer is optimized for detection at the frequencyV
5g (I o5I SQL as for a conventional interferometer!, the
noise spectrum becomes

Sh5
4\

mL2V2F 2g4

V2~g21V2!
1

V2~g21V2!

2g4 Ge22R. ~49!
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CONVERSION OF CONVENTIONAL GRAVITATIONAL- . . . PHYSICAL REVIEW D 65 022002
This optimized noise is shown in Fig. 4 fore22R50.1, along
with the noise spectra for other optimized interferometer
signs.

In previous discussions of this squeezed-input sche
@14,18,19#, no attention has been paid to the practical pro
lem of how to produce the necessary frequency depende

l~V!52F~V!52arccot
2g4

V2~g21V2!
~50!

of the squeeze angle. In Sec. V C, we shall show that
l(V) can be achieved by squeezing at a frequen
independent squeeze angle~using, e.g., a nonlinear crysta
for which the squeeze angle will be essentially frequen
independent because the gravity-wave bandwid
,1000 Hz, is so small compared to usual optical ba
widths ! and then filtering through two Fabry-Pe´rot cavities.
This squeezing and filtering must be performed before in
tion into the interferometer’s dark port; see Fig. 1 for a sc
matic diagram.

The signal and noise for this squeezed-input interfero
eter are depicted in Fig. 6.

We comment, in passing, on two other variants of
squeezed-input interferometer:

~i! If, for some reason, the filter cavities cannot be imp
mented successfully, one can still inject squeezed vacuu
the dark port with a frequency-independent phase that is
timized for the lowest point in the noise curve,V5g; i.e.,
~with the input power optimized toI o5I SQL):

l52F~g!52p/4; ~51!

cf. Eq. ~50!. In this case the noise spectrum is

FIG. 6. Noise ellipses for a squeezed-input interferometer.Left:
Noise for squeezed vacuum that enters the interferometer’s
port. The field is squeezed at the anglel52F. Right: Noise for
the field that exits at the dark port along with the gravitational-wa
signal. This output field results from the interferometer’s ponde
motive squeezing of the input field@e.g., pointP goes to pointP8 in
accord withb15a1 , b25a22Ka1; Eqs. ~16!#. If the input field
had been vacuum as in a conventional interferometer~Fig. 5!, then
the output would have been squeezed in the manner of the da
ellipse. The two squeezes~input and ponderomotive! result in the
shaded ellipse, whose projection along the axis measured by
photodetector (b2 axis! has been minimized by the choice o
squeeze angle,l52F.
02200
-

e
-
ce

is
-

-
,
-

-
-

-

-
at
p-

Sh5
hSQL

2

2 S 1

K 1KD @~coshR cosF2sinhR sinF!2

1~coshR sinF2sinhR cosF!2# ~52!

@Eq. ~46!, translated into gravitational-wave noise via E
~23!#. This noise spectrum is shown as a dashed curve in
4, for e22R50.1. The SQL is beat by the same factorm
5Ae22R.0.32 as in the case of a fully optimized squeeze
input interferometer, but the frequency band over which
SQL is beat is significantly smaller than in the optimiz
case, and the noise is worse than for a conventional inte
ometer outside that band.

~ii ! Caves@17#, in a paper that preceeded Unruh’s a
formed a foundation for Unruh’s ideas, proposed a squeez
input interferometer with the squeeze angle set tol5p/2
independent of frequency. In this case, Eq.~46!, translated
into gravitational-wave noise via Eq.~23!, says that

Sh5
hSQL

2

2 S 1

e2RK 1e2RKD . ~53!

SinceK is proportional to the input laser powerI o , Caves’
interferometer produces the same noise spectral density
conventional interferometer@Eq. ~27!# but with an input
power that is reduced by a factore22R. This is a well-known
result.

C. Variational-output interferometer

Vyatchanin, Matsko and Zubova@23–25# have devised a
QND interferometer design based on~i! leaving the dark-port
input field in its vacuum state,u in&5u0a&, and~ii ! changing
the output measurement from standard photodetection~mea-
surement ofb2) to homodyne detection at an appropria
frequency-dependent~FD! homodyne phasez(V) – i.e.,
measurement of

bz5b1 cosz1b2 sinz. ~54!

In their explorations of this idea, Vyatchanin, Matsko a
Zubova @23–25# did not identify any practical scheme fo
achieving such a FD homodyne measurement, so they
proximated it by homodyne detection with a homody
phase that depends on time rather than frequency—a t
nique that they call a ‘‘quantum variational measurement

In Sec. V below, we show that the optimized FD hom
dyne measurement can, in fact, be achieved by filtering
interferometer output through two Fabry-Pe´rot cavities and
then performing standard, balanced homodyne detection
frequency-independent homodyne phase; see Fig. 2 fo
schematic diagram. We shall call such an scheme
variational-output interferometer. The word ‘‘variational’’
refers to~i! the fact that the measurement entails monitor
a frequency-varying quadrature of the output field, as wel
~ii ! the fact that the goal is to measure variations of
classical force acting on the interferometer’s test mass~the
original Vyatchanin-Matsko-Zubova motivation for th
word!.
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KIMBLE, LEVIN, MATSKO, THORNE, AND VYATCHANIN PHYSICAL REVIEW D 65 022002
The monitored FD amplitudebz @Eq. ~54!# can be ex-
pressed in terms of the interferometer’s dark-port input a
plitudes a1 , a2 and the Fourier transform of th
gravitational-wave fieldh as

bz5sinzSA2K h

hSQL
eib1@a21~cotz2K!a1#e2ibD ;

~55!

cf. Eqs.~16! and~54!. Correspondingly, the operator descri
ing the Fourier transform of the interferometer
gravitational-wave noise is

hn~V!5
hSQL

A2Keib@a21a1~cotz2K!#; ~56!

cf. Eq. ~23!.
The radiation-pressure-induced back action of the m

surement on the interferometer’s test masses is embodie
the2Ka1 term of this equation; cf. Eq.~16! and subsequen
discussion. It should be evident thatby choosing

z5F[arccotK, ~57!

we can completely remove the back-action noise from
measured interferometer output; cf. Fig. 7. This optimal
choice of the FD homodyne phase, together with the fact
the input state is vacuum,u in&5u0a&, leads to the
gravitational-wave noise

Sh5
hSQL

2

2

1

K 5
1

I o /I SQL
S 4\

mL2V2DV2~g21V2!

2g4 . ~58!

Cf. Eqs.~22! and ~25!.
This noise for an optimized variational-output interferom

eter is entirely due to shot noise of the measured light,
continues to improve}1/I o even when the input light powe

FIG. 7. Noise ellipses for a variational-output interferomet
Left: Noise for the ordinary vacuum that enters the interferomet
dark port.Right: Noise for the field that exits at the dark port alon
with the gravitational-wave signal. These noise ellipses are
same as for a conventional interferometer, Fig. 5, but here the q
tity measured is the quadrature amplitudebF with frequency depen-
dent phaseF[arccotK. It is informative to compare the measure
phase F with the angle of ponderomotive squeezef
5

1
2 arccot(K/2). They are related by tanF5

1
2 tan 2f5tanf/(1

2tan2f), so F is always larger thanf; but for largeK ~strong
beating of the SQL!, they become small and nearly equal.
02200
-

a-
in

e

at

d

I o exceedsI SQL. Figure 4 shows this noise, along with th
noise spectra for other optimized interferometer designs.

It is interesting that the optimal frequency-dependent
modyne phaseF for this variational-output interferometer i
the same, aside from sign, as the optimal frequen
dependent squeeze angle for the squeezed-input interfe
eter; cf. Eq.~47!.

D. Comparison of squeezed-input and variational-output
interferometers

The squeezed-input and variational-output interferome
described above are rather idealized, most especially bec
they assume perfect, lossless optics. When we relax tha
sumption in Sec. VI below, we shall see that, for realis
squeeze factorse22R and lossese* , the two interferometers
have essentially the same performance, but the variatio
output intefermometer requires;10 times higher input
powerI o . In this section we shall seek insight into the phy
ics of these interferometers by comparing them in the ide
ized, lossless limit.

Various comparisons are possible. The noise curves
Fig. 4 illustrate one comparison: When the FD homody
angle has been optimized, a lossless variational-output in
ferometer reduces shot noise below the SQL and comple
removes back-action noise; by contrast, when the
squeeze angle has been optimized, a squeezed-input inte
ometer reduces shot noise and reduces but does not rem
back-action noise; cf. Eqs.~58! and ~48!.

In variational-output interferometers, after optimizing th
FD homodyne angle, the experimenter has further contro
just one input/output parameter: the laser intensity or equ
lently I o /I SQL5K(V5g). When I o /I SQL is increased, the
shot noise decreases; independent of its value, the b
action noise has already been removed completely; cf.
~58!. By contrast, in squeezed-input interferometers, after
timizing the FD squeeze phase, the experimenter has co
of two parameters:I o /I SQL, which moves the minimum of
the noise curve back and forth in frequency but does
lower its minimum @17#, and the squeeze factorR, which
reduces the noise bye22R; cf. Eq. ~48!.

Present technology requires thatR be approximately con-
stant over the LIGO frequency band. However, in the sa
spirit as our assumption that the FD homodyne phase ca
optimized at all frequencies, it is instructive to ask what c
be achieved with an unconstrained, frequency-depend
~FD! squeeze factorR(V), when coupled to an uncon
strained FD squeeze anglel(V).

One instructive choice isl(V)52arccotK as in our pre-
vious, optimized interferometer@Eq. ~47!#, and e22R(V)

51/(11K 2). In this case, the squeezed-input interferome
has precisely the same noise spectrum as the loss
variational-output interferometer

Sh5
hSQL

2

2K ; ~59!

@Eq. ~58!#, and achieves it with precisely the same las
power.
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CONVERSION OF CONVENTIONAL GRAVITATIONAL- . . . PHYSICAL REVIEW D 65 022002
Another instructive choice is an input squeeze that is
verse to the interferometer’s ponderomotive squeeze~a con-
figuration we shall call ‘‘inversely input squeezed’’ or IIS!:
Let the dark-port input field before squeezing be descri
by annihilation operatorsc6 , so

c6u in&50, ~60!

i.e., the pre-squeeze field is vacuum. Then, denoting
c1 ,c2 the quadrature amplitudes of this pre-squeeze field,
IIS input squeezing is

a15c1 , a25c21Kc1 , ~61!

where K(V) is the interferometer’s frequency-depende
coupling constant~18!. The interferometer’s ponderomo
tively squeezed output noise is then

Db15a1e2ib5c1e2ib, Db25~a22Ka1!e2ib5c1e2ib

~62!

@cf. Eq. ~16!#, i.e., the noise of the output light is that of th
vacuum with a phase shift, but since the vacuum stat
insensitive to phase, it is actually just the noise of t
vacuum.

