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The physics of neutron stars can be studied with gravitational waves emitted from coalescing binary
systems. Tidal effects become significant during the last few orbits and can be visible in the gravitational
wave spectrum above 500 Hz. After the merger, the neutron star remnant oscillates at frequencies above
1 kHz and can collapse into a black hole. Gravitational wave detectors with a sensitivity of
~1072* strain/y/Hz at 2—4 kHz can observe these oscillations from a source which is approximately
100 Mpc away. The current observatories, such as LIGO and Virgo, are limited by shot noise at high
frequencies and have a sensitivity of greater than or equal to 2 x 10723 strain/+/Hz at 3 kHz. In this paper,
we propose an optical configuration of gravitational wave detectors, which can be set up in present facilities
using the current interferometer topology. This scheme has the potential to reach 7 x 1072 strain/+/Hz at
2.5 kHz without compromising the detector sensitivity to black hole binaries. We argue that the proposed
instruments have the potential to detect similar amount of postmerger neutron star oscillations as the next
generation detectors, such as Cosmic Explorer and Einstein Telescope. We also optimize the arm length of
the future detectors for neutron star physics and find that the optimal arm length is ~20 km. These
instruments have the potential to observe neutron star postmerger oscillations at a rate of approximately
30 events per year with a signal-to-noise ratio of 5 or more.

DOI: 10.1103/PhysRevD.99.102004

I. INTRODUCTION

On August 17, 2017, the LIGO and Virgo gravitational
wave (GW) detectors observed the coalescence of a binary
neutron star system [1]. This event triggered a remarkable
follow-up observation of the postmerger electromagnetic
radiation across the full spectrum [2]. This first GW
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multimessenger observation provided insight into astrophys-
ics, dense matter, gravitation, and cosmology. In particular,
combining this event with priors from the upper limit from
the previous LIGO observing runs and radio pulsar surveys
sets the astrophysical rate of binary neutron star mergers
equal to 15407735 Gpc=3 yr~!. The observed event has also
shown that binary neutron star mergers may be the progeni-
tors of at least some short-hard gamma-ray bursts [3] and an
important site for rapid neutron-capture nucleosynthesis in
the Universe (see, for example, Ref. [4]). In addition, the
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detected signal set constraints on the tidal deformability of
neutron stars and provided an independent measurement
[1,5] of the Hubble constant with a precision of 10% [6].

Binary neutron star mergers may result in a promptly
forming black hole or a short- or long-lived neutron star
remnant which emits GWs above 1 kHz after the merger.
The remnant of the detected binary neutron star event is
unknown due to the diminished response of the LIGO and
Virgo instruments at high frequencies [7,8]. These detectors
are optimized to increase the observatory reach and are only
sensitive to the postmerger oscillations of neutron stars
which are closer than ~10 Mpc. These oscillations contain
crucial information about the neutron star equation of state,
and the structure of the postmerger remnant [9-13]. A
measured GW waveform of the binary neutron star coa-
lescence also allows an independent determination of the
Hubble constant without an electromagnetic counterpart
[14]. More broadly, high sensitivity above the kilohertz
band may also improve tests of General Relativity at shorter
length scales by observing the ringdown phase of solar-
mass binary black hole mergers [15].

The sensitivity of the current GW detectors above
1 kHz is determined by the sum of the quantum shot
noise (2 x 10723 strain/v/Hz) [8] and classical noises
(5 x 1072 strain/+/Hz) [7], such as coating thermal noise
16]] and gas phase noise [17]. The gap between the
quantum and classical noises can be reduced by (i) opti-
mizing the configuration of the interferometer to high
frequencies, (ii) increasing the input power, (iii) injecting
squeezed states of light [18], and (iv) increasing the gain-
bandwidth product of the interferometer [19]. In this paper,
we focus on options i—iii since the technology for iv is not
developed yet. We propose to close the quantum-classical
gap by tuning the coupled cavity resonance between the
arm and the signal recycling cavities [20-23] to 2.5 kHz,
increasing the arm powers, and using a squeezed state of
light. In Sec. II and Appendix A 1, we identify technical
difficulties associated with this scheme and outline the
technology which should be developed to detect neutron
star postmerger oscillations. We also construct a cost
function to optimize detectors for neutron star physics.