Figure 8 illustrates this: The IIS input light is squeezed
a manner that gets perfectly undone by the ponderomo
squeeze, so the output light has no squeeze at all. The
that the input squeeze is inverse to the ponderomo
squeeze shows up in this diagram as an input noise ell
that is the same as the output ellipse of the ponderomoti
squeezed vacuum, Fig. 5, except for a reflection in the h
zontal axis.

Because the output of the IIS interferometer isb2 ~ordi-
nary photodetection! and the output light’s state is the ord
nary vacuum, its gravitational-wave noise is

Sh5
hSQL

2

2K ; ~63!

cf. Eqs.~23!, ~22! and~26! ~with aj replaced bybj ). Notice
that this is identically the same noise spectral density as
our previous example@Eq. ~59!# and as for a variational
output interferometer, and it is achieved in all three ca
with the same light power.

The fact that our two squeezed-input examples prod
the same noise spectrum using different squeeze angles

FIG. 8. Noise ellipses for a squeezed-input interferometer wh
input squeeze is inverse to the interferometer’s ponderomo
squeeze~‘‘IIS interferomter’’!.
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squeeze factors should not be surprising. The noise spec
is a single function ofV and it is being shaped jointly by th
two squeeze functionsl(V) andR(V).

The fact that the IIS interferometer and the variation
output interferometer produce the same noise spectra re
from a reciprocitybetween the IIS and the variational-outp
configurations: The IIS interferometer has its input squee
at the angle2F52arccotK and it has vacuum-noise ou
put, whereas the variational-output interferometer h
vacuum-noise input and is measured at the homodyne a
1F51arccotK.

Note that the IIS interferometer has a different inp
squeeze angle@l(V)521/2 arccot(K/2); cf. Eq.~31!# from
that of theangle-optimizedsqueezed-input interferometer o
Sec. IV B @l(V)52arccotK; cf. Eq. ~47!#. This difference
shows clearly in the noise ellipses of Fig. 8~the IIS interfer-
ometer! and Fig. 6 ~the angle-optimized interferomter!.
Moreover, this difference implies that by optimizing th
IIS interferometer’s squeeze angle~changing it to l(V)
52arccotK), while keeping its squeeze factor unchang
@R(V)5arcshinh(K/2); cf. Eq. ~31!#, we can improve its
noise performance slightly. The improvement is from E
~63! to

Sh5
hSQL

2

2K F 11K 2

11
1

2
~K 21KAK 214!G ~64!

@which can be derived by settingl(V)52F52arccotK
and R(V)5arcshinh(K/2) in Eq. ~46!, or by inserting
R(V)5arcshinh(K/2) into Eq.~48!—note that~48! is valid
for any angle-optimized, squeezed-input interferometer
not for the IIS interferometer#. The improvement factor in
square brackets is quite modest; it lies between 0.889
unity.

We reiterate, however, that the above comparison of in
ferometer designs is of pedagogical interest only. In the r
world, the noise of a QND interferometer is strongly infl
enced by losses, which we consider in Sec. VI below.

E. Squeezed-variational interferometer

The squeezed-input and variational-output techniques
complementary. By combining them, one can beat the S
more strongly than using either one alone. We call an in
ferometer that uses the two techiques simultaneousl
squeezed-variational interferometer.

The dark-port input of such an interferometer is squee
by the maximum achievable squeeze factorR at a ~possibly
frequency dependent! squeeze anglel(V), so

u in&5S~R,l!u0a&. ~65!

The dark-port output is subjected to FD homodyne detec
with ~possibly frequency dependent! homodyne anglez(V);
i.e., the measured quantity is the same output quadratur
for a variational-output interferometer,bz @Eq. ~55!#, so the
gravitational-wave noise operator is also the same

e
e
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KIMBLE, LEVIN, MATSKO, THORNE, AND VYATCHANIN PHYSICAL REVIEW D 65 022002
hn~V!5
hSQL

A2Keib@a21a1~cotz2K!#eib ~66!

@Eq. ~56!#.
As for a squeezed-input interferometer, the gravitation

wave noise is proportional to

^ inuhnhn8u in&5^0auhnshns8u0a& ~67!

@Eq. ~22!#, where hns is the squeezed gravitational-wav
noise operator

hns5S†~R,l!hnS~R,l!. ~68!

By inserting expression~66! for hn into Eq. ~68! and invok-
ing the action of the squeeze operator ona1 and a2 @Eq.
~A8!#, we obtain

hns52
hSQL

A2K
A11K̃2eib

3„a1$coshR cosF̃2sinhR cos@F̃22~F̃1l!#%

2a2$coshR sinF̃2sinhR sin@F̃22~F̃1l!#%…,

~69!

where

K̃5K2cotz, F̃5arccotK̃. ~70!

As for a squeezed-input interferometer@see passage fol
lowing Eq.~45!#, we can read the gravitational-wave spect
density off of Eq.~69! by regardinga1 and a2 as random
processes with unit spectral densities and vanishing c
spectral density. The result is

Sh5
hSQL

2

2K ~11K̃2!$e22R1sinh 2R@12cos 2~F̃1l!#%.

~71!

This noise is minimized by setting the input squeeze an
l and output homodyne phasez to

l5p/2, z5F5arccotK, ~72!

which producesK̃50 andl5F̃5p/2, so

Sh5
hSQL

2

2K e22R5
e22R

I o /I SQL
S 4\

mL2V2DV2~g21V2!

2g4 ; ~73!

see Fig. 4.
Equation ~72! says that, to optimize the~lossless!

squeezed-variational interferometer, one should squeeze
dark-port input field at the frequency-independent sque
anglez5p/2 ~which ends up squeezing the interferomete
shot noise!, and measure the output field at the same
homodyne phasez5F as for a variational-output interfer
ometer; see Fig. 9. Doing so produces an output, Eq.~73!, in
which the radiation-pressure-induced back-action noise
02200
l-

l

ss

le
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been completely removed, and the shot noise has been
duced by the input squeeze factore22R.

Because the optimal input squeeze angle is frequency
dependent, the squeezed variational interferometer need
filter cavities on the input. However, they are needed on
output to enable FD homodyne detection; see Fig. 2 fo
schematic diagram.

V. FD HOMODYNE DETECTION AND SQUEEZING

Each of the QND schemes discussed above requires
modyne detection with a frequency-dependent phase~FD ho-
modyne detection! and/or input squeezed vacuum with
frequency-dependent squeeze angle~FD squeezed vacuum!.
In this section we sketch how such FD homodyne detec
and squeezing can be achieved.

A. General method for FD homodyne detection

The goal of FD homodyne detection is to measure
electric-field quadrature

Ez~ t !5A4p\vo

Ac E
0

`

~bze
2 iVt1bz

†e1 iVt!
dV

2p
, ~74!

for which the quadrature amplitude is

bz5b1 cosz1b2 sinz, z5z~V!; ~75!

cf. Eqs.~10! and ~54!. If z were frequency independent, th
measurement could be made by conventional balanced
modyne detection, with homodyne phasez. In this subsec-
tion we shall show that,whenz depends on frequency, th
measurement can be achieved in two steps: first send
light through an appropriate filter (assumed to be lossles
and then perform conventional balanced homodyne de
tion.

The filter puts onto the light a phase shifta that depends
on frequency. Let the phase shift bea1 for light frequency
vo1V, anda2 for v02V. The input to the filter has am

FIG. 9. Noise ellipses for a squeezed-variational interferome
Left: Noise for the squeezed vacuum that enters the interferome
dark port.Right: Noise for the field that exits at the dark port alon
with the gravitational-wave signal.
2-14
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CONVERSION OF CONVENTIONAL GRAVITATIONAL- . . . PHYSICAL REVIEW D 65 022002
plitudes~annihilation operators! b6 at these two sidebands
and the filter output has amplitudes~denoted by a tilde!

b̃65b6eia6. ~76!

The corresponding quadrature amplitudes are

b15
b11b2

†

A2
, b25

b12b2
†

A2i
~77!

at the input@Eqs. ~6!#, and the analogous expression wi
tildes at the output. Combining Eqs.~77! with and without
tildes, and Eq.~76!, we obtain for the output quadrature am
plitudes in terms of the input

b̃15eiam~b1 cosap2b2 sinap!,

b̃25eiam~b2 cosap1b2 sinap!. ~78!

Here

am5
1

2
~a12a2!, ap5

1

2
~a11a2!. ~79!

The light with the output amplitudesb̃1 , b̃2 is then sub-
jected to conventional balanced homodyne detection w
frequency-independent homodyne angleu, which measures
an electric-field quadrature with amplitude

b̃u5b̃1 cosu1b̃2 sinu

5eiam@b1 cos~u2ap!1b2 sin~u2ap!#. ~80!

If we adjust the filter and the constant homodyne phase
that

u2ap[u2
1

2
~a11a2!5z~V!, ~81!

then, aside from the frequency-dependent phase shiftam,
the output quadrature amplitude will be equal to our desi
FD amplitude:

b̃u5eiambz . ~82!

The phase shiftam(V) is actually unimportant; it can be
removed from the signal in the data analysis@as can be the
phase shiftb(V) produced by the interferometer’s arm cav
ties#.

To recapituate:FD homodyne detection with homodyn
phasez(V) can be achieved by filtering and convention
homodyne detection, with the filter’s phase shiftsa6 (at v
5vo6V) and the constant homodyne phaseu adjusted to
satisfy Eq. (81).

B. Realization of the filter

The desired FD homodyne phase is
02200
h

o

d

l

z5F~V!5arccotK5arccotS L4

V2~g21V2! D
5arctanS V2~g21V2!

L4 D , ~83!

where

L45~ I o /I SQL!2g4 ~84!

@cf. Eqs.~18! and ~45!#. Recall thatg.2p3100 Hz is the
optimal frequency of operation of the interferometer, and
beat the SQL by a moderate amount will requireI o /I SQL
;10 soL4;20g4, i.e., L;2g.

In Appendix C we show that this desired FD phase can
achieved by filtering the light with two successive lossle
Fabry-Pe´rot filter cavities, followed by conventional homo
dyne detection at homodyne angle

u5p/2 ~85!

@i.e., homodyne measurement ofb̃2 at the filter output; cf.
Eq. ~80!#.7 The two filter cavities~denoted I and II! produce
phase shiftsa I6 anda II6 on thevo6V side bands, so upon
emerging from the second cavity, the net phase shifts ar

a65a I61a II6 . ~86!

Each cavity (J5I or II ! is characterized by two param
eters: its decay rate~bandwidth! 2dJ ~with J5I or II), and its
fractional resonant-frequency offset from the light’s carr
frequencyvo ,

jJ[
vo2v resJ

dJ
. ~87!

Herev resJ is the resonant frequency of cavityJ. In terms of
these parameters, the phase shifts produced in thevo6V
side bands by cavityJ are

aJ65arctan~jJ6V/dJ!. ~88!

The filters’ parameters must be adjusted so that the net p
shift ~86!, together with the final homodyne angleu5p/2,
produce the desired FD phase, Eqs.~81! and ~83!.

In Appendix C we derive the following values for th
filter parametersj I , d I , j II , andd II as functions of the pa-
rametersL and g that appear in the desired FD homody
phase. Define the following four functions ofL andg:

P[
4L4

g4 , Q[11A11P2

2
, ~89a!

7The fact that only two cavities are needed to produce the des
FD homodyne phase~83! is a result of the simple quadratic form o
tanF(V2). If the desired phase were significantly more comp
cated, a larger number of filter cavities would be needed; cf.
~C3! and associated analysis. It would be interesting to expl
what range of FD homodyne phases can be achieved, with w
accuracy, using what number of cavities.
2-15
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A1[Q1AQ

P
, A2[Q2AQ

P
. ~89b!

Then in terms of these functions, the filter parameters ar

j I5
1

2A1
1A11

1

~2A1!2, ~89c!

j II5
1

2A2
2A11

1

~2A2!2, ~89d!

d I

g
5A P

8j IAQ
, ~89e!

d II

g
5A P

8~2j II)AQ
. ~89f!

Note that, when the cavity half-bandwidthsdJ are ex-
pressed in terms of the half-bandwidthg of the interferom-
eter’s arm cavities, as in Eqs.~89e! and~89f!, then the filter
parameters depend on only one characteristic of the des
FD homodyne phase: the quantity (L/g)452I o /I SQL. Fig-
ure 10 depicts the filter parameters as functions of this qu
tity.

As Fig. 10 shows, the half-bandwidths of the two filt
cavities are within a factor;2 of that of the interferometer’s
arm cavities. This is so for the entire range of laser pow
I o /I SQL, that are likely to be used in QND interferomete
at least in the early years~e.g., LIGO-III; ca. 2008–2010!.
Moreover, the filter cavities’ fractional frequency offsetsjJ
are of order unity (20.5,jJ&2). Thus, the desired prope
ties of the filter cavities are not much different from those
the interferometer’s arm cavities.

In Sec. VI below, we shall see that the most serious lim
tation on the sensitivities of variational-output and squeez
variational interferometers is optical loss in the filter cavitie
To minimize losses, the cavities should be very long~so the

FIG. 10. The parameters characterizing the two Fabry-P´rot
cavities that are used, together with conventional homodyne de
tion at phaseu5p/2, to produce FD homodyne detection at t
desired frequency-dependent phase~83!. The quantitiesj I and j II

are the filters’ fractional frequency offsets from the light’s carr
frequency~87!; d I /g and d II /g are the filters’ half bandwidths in
units of the half-bandwidth of the interferometer’s identical a
cavities. The functional forms of these parameters are Eqs.~89!.
02200
ed

n-

s,
,

f

-
d-
.

cavities’ stored light encounters the mirrors a minimum nu
ber of times!. This suggests placing the filter cavities in th
interferometer’s 4-km-long arms, alongside the interfero
eter’s arm cavities.

C. Squeezing with frequency-dependent squeeze angle

Just as the variational-output and squeezed-variationa
terferometers require homodyne detection at a FD phase,
squeezed-input interferometer requires squeezing at a
anglel(V).

The nonlinear-optics techniques currently used
squeezing will produce a squeeze angle that is nearly c
stant over the very narrow frequency band of gravitation
wave interferometers, uv2vou&(a few)3g;10212vo .
What we need is a way to change the squeeze angle from
constant nonlinear-optics-induced value to the desi
frequency-dependent value,l52F(V) @Eq. ~50!#.

Just as FD homodyne detection can be achieved by s
ing the light field through appropriate filters followed by
frequency-independent homodyne device, so also
squeezing can be achieved by squeezing the input field in
standard frequency-independent way, and then sendin
through appropriate filters. Moreover, since the necess
squeeze angle~50! has the same frequency dependenc
2F(V) as the homodyne phase~57! and ~18! ~aside from
sign and the value of a multiplicative constant inK!, the
filters needed in FD squeezing are nearly the same as t
needed in FD homodyne detection: The filtering can
achieved by sending the squeezed input field through
Fabry-Pe´rot cavities before injecting it into the interferom
eter, and the cavity parameters are given by Eqs.~89a!–
~89f!, with certain sign changes and withP58:

Q[11A65

2
, A6[2Q6AQ

8
, ~90a!

j I5
1

2A1
2A11

1

~2A1!2, ~90b!

j II5
1

2A2
1A11

1

~2A2!2. ~90c!

d I

g
5A 1

~2j I)AQ
, ~90d!

d II

g
5A 1

j IIAQ
. ~90e!

The details of the calculations are essentially the same
Appendix C, but with Eq.~C1! changed into the following
expression for the initial frequency-independent sque
angle u and the cavities’ frequency-dependent phase sh
aJ6 :

c-
2-16



ed
-
hi

b

e
th
e
se
u

a
o

th

nd
p-
nd

.g
r
n
ti

fe

-
v

r
r

the

ell
els
er-
L. In
the

the

tual

ause
We
ty
to
nd

and

ets

f-

ni-
by

he
h

ial
te
n

CONVERSION OF CONVENTIONAL GRAVITATIONAL- . . . PHYSICAL REVIEW D 65 022002
tanF~V![2
V2~g21V2!

2g4

5tanS u2
a I 11a I 21a II 11a II 2

2 D . ~91!

VI. INFLUENCE OF OPTICAL LOSSES ON QND
INTERFEROMETERS

A. The role of losses

It is well known that, when one is working with squeez
light, any source of optical loss~whether fundamentally irre
versible or not! can debilitate the light’s squeezed state. T
is because, wherever the squeezed light can leave one’s
tical system, vacuum field can~and must! enter by the in-
verse route; and the entering vacuum field will generally
unsqueezed@31#.

All of the QND interferometers discussed in this pap
rely on squeezed-light correlations in order to beat
SQL—with the squeezing always produced ponderomotiv
inside the interferometer and, in some designs, also pre
in the dark-port input field. Thus, optical loss is a serio
issue for all the QND interferometers.

In this section we shall study the influence of optic
losses on the optimized sensitivities of our three types
QND interferometers.

B. Sources of optical loss

The sources of optical loss in our interferometers are
following:

~i! For light inside the interferometer’s arm cavities a
inside the Fabry-Pe´rot filter cavities: scattering and absor
tion on the mirrors and finite transmissivity through the e
mirrors. We shall discuss these quantitatively at the end
the present subsection.~In addition, wave front errors and
birefringence produced in the arm cavities and filters, e
via power-dependent changes in the shapes and optical p
erties of the mirrors, will produce mode missmatching a
thence losses in subsequent elements of the output op
train.!

~ii ! For squeezed vacuum being injected into the inter
ometer: fractional photon lossesecirc in the circulator8 used
to do the injection, in the beam splitterebs, and in mode-
matching into the interferometeremm.

~iii ! For the signal light traveling out of the interferom
eter: In addition to losses in the arm cavities and filter ca
ties, also fractional photon losses in the beam splitterebs, in
the circulatorecirc , in mode matching into each of the filte
cavities emm, in mode matching with the local-oscillato
light used in the homodyne detectione lo , and in the photo-
diode inefficiencyepd.

8The circulator is a four-port optical device that separates spat
the injected input and the returning output from the interferome
see Fig. 1. It can be implemented via a Faraday rotator in conju
tion with two linear polarizers.
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It is essential to pursue research and development with
aim of driving these fractional photon losses down to

ecirc;ebs;emm;e lo;epd;0.001. ~92!

These loss levels are certainly daunting. However, it is w
to keep in mind that attaining the absolute lowest loss lev
will likely be an essential component of any advanced int
ferometer that attempts to challenge and surpass the SQ
the current case, discussions with Stan Whitcomb and
laboratory experience of one of the authors~H.J.K.! lead us
to suggest that it may be technically plausible to achieve
levels of Eq.~92! in the LIGO-III time frame, though a vig-
orous research effort will be needed to determine the ac
feasibility.

The arm cavities are a dangerous source of losses bec
the light bounces back and forth in them so many times.
denote byL the probability that a photon in an arm cavi
gets lost during one round-trip through the cavity, due
scattering and absorption in each of the two mirrors a
transmission through the end mirror. With much research
development by the LIGO-III time frame thisloss coefficient
per round trip may be as low as

L;2031026. ~93!

A fraction

e[
2L
T

5
L

2gL/c
.0.0012 ~94!

of the carrier photons that impinge on each arm cavity g
lost in the cavity@cf. Eq.~B25! on resonance soE5e#. ~Note
the absence of any subscript on this particulare.! For side-
band light the net fractional loss@denotedE(V); Eq. ~100!
below# is also of ordere.

Each filter cavity,J5I or II, has an analogous loss coe
ficient LJ.L and fractional loss of resonant photons

eJ[
2LJ

TJ
.

L
2dJLJ /c

. ~95!

Because~as we shall see!, the filter cavities’ losses place
severe limits on the interferometer sensitivity, we shall mi
mize their net fractional loss in our numerical estimates
making the filter cavities as long as possible:LJ5L
54 km. Then the ratio of Eqs.~95! and ~94! gives

eJ5e~g/dJ!;~0.5 to 2!e. ~96!

C. Input-output relation for lossy interferometer

We show in Appendix B that, accurate to first order in t
arm-cavity losses~and ignoring beam-splitter losses whic
we shall deal with separately below!, the relation between
the input to the interferometer’s beam splitter~field ampli-
tudesaj ) and the output from the beam splitter~field ampli-
tudesbj ) takes the following form:

ly
r;
c-
2-17
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b15Db1 , b25Db21A2K*
h

hSQL
eib

* ~97!

@cf. the last sentence of Appendix B; also the lossless inp
output relation~16! and Fig. 3#. Here, accurate to first orde
in e,

b* [arctanS V/g

11e/2D5b2
e/2

V/g1g/V
~98!

is the loss-modified9 phaseb @Eq. ~17!#, and the coupling
coefficient is reduced slightly by the losses:10

K* [
~ I o /I SQL!2g4

V2@g2~11e/2!21V2#
5KS 12

1

2
ED ~99!

@cf. Eq. ~18!#, where

E5
2g2

g21V2 e5
2e

11~V/g!2 ~100!

is the net fractional loss of sideband photons in the arm c
ties @cf. Eq. ~B25!#. Accurate to first order in the losses, th
output quadrature noise operators in Eq.~97! have the form

Db15a1e2ibS 12
1

2
ED1AEeibn1 ,

Db25a2e2ibS 12
1

2
ED1AEeibn2

2K* ~a11Ae/2n1!e2ib
* ~101!