In Sec. III, we discuss three high-frequency detector
designs in the order of their complexity. The first detector
(LIGO-HF) can be built in the current LIGO facilities and
keeps the current LIGO test masses. The second detector
(12 km-HF) adds folding to the arm cavities and requires
larger test masses. These detectors can also be implemented
in the current LIGO facilities. The third detector is 20 km
long and requires a new facility. This length is a result of
the optimization of the cost function from Sec. II. We find
that the sensitivity of detectors improves at high frequen-
cies for arm lengths below ~18 km. Above this length, the
free spectral range of the interferometers significantly
reduces the response of the observatories to the sources
at particular sky locations [24] and therefore the overall
sensitivity at high frequencies.

In Secs. IV and Sec V, we discuss post- and premerger
neutron star physics. We find that the current 4 km facilities
have the potential to detect neutron star postmerger
oscillations with a signal-to-noise ratio similar to that of
proposed third-generation detectors, such as FEinstein
Telescope [25] and Cosmic Explorer [26]. Therefore, these
facilities will have a long-term impact as neutron star
observatories in the era of the next generation detectors.
We also consider distinguishability of different equations
of state, the measurement of neutron star tidal deform-
ability and the Hubble constant, and tidal disruption in
black hole-neutron star binary systems. Additionally,
trying to extend the scope of possible science cases, in
Appendixes A3, A4, and A5, we also consider the
sensitivity of the proposed detectors to the stochastic
background, superradiant instability of ultralight bosons,
and mode spectroscopy for binary black holes.

II. HIGH-FREQUENCY SENSITIVITY

In this section, we discuss the topology of the proposed
high-frequency detectors, thermal lenses in the mirrors, and
quantum shot noise. We also define the figure of merit for
the sensitivity optimization, the result of which is described
in Sec. III. Throughout this paper, we apply the current
room temperature LIGO technology for the proposed high-
frequency detectors: 1064 nm lasers and fused silica
mirrors with Ta,05/SiO, optical coatings. The techniques
for improving high-frequency sensitivity described here
can be equally applied to the proposed cryogenic upgrade
of LIGO—the LIGO Voyager [27], which assumes a
different laser wavelength and different test masses and
coating materials.

A. Optical layout

The layout of the proposed detector, shown in Fig. 1, is
similar to the one of the Advanced LIGO detectors. It
consists of two 4-km-long perpendicular arm cavities, a
Michelson interferometer, and power and signal recycling
cavities. The GW signal is extracted from the difference
between the two arms. The common arm length is a
frequency reference for the laser. The Michelson interfer-
ometer splits and recombines the laser beam from the two
arms. The power recycling cavity passively filters laser
noise, and the signal recycling cavity shapes the response of
the detector. The parameters of the current and proposed
detectors are summarized in Table L.

The key feature of the proposed layout is an optical
resonance arising from the coupling between the signal
recycling and arm cavities. We tune parameters of the
detector to achieve the frequency and bandwidth of the
resonance equal to approximately 2.5 kHz and =1.5 kHz.
This resonance enhances the response of the interferometer
to GW from neutron star oscillations. The frequency w, and
bandwidth y of the resonance are given by the equations
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Schematics showing the detector design (left) and the resulting sensitivity curves (right). Sensitivities of Advanced LIGO

design, Advanced LIGO plus (A+) [28], Einstein Telescope [25], and Cosmic Explorer [26] are also shown as references. The LIGO
Voyager [27] sensitivity is not shown here since this upgrade focuses on the improvement around 100 Hz.

. — ¢/ Trrm :CTSRM (1)
* 2y/LymLsrc 4Lggrc

where Ty and T'sgy are the power transmissivity of the
input test mass (ITM) and signal recycling mirror (SRM),
L, is the arm cavity length, and Lggc is the length of
signal recycling cavity.

Previous studies proposed to run the interferometer with
the detuned signal recycling [29]. Such an interferometer
has improved high-frequency sensitivity but is difficult to
control in practice [30]. The detuned design also requires an

additional filter cavity [31] for squeezed states of light since
upper and lower signal sidebands acquire different phases
in the interferometer. In the detector proposed in this paper
(LIGO-HF), the interferometer control is similar to the
current Advanced LIGO scheme [32,33], and no filter
cavities are required in addition to the one for reducing the
low-frequency radiation pressure noise. Equation (1) sets
two constraints on the three parameters: Lgrc, Tspm, and
Tyrm- One more constraint is set by the quantum noise
caused by the optical loss in the signal recycling cavity.
This loss arises from thermal lenses in the input test masses
and is discussed in Secs. II B and II C.