@cf. last sentence of Appendix B and cf. Eq.~16!#. Heren1
and n2 are the net quadrature field amplitudes that impin
on the interferometer’s arm cavities at their various sites
optical loss. We shall callnj the quadrature amplitudes of th
arm cavities’loss-noise field. They are complete analogs o
the input and output fields’ quadrature amplitudesaj andbj :
they are related to the loss-noise field’s annihilation and c
ation operatorsn6 and n6

† in the standard way@analog of
Eqs.~6!#, they have the standard commutation relations@ana-
log of Eqs.~7!#, and they commute with the dark-port inp
field amplitudesaj .

Equations~101! have a simple physical interpretatio
The dark-port input fieldaj at frequencyvo6V gets attenu-
ated by a fractional amountE/2 while in the interferometer
~corresponding to a photon-number fractional lossE), and
the lost field gets replaced, in the output light, by a small

9The loss modification, i.e., the difference betweenb* and b,
turns out to influence the gravitational-wave noise only at sec
order ine and thus is unimportant; see footnote 12 below.

10As is discussed in footnote 16, in Eq.~99! for K* , strictly
speaking,I o is not the input power to the interferometer, but rath
is the input power reduced by the losses that occur in the in
optics, beamsplitter, and arm cavities. We ignore this delicacy s
its only effect in our final formulas is a slight renormalization ofI o .
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of loss-noise fieldAEnj . The phase shiftb that the interfer-
ometer cavities put onto the loss-noise field is half that
onto the dark-port input field because of the different rou
by which theaj andnj get into the arm cavities.

The radiation-pressure back-action force on the test m
is produced by a beating of the laser’s carrier light agai
the in-phase quadrature of the inside-cavity noise fielda1

1Ae/2n1. Thus, it isa11Ae/2n1 that appears in the outpu
light’s back-action noise~last term ofDb2).

D. Noise from losses in the output optical train and the
homodyne filters

The output quadrature operatorsbj get fed through an
output optical train including the beam splitter, circulator~if
present!, filter cavities~if present in the output as opposed
the input!, local-oscillator mixer, and photodiode. Losses
all these elements will modify theDbj . In analyzing these
modifications, we shall not assume, initially, that the FD h
modyne phase isF(V); rather, we shall give it an arbitrary
value z(V) ~as we did in our lossless analysis, Sec. IV C!,
and shall optimizez at the end. The optimalz will turn out to
be affected negligibly by the losses; i.e., it will still b
F(V)[arccotK.

By analogy with the effects of arm-cavity losses@factorsE
in Eqs. ~101!#, the effects of the optical-train losses on th
output fieldsbj can be computed in the manner sketched
Fig. 11: The process of sending the quadrature amplitudebj
through the optical train is equivalent to~i! sending bj

through a ‘‘loss device’’ to obtain loss-modified fieldsb̆ j ,
and then~ii ! sendingb̆ j through the lossless optical train.11

Because the filter cavities have frequency offsetsjJ that
make their losses different in the upper and lower side ban
the influence of the losses is most simply expressed in te
of the annihilation operators for the side bandsb̆6 , rather
than in terms of the quadrature amplitudesb̆ j . In terms of
b6 , the equation describing the influence of losses is id
tical to that in the case of the arm cavities with fixed mirro
Eqs.~101! with K50:

d

r
ut
e 11Yanbei Chen@32# has shown that it does not matter whether t
losses are placed before or after the lossless train.

FIG. 11. The output lightb is sent through a lossy output optica
train, including a beam splitter, circulator, cavity filters I and II,
mixer with local oscillator light and a photodiode. The result~aside
from an unimportant phase shiftam) is the desired measured qua
tity bz (V ) . This actual process, sketched on the left side of
equality sign, is mathematically equivalent to the idealized proc
sketched on the right side: The cavities’ loss effects are introdu

first, producingb̆, which is then sent through an idealized, lossle
optical train including the filters.
2-18
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b̆65S 12
1

2 (
J

EJ6D b61(
J

AEJ6 nJ6 . ~102!

Here ~i! the sum is over the two filter cavitiesJ5I and II
~which must be treated specially! and over the rest of the
output optical train, denotedJ5OT; ~ii ! EJ is the net frac-
tional loss of photons in elementJ; ~iii ! nJ6 is the annihila-
tion operator for the loss-noise field introduced by elemenJ;
~iv! for each filter I or II, the analog of the phase factor 2b of
Eq. ~101! gets put onto the light in the subsequent lossl
filter and thus is absent here; and~v! we have absorbed
phase factor into the definition ofnJ6 .

The net fractional photon loss in a filter cavity must
identical to that in an arm cavity, Eq.~100!, if written in
terms of the cavity’s half bandwidth (g for arm cavity,dJ for
filter cavity! and the difference between the field’s frequen
v5vo6V and the cavity’s resonant frequencyv res (v
2v res56V for arm cavity; v2v res5jJdJ6V for filter
cavity!. Therefore, Eq.~100! implies that

EJ65
2eJ

11~jJ6V/dJ!
2 for J5I,II. ~103!

For the remainder of the optical train, the net fractional ph
ton lossEOT is the sum of the contributions from the variou
elements and is independent of frequency:

EOT65EOT5ebs1ecirc12emm1e lo1epd;0.006.
~104!

By expressingb6 and nJ6 in terms ofbj and nJ j ~for j
51,2) via the analog of Eq.~6!, inserting these expression
into Eq. ~102!, then computingb̆ j via the analog of Eq.~6!,
we obtain

b̆15S 12
1

2
EOTFDb12

i

4 (
J

~EJ12EJ2!b2

1
1

2 (
J

@~AEJ11AEJ2!nJ11 i ~AEJ12AEJ2!nJ2#,

~105a!

b̆25S 12
1

2
EOTFDb21

i

4 (
J

~EJ12EJ2!b1

1
1

2 (
J

@~AEJ11AEJ2!nJ22 i ~AEJ12AEJ2!nJ1#.

~105b!

Here
02200
s

-

EOTF[
1

2 (
J

~EJ11EJ2!

5EOT1
1

2
~EI11EI21EII11EII2!

.EOT1e (
J5I,II

(
s51,2

g/dJ

11~jJ1sV/dJ!
2 ~106!

is the net,V-dependent loss factor for the entire output o
tical train including the filter cavities. From Eqs.~94!, ~104!
and ~106! and Fig. 10, we infer that

EOTF;0.009 ~107!

with only a weak dependence on frequency, which we sh
neglect.

In Eqs. ~105a!, ~105b! the termsi 3 ~quantity linear in
EJ6)bj @the b2 term in b̆1 and theb1 term in b̆2# will con-
tribute amounts second order in the losses (}E J

2) to the sig-
nal and/or noise, and thus can be neglected. We shall flag
neglect of these terms below, when they arise.

E. Computation of noise spectra for variational-output and
squeezed-variational interferometers

The output of a squeezed-variational interferometer
variational-output interferometer is the frequency-depend
quadraturebz depicted in Fig. 11. This quantity, when spl
into signal}h plus noise}Db̆z , takes the following form:

bz5b̆1 cosz1b̆2 sinz

5sinzFA2K* S 12
1

2
EOTFD h

hSQL
eib

* 1
Db̆z

sinz
G ;

~108!

cf. Eqs. ~97! and ~105a!, ~105b!. Here we have omitted an
imaginary part of the factor 12 1

2 EOTF @arising from theb2

term in b̆1, Eq. ~105a!# because its modulus is second ord
in the losses (}E J

2) and therefore it contributes negligibly t
the signal strength.

Equation~108! implies that the gravitational-wave nois
operator is

hn5S 11
1

2
EOTF1

1

4
ED hSQL

A2Ke2 ib
* ~Db̆21Db̆1 cotz!,

~109!

where we have used Eq.~99! for K* .
For a squeezed-variational interferometer, the dark-p

input field aj is in a squeezed state, with squeeze factoR
and squeeze anglel(V) ~which, after optimization, will turn
out to be l5p/2 as for a lossless interferometer!. For a
variational-output interferometer,aj is in its vacuum state,
which corresponds to squeezing withR50 so we lose no
2-19
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generality by assuming a squeezed input. Since all the n
fields exceptaj are in their vacuum states, the light’s fu
input state is

u in&5u0n& ^ u0nOT
& ^ u0nI

& ^ u0nII
& ^ S~R,l!u0a&, ~110!

where the notation should be obvious.
The gravitational-wave noise is proportional to

^ inuhnhn8u in&5^0uhnshns8u0& ~111!

where u0& is the vacuum state of all the noise fieldsa, n,
nOT, nI , andnII ; andhns is the usual squeezed noise ope
tor

hns5S†~R,l!hnS~R,l!. ~112!

We bring this squeezed-noise operator into an explicit fo
by ~i! inserting Eq.~109! into Eq. ~112!, then ~ii ! replacing
theDb̆ j ’s by expressions~105a!, ~105b! @with D put onto all
theb’s, i.e., with the signal removed#, then~iii ! replacing the
Dbj ’s by expressions~101!, and then~iv! invoking Eqs.~A8!
for the action of the squeeze operators on theaj ’s. The result
is

hns5S 12
1

4
ED3@Eq. ~69!#

1
hSQL

A2K H ~2KeibAe/21AEcotz!eibn11AEeibn2

1
1

2 (
J

@~AEJ11AEJ2!cotz2 i ~AEJ12AEJ2!#nJ1

1
1

2 (
J

@AEJ11AEJ21 i ~AEJ12AEJ2!cotz#nJ2J
~113!

where we have omitted terms, arising fromb2 in Eq. ~105a!
and fromb1 in Eq. ~105b!, which contribute amountsO(E J

2)
to Sh ; and we have omitted a term12 proportional tob*
2b which contributes an amountO(e2).

By virtue of Eq. ~111! and the argument preceding Eq
~26!, we can regard all of the quadrature noise opera
aj , nj , nJ j in this hns as random processes with un
spectral densities and vanishing cross-spectral densities.
respondingly, the gravitational-wave noise is the sum of
squared moduli of the coefficients of the quadrature no
operators in Eq.~113!:

12This term is an imaginary part, 2i (b* 2b)K52
1
2 i eK sin 2b,

of the quantityK̃, which enters Eq.~69! via Eq. ~70!. Because this
imaginary part produces a correction to the loss-free part ofhn that
is 90 ° out of phase with the loss-free part and is of ordere, it
produces a correction toSh that is quadratic ine and thus negli-
gible.
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Sh5
hSQL

2

2K F S 12
1

2
ED ~11K̃2!

3$e22R1sinh 2R@12cos 2~F̃1l!#%

1K 2
e

2
1~12K̃ cotz!E1~11cot2z!EOTFG ~114!

where

K̃5K2cotz, F̃5arccotK̃ ~115!

@Eq. ~70!#. In Eq. ~114!, the first two lines come froma1 and
a2 @squeezed vacuum entering the dark port; cf. Eq.~71!#
modified by losses in the arm cavities@the factor 12E/2)#;
the first two terms on the third line come fromn1 and n2
@shot noise due to vacuum entering at loss points in the
cavities#; and the last term comes fromnJ1 and nJ2 @shot
noise due to vacuum entering at loss points in the out
optical train, including the filters#.

As for the lossless interferometer@Eqs.~72! and~73!#, the
noise~114! is minimized by setting the input squeeze anglel
and output homodyne phasez to

l5p/2, z5F[arccotK ~116!

@aside from a neglible correctiondz5(E12EOTF)e
22R/(K

1K 21)#. This optimization producesK̃50 and l5F̃
5p/2, so

Sh5
hSQL

2

2
F S 12

1

2
EDe22R1E1EOTF

K 1KS e

2
1EOTFD G .

~117!

Note that the optimization has entailed a squeezed in
with frequency-independent squeeze phase, as in the los
interferometer; so no filters are needed in the input. The o
put filters must produce a FD homodyne anglez5F(V) that
is the same as in the lossless case and therefore ca
achieved by two long, Fabry-Pe´rot cavities.

It is instructive to compare the noise~117! for a lossy
squeezed-variational interferometer with that of Eq.~73! for
one without optical losses. In the absence of losses, the
put’s FD homodyne detection can completely remove
radiation-pressure back-action noise from the signal; only
shot noise,}1/K}1/I o , remains. Losses in the interferom
eter’s arm mirrors prevent this back-action removal from b
ing perfect: they enable a bit of vacuum fieldn to leak into
the arm cavities, and this field produces radiation-press
noise that remains in the output after the FD homodyne
tection ~the Ke/2 term in Eq.~117!#.

TheKEOTF noise in Eq.~117! has the same dependence
laser power,}K}I o , as the radiation-pressure noise. Nev
theless, it is actually shot noise, not radiation pressure no
It is produced by the vacuum loss-noise fields that leak i
the output signal light when it encounters each lossy opt
element. Those fields’ shot noise gets weighted by the fa
2-20
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cotz5cotF5K in the homodyne process, which accoun
for their proportionality toK}I o .

A reasonable estimate for the amount of input-lig
squeezing that might be achieved in LIGO-III is@33#

e22R.0.1. ~118!

By contrast, Eqs.~94!, ~96!, ~100! and ~106! suggest

~E1EOTF!;0.01. ~119!

This motivates our neglectingE1EOTF compared toe22R in
expression~117!, and rewriting the noise~117! as

Sh.
hSQL

2

2 Fe22R

K 1Ke* G , ~120!

where

e* [
e

2
1EOTF;0.0010; ~121!

cf. Eqs.~94! and ~107!.
Equation~120! is our final form for the noise spectrum o

a lossy squeezed-variational interferometer. When we se
input squeeze factor to unity,e22R51, it becomes the noise
spectrum for a lossy variational-output interferometer:

Sh.
hSQL

2

2 F 1

K 1Ke* G . ~122!

Errors Dl5l2p/2 in the input squeeze angle andDz
5z2arccotK in the output homodyne phase will increa
the noise spectral density. By performing a power series
pansion of expression~114!, we obtain for the noise increas

DSh5
hSQL

2

K Fsinh 2RDl222~11K 2!sinh 2RDlDz

1
~11K!2e2R

2
Dz2G

.
hSQL

2

2K e2R@Dl2~11K 2!Dz#2, ~123!

where the second expression is accurate in the limite2R

@e22R. Numerical evaluations show that, fore22R50.1 and
e* 50.01~see above!, and forK;1 to 3 ~the range of great-
est interest; cf. Sec. VII!, DASh will be less than1

4 ASh so
long as: ~i! the input squeeze angle is accurate touDlu
&0.05, and~ii ! the FD output homodyne phase is accurate
uDzu&0.01. At K51 the FD phase’s required accuracy
reduced touDzu&0.04. The FD phasez is determined by the
filter cavities’ half bandwidthsdJ and fractional frequency
offsetsjJ , and the local oscillator phase or equivalently t
final, conventional homodyne detector’s homodyne phasu.
The filter cavities’ half bandwidthsdJ ~or equivalently their
finesses! are fixed by the mirror coatings. Coating-produc
errors indJ can be compensated to some degree by tun
the fractional frequency offsetsjJ ~via adjusting the mirror
02200
t
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positions! and by tuning the local oscillator phase or equiv
lently u. Finesse errors as large as five per cent,uDdJu/dJ
&0.05, can be compensated to yield the requireduDzu
&0.01 by tuning the offsets and homodyne phase to
percent accuracy,uDjJu&0.01, Du&0.01 @Eqs.~83!, ~C1!,
~C2! and Fig. 10#. These requirements are challenging.

F. Computation of the noise spectrum for a squeezed-input
interferometer

For a squeezed-input interferometer, as for squeez
variational, the losses in the input optical train~including the
filter cavities! influence the noise only through their impa
on the squeeze factore22R;0.1 of the dark-port vacuum
when it enters the arm cavities—an impact that may makR
frequency dependent,R5R(V). By contrast, losses in the
arm cavities and in the output optical train will produce no
in much the same manner as they do for a squeez
variational interferometer. More specifically:

The effect of arm-cavity and output-train losses on t
squeezed noise operatorhns can be read off of the squeeze
variational formula~113! as follows: ~i! Set z5p/2 so the
quantity measured isb̆2 @no output filtering; Eq.~108!#; ~ii !

correspondingly set cotz50, K̃5K, and F̃5F[arccotK
@Eqs.~115!#; ~iii ! in the sum overJ include onlyJ5OT and
not J5I, II since there are no output filters. The result is

hns5S 12
1

4
ED3@Eq. ~44!#1

hSQL

A2K ~2KAe/2e2ibn1

1AEeibn21AEOT8nOT82!. ~124!

Here the prime on the subscript OT indicates that we m
omit losses due to mode matching into the output filters a
mixing with the local oscillator, since there are no outp
filters or homodyne detection. Correspondingly,

EOT85ebs1ecirc1epd;0.003 ~125!

is the net fractional photon loss in the output optical train
Treating the quadrature noise operators as random

cesses with unit spectral density and vanishing cross spe
densities, we read offSh from Eq. ~124!:

Sh5
hSQL

2

2 FE1EOT8
K 1

e

2
K1S 12

1

2
ED S 1

K 1KD
3$cosh 2R2cos@2~l1F!#sinh 2R%G . ~126!

As in the lossles case, the noise is minimized by squeez
the dark-port input at the FD anglel(V)52F[
2arccotK @Eq. ~47!#. The result is

Sh5
hSQL

2

2 F S 12
1

2
ED S 1

K 1KDe22R1
E1EOT

K 1
e

2
KG .

~127!

For our estimated squeezinge22R;0.1 and lossesEOT8;E
;e&0.003 in the LIGO-III time frame, the loss paramete
2-21
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are small compared to the squeeze, and thus contribute
ligibly to the noise, soSh is well approximated by the loss
less formula

Sh.
hSQL

2

2 S 1

K 1KDe22R. ~128!

However, it is important to keep in mind that the inp
squeeze factore22R is constrained not only by the physics
the squeezing apparatus, but also by frequency depen
losses in the input optical train and mode matching into
arm cavities.

By expanding expression~126! in powers of Dl5l
1arccotK, we see that the fractional increase in noise due
errors in the FD squeeze angle is

DA Sh

ASh

5e2R sinh 2Rdl2.
e4R

2
Dl2. ~129!

For e22R50.1, this fractional noise increase will be less th
1/4 so long asDl is less than 0.07. This translates in
accuracies of;7 percent for the prefilter squeeze ang
;15 percent for the filter cavities’ fractional frequency o
sets (uDjJu&0.15), and;10 percent for the cavities’ hal
bandwidths or equivalently their finesses (DdJ /dJ&0.1).
These constraints are significantly less severe than thos
a squeezed-variational interferometer~end of Sec. VI E!; but,
as we shall see, the potential performance of this squee
input interferometer is poorer by a factor;1.5–2 than that
of the squeezed-variational one.

VII. DISCUSSION OF THE INTERFEROMETERS’ NOISE
SPECTRA

The noise spectra for our three lossy QND interfero
eters, Eqs.~120!, ~122! and~128!, all have the same univer
sal form—a form identical to that for a conventional broa
band interferometer, Eq.~27!. Only the parametersm ands
characterizing the noise differ from one interferometer to
other. This universal form can be written as

ASh~V!

hSQL~V!
5mA1

2 S V
*
2

s2
1

s2

V
*
2 D , ~130a!

whereV* is the following function of angular frequency

FIG. 12. Universal noise curve for conventional and QND
terferometers@Eqs.~130!#.
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V* [
V

g
A11V2/g2

2
~130b!

andhSQL(V) is given by Eq.~20!. Notice thatV* 51 when
V5g.100 Hz; V* 5(V/g)/A2 when V!g, and V*
5(V/g)2/A2 whenV@g.

This universal noise curve is plotted as a function ofV*
in Fig. 12. Its two parameters are the minimum valuem of
the noise, i.e., the minimum amplitude noise in units of t
SQL, and the dimensionless frequencys ~in units ofV* ) at
which the noise takes on this minimum value.

Figure 13 shows this universal noise curve plotted a
function of angular frequencyV. Notice that, because of th
relation ~130b! betweenV* and V, the shape of the noise
curve depends modestly on the locations of its minimum.

The values of the parametersm and s for our various
interferometer configurations are shown in Table II. Noti
the following details of this table:~i! The minimum noisem
~the optimal amount by which the SQL can be beat! is inde-
pendent of the laser input powerI o in all cases; it depends
only on the level of input squeezinge22R and the level of
lossese* . ~ii ! For our estimated loss level and squeeze lev
the squeezed-input interferometer and variational-output

FIG. 13. Universal noise curve plotted as a function of angu
frequencyV for various values of the dimensionless frequency p
rameters.

TABLE II. The values of the parametersm5(minimum noise)
and s5(frequency of minimum) for various interferomete
~‘‘IFO’’ ! configurations: Conv5 Conventional broadband@Eq.
~27!#, SI 5 Squeezed-Input@Eq. ~128!#, VO 5 Variational-Output
@Eq. ~122!#, and SV5 Squeezed-Variational@Eq. ~120!#. The nu-
merical values are fore22R50.1 ande* 50.01.