TABLE I. Summary of the key parameters.

Parameter LIGO LIGO-HF 12 km-HF 20 km-HF
Mirror mass (kg) 40 40 87 100
Arm gain 270 270 100 100
Power recycling gain 50 60 160 160
Signal recycling mirror transmissivity, Tgry 0.32 0.030 0.04 0.016
Signal recycling length, Lggc (m) 56 356 200 100
Coupled cavity resonance, w, /27 (kHz) 6.1 2.5 3.1 34
Coupled resonance bandwidth, y, /27 (kHz) 68 1.0 24 1.9
Arm cavity bandwidth (Hz) 45 45 40 24
Input power, P;, (W) 125 500 1500 670
Power on beam splitter, Py, (kW) 6.2 30 80 80
Arm power, Py, (MW) 0.8 4.0 4 4.0
Squeezing level (observed) (dB) e 10 10 10
Filter cavity (bandwidth = detuning) (Hz) e 28 13.5 7.9
Static loss in the signal recycling cavity, e, (ppm) 500 200 100 100
Suppression of ITM distortion, ki 30 70 70 70
Suppression of BS distortion, kpg 1 3 10 10
Heating loss on the input test masses, ey (ppm) 1000 735 735 735
Coating absorption, a,, (ppm) 0.5 0.25 0.25 0.25
Beam splitter absorption, agg (ppm) 1 1 1 1
Heating loss on the beam splitter, egg (ppm) 225 694 444 444
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B. High-power effects

By design, the Advanced LIGO detectors resonate
~0.8 MW of optical power in the arm cavities. We propose
to further increase this number to improve the response of
the detector at high frequencies. However, high-power
operation triggers a number of technical challenges such
as (i) thermal lenses in the mirror substrates, (ii) angular
instabilities in the arm cavities, and (iii) parametric insta-
bilities in the arm cavities. We discuss ii and iii in
Appendix A 1 since these problems complicate the inter-
ferometer control but do not influence the detector sensi-
tivity at high frequencies. Item i is a more significant
challenge since vacuum fluctuations couple to the instru-
ment through optical losses in the mirror substrates as
discussed in Sec. II C.

Thermal lenses arise from temperature gradients inside
the input test masses. These gradients are created by the
absorption of a small fraction (less than 1 ppm) of
the resonating laser power in the coatings and substrates
of the mirrors. In Advanced LIGO, thermal lenses are
suppressed by a factor of kypy = 30 by heating the mirrors
near their edges using ring heaters and CO, lasers with a
special beam profile [34,35]. Unsuppressed thermal gra-
dients lead to the wavefront distortion and effective
scattering of the fundamental mode into higher-order
optical modes. This process introduces an additional optical
loss in the signal recycling cavity (SRC). The total loss egrc
is given by

€rrMx 1 €y + €Bs
€SRC = Estatic T D) ’ (2)

where €, 1 a power-independent loss in the cavity due to
scattering from the coatings, ey, y and egg are losses due
to the wavefront distortion in the two ITMs and the
beam splitter (BS). These terms can be approximated by
(cf. Ref. [35])

Pum  Qxy 30?2
1 MWO0.5 pPpm Kypm ’

€rmvr,y ~ 1000 ppm X (

Pgs ags 11\?2
~ 250 — . 3
€8s bpim <6 kW 1 ppmkgg 3)

where P, is optical power resonating in the arms, Py is
optical power incident on the beam splitter, a,, is an
absorption coefficient of the coating of the x and y test
masses, ay, 1S the total absorption coefficient of the beam
splitter, and i is a suppression factor of the beam splitter
wave front distortion. In these equations, we neglect
absorption in the substrates of the input test masses since
this power is significantly smaller than a, Py, [7].

In this paper, we consider only the uniform absorption of
the laser beam by the optical coatings. Point defects on
the mirror surfaces can lead to the nonuniform absorption
pattern of the laser light and significantly increase optical

losses in the power and signal recycling cavities.
Compensating for the nonuniform absorption will require
an advanced design of the thermal compensation system that
allows correction of the higher-order spatial distortions.