IFO m s

Conv. 1 AI o /I SQL

SI Ae22R.0.32 AI o /I SQL

VO e
*
1/4.0.32 AI o /I SQL

1/Ae*
.AI o /I SQL

10

SV (e22Re* )1/4.0.18 A I o /I SQL

Ae22R/e*
.AI o /I SQL

3.2
2-22
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terferometer achieve the samem.0.32, while the squeezed
variational interferometer achieves a moderately lowerm
.0.18. ~iii ! The frequencyV* 5s at which the minimum
noise is achieved is proportional toAI o /I SQL. ~Recall that
I SQL is the input power required for a conventional interfe
ometer to reach the SQLat the angular frequencyV5g
.2p3100 Hz, i.e., atV* 51; to do so, the conventiona
interferometer must haves51.! ~iv! For I o5I SQL, the
squeezed-input interferometer hass51, but the variational-
output and squeezed-variational interferometers haves,1,
which means that the minimum of the noise curve is atV
,g.100 Hz. To pushs up to unity, i.e., to push the noise
curve minimum up toV5g, requiresI o /I SQL51/Ae* .10
in a variational-output interferometer, andI o /I SQL

5Ae22R/e* .3.2 in a squeezed-variational interferomete
The importance of pushings up to unity or higher is

explained in Fig. 14. This figure requires some discussio
The most promising gravitational waves for LIGO a

those from the last few minutes of inspiral of black-hole
black-hole binaries, black-hole–neutron-star binaries,
neutron-star–neutron-star binaries. The amplitude signa
noise ratioS/N produced by these waves is given by

S2

N2 54E
0

` uh̃u2

Sh

dV

2p
54E

2`

` uVh̃u2

VSh

dlnV

2p
, ~131!

whereh̃ is the Fourier transform of the waveformh(t). For
the inspiraling binaryuVh̃u is nearly independent of fre
quency throughout the LIGO band@34#, so the signal-to-
noise ratio is optimized by makingVSh(V) as small as pos
sible over as wide a range of lnV as possible.

Figure 14 plotsAVSh(V) as a function ofV/g using
logarithmic scales on both axes, and using the minimu
noise parameterm50.18 corresponding to our fiducia
squeezed-variational interferometer~though the specific
value ofm is irrelevant to our present discussion!. From the
shapes of the curves it should be evident thatthe larger is the

FIG. 14. Noise curves for SQL interferometers with noi
minima m50.18 and various values of the frequency parametes.
The vertical axis is weighted byAV/g so the curves give an indi
cation of the relative noise in searches for waves from inspira
binaries; see text. The noise curves are labeled by the po
I o /I SQL required by a squeezed-variational interferometer
achieve the givens.
02200
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frequency of the noise minimum, i.e. the larger iss at fixed
m, the larger will be the S/N for inspiraling binaries.

A second factor dictates using larges, in particular s
*1. This is thermal noise in the interferometer’s test-ma
suspension fibers. The thermal noise scales with frequenc
AVSh

thermal(V)}V22 or }V25/2 depending on the nature o
the dissipation@35#; see the steep dashed curve in Fig. 14
seems realistic to expect, in LIGO-III, that this thermal no
will be at approximately the level shown in the figure, so
compromises the performance of QND interferometers
V&0.5g.50 Hz @7,36#. Correspondingly, to avoid the ther
mal noise significantly debilitating theS/N for inspiraling
binaries, it will be necessary to haves*1.

Becauses scales asAI o /I SQL for all interferometer de-
signs, larges entails large laser power. In particular,s*1
requiresI o*I SQL; cf. Table II. For our fiducial parameter
~Table I!, I SQL510 kW, which corresponds to an optica
power circulating in each of the interferometer’s arm cavit

Wcirc
SQL5

I SQL/2

gL/c
5

mcLg3

8vo
50.62 MW. ~132!

To construct mirrors capable of handling this huge pow
will be an enormous technical challenge~even though this is
approximately the circulating power contemplated for LIG
II !. To operate with a circulating power much larger than t
might not be possible. Therefore, it may be important
LIGO-III to achieves*1 while keepingI o /I SQL not much
larger than unity.

The squeezed-input interferometer, with itss5AI o /I SQL
~Table II! is the most attractive from this point of view@and
also in terms of its required filter and squeeze-phase acc
cies; cf. end of Sec. VI F#; and the variational-output with its

s5AAe* I o /I SQL.A0.1I o /I SQL is the least attractive. The
squeezed-variational interferometer, with s

5AAe* /e22RI o /I SQL.A0.32I o /I SQL requires a modestly
higher laser power to reachs51 than the squeezed-inpu
@and requires better filter and squeeze-phase accuracies#, but
it is capable of a lower noise minimum,m.(e22Re* )1/4

.0.18 vsm5Ae22R.0.32 for squeezed-input.
This suggests a research and development strategy: F

on input squeezing as a key foundation for LIGO-III~it is
needed both for squeezed-input and squeezed-variationa
terferometers!, and in parallel~i! develop the technology an
techniques for the FD homodyne detection required
squeezed-variational configurations,~ii ! work to drive down
optical losses to the levelse;ecirc;ebs;emm;e lo;epd
;0.001 @Eq. ~92!#, and ~since ponderomotive squeezin
which underlies all our QND interferometers, has never be
seen! ~iii ! carry out experiments in a small test appratus
demonstrate ponderomotive squeezing and to search for
expected obstacles and imperfections in it.

If both input squeezing and FD homodyne detection c
be implemented successfully, then the squeezed-variati
interferometer is likely to achieve better performance th
any other configuration discussed in this paper, despite
apparent need for higher laser power~e.g., I o /I SQL.3.2 to
achieves51 compared toI o /I SQL51 for squeezed input

g
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with our fiducial parameters!. If powers as high asI o /I SQL
.3.2 cannot be handled, then we can operate the squee
variational interferometer with a lower power without mu
loss of performance.

Consider, for example,ASh/hSQL evaluated atV5s
.2p3100 Hz, as a function ofI o /I SQL in a squeezed-
variational interferometer with our fiduciale22R50.1 and
e* 50.01. The optimalI o /I SQL53.2 producesASh(g)/hSQL
50.18; pushingI o /I SQL down by a factor 2, to 1.6, increase
the noise atV5g by only 10 percent, to 0.20; pushing dow
all the way to I o /I SQL51 increases the noise to on
ASh(g)/hSQL50.23, which is still significantly lower noise
than the optimized squeezed-input interferometer~0.32 at
I o /I SQL51).

It is worth recalling that for noncosmological sourc
~sources at distance!3 Gpc), the volume of the univers
that can be searched for a given type of source scales a
inverse cube of the amplitude noise, so a noise le
ASh/hSQL50.18 corresponds to search-volume increase
1/0.183.180 over a SQL-limited interferometer, i.e., ov
LIGO-II.

VIII. CONCLUSIONS

In this paper we have explored three candidate ideas
QND LIGO-III interferometers: squeezed-input, variationa
output, and squeezed variational. The squeezed-input
squeezed-variational interferometers both look quite prom
ing. For our estimated levels of optical loss and levels
squeezing, and for an input laser powerI o /I SQL51 ~the
LIGO-II level!, the squeezed-input interferometer cou
achieve a noisem.0.32 of the SQL, with a correspondin
increaseV.1/0.323.30 over LIGO-II in the volume of the
universe that could be searched for a given source, at n
cosmological distances. The squeezed-variational inte
ometer could achievem.0.23 of the SQL with a search
volume increase over LIGO-II ofV.80. If the optics can
handle a laser powerI o /I SQL.3.2, then the squeezed
variational interferometer could reachm.0.18 of the SQL
and a search-volume increase ofV.180. These number
scale with the losses, squeezing, and laser power as show
Table II.

The squeezed-input and squeezed-variational designs
therefore sufficiently promising to merit serious furth
study. Some of the issues that need theoretical analysis

~i! How can one incorporate into these interferometer
signs the various light modulations that are required, in a
gravitational-wave interferometer, to~i! make the interferom-
eter be shot-noise limited~put the gravitational-wave signa
into ;100 Hz sidebands of a MHz modulation13!, ~ii ! con-
trol the mirror positions and orientations, etc.@37#.

13LIGO scientists are currently exploring the possibility of achie
ing shot-noise-limited performance in LIGO-II without th
modulation-demodulation. The modulation-demodulation may,
fact, be replaced in LIGO-II by homodyne detection at the interf
ometer output, making it more nearly like our paper’s LIGO-
designs.
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~ii ! What accuracies and other characteristics are nee
for the interferometers’ new elements: the circulator, fil
cavities,14 and input squeezing? How can these be achiev
For example, how stable must be the local oscillator for
conventional homodyne detector, and can it be achieved s
ply by tapping some light off the interferometer’s output
input beam?

~iii ! If the filter cavities are placed in the same lon
vacuum tubes as the interferometer’s arm cavities~with their
enormous circulating power!, what will be the nature and
level of noise due to scattering of light from the test-ma
cavites to the filter cavities?~We thank Eanna Flanagan fo
raising this issue.!

~iv! Can the filter cavities be made to serve multiple p
poses? For example, is it possible to use a single opt
cavity for both filters, e.g., with the two filters based on tw
different polarization states~for which the filter might be
made to behave differently via birefringence!, or with the
two filters based on different, adjacent longitudinal mode
As another example, could an output filter cavity be used
a source of ponderomotively squeezed vacuum for input
the interferometer’s dark port?15

~v! Signal recycling via resonant-sideband extracti
~RSE! @38# is likely to be a standard tool in LIGO-II@7#.
How can one best implement RSE simultaneously with
FD homodyne detection~and input squeezing! of a
variational-output~or squeezed-variational! interferometer?
@37# How can one best achieve the FD homodyne’s filtrat
@which will entail a different frequency dependenceF(V)
from that in this paper’s non-RSE designs#?

~vi! In this paper’s analysis we have made a number
simplifying approximations@e.g., our approximating the
phase of the coefficient off j in Eq. ~B24! by 2b an approxi-
mation that fails by a frequency-dependent amount wh
can be nearly as large as one per cent#. At what level of
sensitivity do these approximations become problem
~e.g., for our proposed two-cavity way of achieving the ne
essary FD homodyne detection!, and how can the resulting
problems be overcome?

~vii ! Our analysis is based on the crucial assumption t
the interferometer’s output is strictly linear in its input@4#.
Matsko and Vyatchanin@39# have shown that this is not quit
correct. In the interferometer’s arms the back-action-indu
mirror displacementX produces a phase shift of reflecte
light given by e22iVX/c, which our linearized analysis ap
proximates as 122iVX/c @cf. Eq. ~B10!#; when the better
approximation 122iVX/c22(VX/c)2 is used, the result is
additional, nonlinear noise, which limits the cancellation

n
-

14The filter cavities will require a mechanical stability far less th
that of the arm cavities, since the carrier power in the output ligh
small and filter mirror displacements of magnitude;hL therefore
do not imprint a significant signal on the light.

15For ponderomotively squeezed vacuum, the squeeze ang
frequency dependent, withdf/dV of the opposite sign to tha
needed by a squeezed-input interferometer. This must be com
sated by a filtering different from that discussed in Sec. V.
2-24
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the back-action noise by the shot noise and produces a
@39#

Sh
NL;

hSQL
2

2N SQL
1/5 ;531025hSQL

2 ~133!

on the sensitivity that any of our QND designs can achie
Here

NSQL5
I SQL

\vog
5

1

2 S Tc/4vo

A\/mg
D 2

.231020 ~134!

is the number of quanta entering a SQL interferometer
time g21;2 ms. The nonlinear limitation~133! is suffi-
ciently far below the SQL that we need not be concern
about it. Are there any other, more serious sources of n
linearity that might compromise the performance of the
interferometers?

Experimental studies are also needed as foundations
any possible implementation of variational-output
squeezed-variational interferometers@40#. Examples are

~i! Studies of the debilitating effects of very high circula
ing powers,Ws; a few MW, and how to control them.

~ii ! A continuation of efforts to achieve large squeezin
robustly, via nonlinear optics@33#, and exploration of the
possibility to do so ponderomotively@41–44#.

~iii ! A continuation of efforts to achieve low levels o
losses in optical cavities and interferometers, so as to m
mize the contamination of squeezed light by ordina
vacuum@45#.

~iv! Prototyping of FD homodyne detection by the tec
nique proposed in this paper: filtration followed by conve
tional homodyne detection.

In the meantime, and in parallel with such studies, it
important to push hard on the effort to find practical QN
designs that entail circulating light powers well below 1 M
@13#, and that might be much less constrained by opti
losses than the designs explored in this paper.
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APPENDIX A: ROTATION AND SQUEEZE OPERATORS

In this paper we make extensive use of squeeze opera
and some use of rotation operators. In this appendix we
properties of these operators that are useful in verify
statements made in the text. This appendix is based on
formalism for 2-photon quantum optics developed by Ca
and Schumaker@26,27#.

The rotation operatorR(u), which acts on the Hilbert
space of the modes with frequenciesv5vo6V, is defined
by

R~u!5exp@2 iu~a1
† a11a2

† a2!# ~A1!

@Eq. ~4.33! of @26##; herea6 are the annihilation operators
and a6

† the creation operators for photons in these mod
This operator is unitary and has the inverse

R21~u!5R†~u!5R~2u!. ~A2!

The effect of a rotation on the modes’ annihilation operat
is

R~u!a6R†~u!5a6eiu ~A3!

@Eq. ~4.35! of @26##, and its effect on the two-photon quadr
ture amplitudes@Eqs.~6!# is

R~u!a1R†~u!5a1 cosu2a2 sinu,

R~u!a2R†~u!5a1 sinu1a2 cosu ~A4!

@Eq. ~4.36! of @26##.
The squeeze operator also acts on the Hilbert spac

modes with frequenciesv5vo6V, and is defined by

S~r ,f!5exp@r ~a1a2e22if2a1
† a2

† e2if!# ~A5!

@Eq. ~4.9! of @26#; Eq. ~1.8! of @27##. This squeeze operator i
unitary and its inverse is

S21~r ,f!5S†~r ,f!5S~2r ,f!5S~r ,f1p/2! ~A6!

@Eq. ~1.9! of @27##. The effect of a squeeze on the mode
annihilation operators is

S~r ,f!a6S†~r ,f!5a6 coshr 1a7
† e2if sinhr ~A7!

@Eq. ~4.10! of @26##. From this equation and the definition~6!
of the quadrature amplitudes, we infer the effect of a sque
on those amplitudes

S~r ,f!a1S†~r ,f!5a1~coshr 1sinhr cos 2f!

1a2 sinhr sin 2f,

S~r ,f!a2S†~r ,f!5a2~coshr 2sinhr cos 2f!

1a1 sinhr sin 2f. ~A8!
2-25
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APPENDIX B: INPUT-OUTPUT RELATIONS FOR
INTERFEROMETERS

In this appendix we shall derive the input-output relatio
for the fieldsaj and bj that enter and leave the interferom
eter’s dark port. From the outset we shall include opti
losses in our derivation, thereby obtaining the lossy inp
output relations~97! and ~101!; the lossless input-output re
lations ~16! then follow by settinge50.

1. Fields at beam splitter

We describe the field amplitudes entering and leaving
beam splitter by the notation shown in Fig. 15~cf. Fig. 3!.
We idealize the beam splitter as lossless in this appendix,
deal with its losses in the body of the paper in the man
sketched in Fig. 11. The amplitudesD& d of the field enter-
ing the beam splitter from the laser are defined by the
lowing formulas for the positive-frequency part of the ele
tric field

Ein
(1)5A2p\vo

Ac
e2 ivotFD1E

0

`

~d1e2 iVt1d2e1 iVt!
dV

2p G
~B1!

@cf. Eq. ~5!# and for the total electric field

Ein5A4p\vo

Ac

3H cos~vot !FA2D1E
0

`

~d1e2ıVt1d1
†e1 iVt!

dV

2p G
1sin~vot !E

0

`

~d2e2ıVt1d2
†e1 iVt!

dV

2p J . ~B2!

Thus,D is the classical amplitude of the laser light~carrier
with frequencyvo), d6 are the annihilation operators fo
the vo6V sidebands, andd1 andd2 are the quadrature am
plitudes for the side bands.@Notice that the factor out front is
a A2p in Eq. ~B1! but A4p in Eq. ~B2!, and notice theA2D
in Eq. ~B2!.# The light power I o impinging on the beam
splitter is related to the classical amplitudeD by

FIG. 15. Field amplitudes entering and leaving the beam spl
~which here is idealized as lossless!. The various amplitudes ar
defined in Eqs.~B1!–~B4!.
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I o5
Ein

2̄

4p
Ac5\voD2, ~B3!

where the overbar means time average.~Note thatD2 has
dimensions Hz5 1/sec.!

For all other fields the classical amplitude and sideba
amplitudes are as indicated in the figure; for example,
field going toward the east cavity has classical amplitu
D/A2 and quadrature amplitudesf 1

e , f 2
e .

With an appropriate choice of conventions@46#, the fields’
junction conditions at the splitter are

f j
n5

dj1aj

A2
, f j

e5
dj2aj

A2
,

bj5
gj

n2gj
e

A2
, ej5

gj
n1gj

e

A2
. ~B4!

Here j 51 or 2.

2. Arm cavities and fields

The east and north arm cavities are presumed to be id
tical, with power reflection and transmission coefficientsR

andT for the front mirror, andR̃ and T̃ for the back mirror.
The amplitude reflection and transmission coefficients

chosen be real, with signs$1AT,2AR%, $1AT̃,2AR̃%
for light that impinges on a mirror from outside the cavit

and $1AT,1AR%, $1AT̃,1AR̃% for light that impinges
from inside the cavity.

The dominant optical losses are for light impinging o
mirrors from inside the cavity~cf. Sec. VI B!. The influence
of the losses on the interferometer’s signal and noise
independent of the physical nature of the losses—wheth
is light scattering off a mirror, absorption in the mirror, o
transmission through the end mirror.~We ignore the effects
of mirror heating.! For computational simplicity, we mode
all the losses as due to finite transmissivityL5T̃5” 0 of the
end mirror, and correspondingly we set

R1T51, R̃1T̃51. ~B5!

The fractional loss of photons in each round trip in the cav
is then T̃, and the net fractional loss of photons in the a
cavities is

e5
2L
T

5
2T̃

T
~B6!

cf. Eqs.~93! and ~94!. Recall thatT.0.033 ande;0.0012,
and also thatV;g5Tc/4L @Eqs. ~11!, ~94!#; correspond-
ingly, we shall make the approximations

T̃!T54gL/c;VL/c!1 ~B7!

throughout our analysis.

r
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Figure 16 shows an arm cavity and the amplitudes of
fields that impinge on or depart from its mirrors. The amp
tudes are those at the~front or back! mirror location, and the
mirrors, like the beam splitter, are idealized as infinitesima
thin.

For pedagogical simplicity, the distance from the be
splitter to the front mirror of each arm cavity is set to
integral multiple of the carrier wavelength and is assumed
be far smaller thanc/V ~the wavelength associated with th
sidebands!. This means that there are no net phase shifts
the light in traveling between the beam splitter and the ca
ty’s front mirror; i.e., the field amplitudesD/A2& f ~or
D/A2&g) arriving at ~or departing from! the mirror are the
same as those departing from~or arriving at! the beam split-
ter; cf. Figs. 16 and 15.

The cavity’s length is adjusted to an integral number
carrier wavelengths so there is no carrier phase shift fr
one end of the cavity to the other, and inside the cavity
carrier amplitude is amplified by the standard resonance
tor 2/AT. ~Losses are small enough to be of little importan
for the carrier.! Because the side bands inside the cavity h
a frequency dependencegje

2 iVtcos(vot) at the front mirror
location @cf. Eq. ~B2!#, they propagate down the cavity a
gje

2 iV(t2z)cos@vo(t2z)# and upon reaching the back mirro
~where cos@vo(t2z)#5cos@vt#), they have acquired the phas
shift indicated in the figure,gje

iVL/c; and similarly for thekj
field propagating in the other direction.

The standard junction conditions at the front mirror imp
that

j j5AT f j1ARkj , gj52AR fj1ATkj . ~B8!

We denote byX(t) the change of arm length produced b
radiation pressure and the gravitational waves, and byX its
Fourier transform. The oscillatingX(t) pumps carrier light
into the side bands. More specifically, in traveling from t
front mirror z50 to the perturbed positionz5L1X(t) of
the back mirror, then reflecting and propagating to the unp
turbed locationz5L, the carrier field acquires the form16

16Here we have neglected the attenuation of the carrier field du
the arm-cavity losses. This neglect is in the same spirit as ou
noring attenuation in the input optics, in the beam splitter, and
mode matching into the arm cavities. Including these attenuat
would simply changeD in Eq. ~B9! to D3(121/2 power attenua-

FIG. 16. Field amplitudes entering and leaving an arm cav
The cavity’s front-port input and output amplitudesD, f, andg are
defined in Eqs.~B3! and~B4! and Fig. 15, and its back-port inputq
is defined in Eq.~B11!.
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Ecarrier5A4p\vo

Ac
A2

T
A2D cos„vo@ t22X~ t !/c#…

5A4p\vo

Ac
A4

T
DS cosvot

1sinvot
2vo

c E
2`

1`

Xe2 iVt
dV

2p D . ~B9!

Comparing with the standard expression for the field at
location of the unperturbed end mirror@Eq. ~B2! with the
amplitude changes indicated in the lower right of Fig. 1
D→(2/A2)(D/A2) anddj→kje

2 iVL/c#, we obtain the fol-
lowing expression for the field fed from the carrierD into the
sideband amplitudeskj :

dk150, dk25
2

AT
D

2vo

c
X. ~B10!

This acts as a source term in the standard junction condi
for the back mirror:

kje
2 iVL/c5AR̃j je

iVL/c1AT̃qj1dkj . ~B11!

Note thatqj is the noise-producing vacuum fluctuation th
leaks into the cavity as a result of the optical losses.

3. Cavity’s internal field and radiation-pressure fluctuations

By combining the front-mirror and back-mirror junctio
conditions~B8! and ~B11! we obtain for the side-band am
plitude in the cavity

j j5
AT f j1AReiVL/c~AT̃qj1dkj !

12ARR̃e2iVL/c
. ~B12!

Equations~B7! andAR5A12T5A120.033.1 allow us to
make the approximationsAReiVL/c.1 in the numerator and
@using Eq.~11!#

12ARR̃e2iVL/c.~2L/c!~g* 2 iV!, ~B13!

g* [g~11e/2! ~B14!

in the denominator~accurate to better than 1 percent for a
V of interest to us!, thereby bringing Eq.~B12! into the form

j j5
AT~ f j1Ae/2qj !1dkj

~2L/c!~g* 2 iV!
, ~B15!

where we have usedT̃51/2eT. The cavity’s internal electric
field Eint is expression~B2! with D→(2/AT)(D/A2) @Eq.
~B9!# anddj→ j j @expression~B15!#; cf. Fig. 16. The power

to
g-
n
s

tion factor!—i.e., D3(121/2e) for the effect of arm-cavity losses
Equivalently, it would dictate replacingI o by I o (12 power at-
tenuation factor! in K, K* , and all our formulas for the
gravitational-wave noise.

.
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circulating in the cavity is this (Eint
2̄ /4p)Ac, and consists of

two parts, a steady classical piece

Wcirc5
1

2

4D2

T
\vo5

2

T
I o5

I o/2

gL/c
, ~B16!

and a fluctuating piece

dWcirc5E
0

`AI o\vo~ f 11Ae/2q1!

~L/c!~g* 2 iV!
e2 iVt

dV

2p
1H.c.,

~B17!

where H.c. means Hermitian conjugate~adjoint! of the pre-
vious term.

4. Mirror motion

The circulating-power fluctuations~B17! produce a fluc-
tuating radiation-pressure~back-action! force

FBA52dWcirc /c ~B18!

on each mirror. This force is equal and opposite on the c
ty’s two mirrors and, along with the gravitational waves,
produces the following acceleration of the mirror separati

d2X~ t !

dt2
5

1

2
hneL

d2h~ t !

dt2
1

4dWcirc~ t !

mc
. ~B19!

Hereh(t) is the gravitational-wave field~projected onto the
interferometer’s arms!, andhne is 11 for the north arm and
21 for the east arm~one arm is stretched while the other
squeezed!.

Below we will need an expression for the~Fourier trans-
form of the! arm-length difference,x5Xn2Xe . It can be
obtained by Fourier transforming the equation of moti
~B19!, solving for X ~i.e., Xn or Xe), inserting expression
~B17! for dWcirc , and then taking the difference of the nor
and east arms. The result is

x5Lh1xBA ~B20!

@cf. Eq. ~15!#, where

xBA5
24A2I o\vo~a11Ae/2n1!

mV2L~g* 2 iV!

52AK* /2LhSQL~a11Ae/2n1!eib
* . ~B21!

Here we have introduced the quadrature amplitude for
difference of the arms’ noise fields

nj[
qj

n2qj
e

A2
~B22!

and have used Eq.~B4! for f 1
n and f 1

e , and Eqs.~99!, ~98!,
~19! and ~20! for the coupling constantK* , the phaseb* ,
the SQL powerI SQL and the standard quantum limithSQL.
02200
i-
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Below we shall also need the following expression for t
difference of the two arms’ sideband fields produced by
mirror motions’ coupling to the carrier:

dk2
n2dk2

e

A2
52A2

T
A I o

\vo

vox

c
. ~B23!

This follows from Eqs.~B10!, ~B3! and ~12!.

5. Cavity output

The field exiting from the~north or east! cavity is ob-
tained by combining Eqs.~B8!, ~B11! and ~B12!:

gj5
AR̃e2iVL/c2AR

12ARR̃e2iVL/c
3 f j1

~ATT̃qj1ATdkj !e
iVL/c

12ARR̃e2iVL/c
.

~B24!

Inserting Eq.~B13! for the denominator and analogous e
pressions for the numerator, and discarding terms that
higher order than linear in the losses, we bring Eq.~B24! into
the form

gj5S 12
1

2
EDe2ib f j1AEeibqj1A~c/2L !2T

g
*
2 1V2

eib
* dkj ,

~B25!

whereb* is given by Eq.~98! andE by Eq. ~100!.

6. Beam splitter output

By combining Eqs.~B4!, ~B25!, and~B22!, we obtain for
the dark-port output of the beam splitter

bj5S 12
1

2
EDaje

2ib1AEn1eib

1A~c/2L !2T

g
*
2 1V2 S dkj

n2dkj
e

A2
D eib

* . ~B26!

Insertingdk1
n,e50 @Eq. ~B10!# and our expression~B23! for

the difference of thedk2’s, and inserting Eqs.~B20! for x and
Eqs.~99!, ~20!, ~B14! for K* , hSQL, g* , we obtain for
the output fields:

b15S 12
1

2
EDa1e2ib1AEn1eib, ~B27a!

b25S 12
1

2
EDa2e2ib1AEn2eib

1A2K* S h1xBA /L

hSQL
Deib

* . ~B27b!

By inserting expression~B21! for the back-action-induced
mirror displacementxBA , we obtain the input-output rela
tions quoted in the text: Eqs.~97! and~101! with losses, and
Eqs.~16! in the lossless limit.
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APPENDIX C: FILTER PARAMETERS

In our discussion of FD homodyne detection~Sec. V!, we
derived the following requirement for the conventional h
modyne phaseu and the filter parametersjJ anddJ ~with J
5I and II!:

tanF~V![
V2~g21V2!

L4 5tanS u2
a I11a I2

1a II11a II2

2
D

~C1!

@Eqs.~81!, ~86!, and~83!#, where

aJ65arctan~jJ6V/dJ! ~C2!

@Eq. ~88!#. In this appendix, we shall show that this requir
ment is satisfied by the parameter choices asserted in
text: Eqs.~85! and ~89!.

We initially regard the parametersu, jJ , and dJ as un-
known. By inserting Eq.~C2! into Eq. ~C1! and invoking
some trigonometric identities, we obtain the requirement

~R02I 0 cotu!1~R22I 2 cotu!V21R4V4

~R0 cotu1I 0!1~R2 cotu1I 2!V21R4 cotuV4

5
g2V21V4

L4 . ~C3!

Here R01R2V21R4V4 is the real part andI 01I 2V2

is the imaginary part of (11 i tana I1)(11 i tana I2)(1
1 i tana II1)(11 i tana II2). More specifically,

R0512j I
22j II

224j Ij II1j I
2j II

2, ~C4a!

R25~12j I
2!/d II

21~12j II
2 !/d I

2, ~C4b!

R451/~d I
2d II

2 !, ~C4c!

I 052~j I1j II !~12j Ij II !, ~C4d!

I 252j II /d I
212j I /d II

2. ~C4e!

To get rid of theV4 term in the denominator of Eq.~C3!,
we must set

u5p/2, so cotu50. ~C5!

~We cannot setR450 since that would require an infinit
bandwidth for one or both of the filters.! To get rid of theV2

term in the denominator and the constant term in the num
tor, and to make theV2 andV4 terms in the numerator hav
the correct coefficients, we must set

I 250, ~C6a!

R050, ~C6b!

R2
2/~ I 0R4!5g4/L4[4/P, ~C6c!

R2 /R45g2. ~C6d!
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Here we have used definition~89a! of the constantP.
Equations~C6! are four equations for the four unkow

filter parameters: the fractional frequency offsetsj I , j II
and the half bandwidthsd I , d II . In the next four para-
graphs we shall explore the consequences of these four e
tions, arriving finally at the solution~89! for j I , j II , d I , and
d II given in the text.

Equation~C6a! implies that

d I
2/d II

252j II /j I . ~C7!

Equation ~C6b! implies that (12j Ij II)
25(j I1j II)

2. It
turns out that one of the frequency offsets is positive and
other is negative~cf. Fig. 10!; we choosej I to be the positive
one. It also turns out thatj I1j II is positive ~cf. Fig. 10!.
Consequently, we can take the square root of the above e
tion to obtain

12j Ij II5j I1j II , ~C8!

which enables us to express the frequency offsets in term
each other:

j I5
12j II

11j II
, j II5

12j I

11j I
. ~C9!

Equation~C6c!, when combined with Eqs.~C7! and~C8!,
implies that

8

P
5

FA2j II

j I
~12j I

2!1A2j I

j II
~12j II

2 !G2

~j I1j II !
2

. ~C10!

We shall now combine this equation with Eqs.~C9! to obtain
Eqs. ~89! for the frequency offsetsj I and j II in terms ofP
54g4/L4. Our first step is to defineA6 by Eqs.~89c! and
~89d!, which are equivalent to

A1[
j I

j I
221

, A2[
j II

j II
221

. ~C11!

Note that the relation~C9! betweenj I andj II is equivalent to

4A1A251. ~C12!

By using Eqs.~C9!, ~C11! and ~C12!, we can reexpress th
right side of Eq.~C10! solely in terms ofA1 :

8

P
5

~4A1
2 21!2

A1~4A1
2 11!

. ~C13!

It is convenient to defineQ by Eqs.~89b!, which are equiva-
lent to

A11A2[2Q/P. ~C14!

Using Eqs.~C12! and ~C14!, we can rewrite Eq.~C13! in
terms ofQ instead ofA1 :
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2

P
5

2Q

P
2

P

2Q
, ~C15!

which can be solved forQ as a function ofP

Q5
11A11P2

2
. ~C16!

This is the relation asserted in the text, Eq.~89a!, and it
completes our derivation of Eqs.~89a!–~89d! for the fre-
quency offsetsj I andj II in terms ofP.

Turn, finally, to the consequences of Eq.~C6d!, which
says

g25d I
2~12j I

2!1d II
2~12j II

2 !. ~C17!
t
2

id
t

3.

-

SC
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.
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02200
By eliminatingd II with the aid of Eq.~C7!, we obtain

g25d I
2j IS 12j I

2

j I
2

12j II
2

j II
D . ~C18!

Using Eqs.~C11!, ~C12!, and~89b!, we can rewrite this as

d I

g
5A P

8j1AQ
, ~C19!

which is the formula for the half bandwidthd I given in the
text, Eq.~89e!. The corresponding formula ford II , Eq.~89f!,
follows directly from Eqs.~C19! and ~C7!.
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