C. Quantum noise and optical loss

Quantum shot noise is caused by the vacuum fields
which enter the interferometer through the antisymmetric
port and optical losses in the interferometer. Phase quad-
rature fluctuations of the former vacuum field can be
suppressed by using nonclassical squeezed state of light
[18,36,37]. The spectral density of the shot noise from the
squeezed vacuum field at frequencies smaller than the free
spectral range of the arm cavity can be approximated as

hc[?Q? + (Q? — w?)?]
4Larmw0Parmyw%

S (Q) = e, (4)

where 7 is the reduced Planck constant and r, is the
squeezing factor of the injected squeezed state of light [38].
Similar to the A + upgrade [26], the proposed detector will
use the squeezed state of light with one 300-m-long filter
cavity for creating the frequency-dependent squeezing to
reduce the low-frequency radiation pressure noise. At high
frequencies, we assume that phase fluctuations of the
vacuum field are suppressed by 10 dB (e™>"s= = 0.1). At
Q/2n = w,/2n = 2.5 kHz, we have

4 km4 MW e~ 2« strain
\/ B3 ~6.1x107% . (5
hh (a)s) X Larm Pd_l-m O 1 /HZ ( )

where we choose the bandwidth of the coupled cavity
resonance equal to 1.6 kHz.

Vacuum fields also enter the interferometer through
optical losses in the mitrors, in particular in the arm
cavities and in the signal recycling cavity [39]. The former
noise is not significant in our design, and the spectral
density of the shot noise caused by the latter is

SSRC(Q) = A(Varm + @ )esre (©6)
" @0 Py Trrm

where yum = ¢Tirm/ (4L ) 18 the arm cavity bandwidth.
Equation (6) shows that shot noise from the loss in the
signal recycling cavity is independent from the arm length
L, at high frequencies (€2 > y,.,) and grows with Q. At
Q/2n = w,/2n = 2.5 kHz, we have

Trrm Pam 1072 \/Hz

Equations (5) and (7) imply that quantum shot noise caused
by the squeezed vacuum field from the antisymmetric port
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and vacuum field that couples through loss in the signal
recycling cavity are comparable in the proposed detector.

D. Sensitivity optimization

We optimize the detector parameters by converting the
sensitivity curve into a single figure of merit X and by
maximizing it. Our approach is to (i) incorporate the
antenna response R to an astrophysical source located in
a particular point on the sky with angular coordinates (6, ¢)
[24], (ii) divide the interferometer noise spectrum N(Q) by
the antenna response function and get a sensitivity curve of
the detector 1/S;,,(Q, 0, $) = N(Q)/R(Q, 0, ¢) in units of
strain/ V/Hz, (iii) average 1/S,,, over sky locations (6, ¢),
and (iv) average the resulting frequency-dependent curve
from 2 up to 4 kHz. The resulting figure of merit X is

/ dgs“‘"/ d¢\/£$z Shhfeqﬁ) ®)

where S, is the total noise in the GW channel, hy =
10~ strain/ Hz is a normalization factor, and f = Q/2x
is the frequency. The cost function does not include
inclination angles of the sources since they change only
the normalization factor h,. We average 1/S,,, since this
quantity is proportional to the signal-to-noise ratio (SNR)
of the detected signal.

Since the loudest modes of the remnant will determine
the SNR of the observed postmerger signal, we optimize
the response of the detector to capture the peak frequency
of the gravitational wave signal. The integration frequency
band in Eq. (8) is determined by the uncertainty in the peak
frequency fpeu Of the postmerger oscillations of neutron
stars. According to the recent constraints on the tidal
deformability of neutron stars [1], for 1.35—1.35 Mg
binaries, we expect the peak mode frequency of f e =
2.5-3.5 kHz [40,41] and the quality factor of Qe =
fpeak/ A fpeak & 10-30 [42]. We further augment this fre-
quency band to 2—4 kHz to account for the mass distribu-
tion of neutron stars [43] and double neutron stars [44].

III. DETECTOR OPTIMIZATION

In this section, we discuss the details of the three detector
designs, LIGO-HF, 12 km-HF, and 20 km-HF, which are
results of optimizing the figure of merit X mentioned
earlier. The first two designs can also be applied to the 3 km
facilities, such as Virgo [45] and KAGRA [46].

A. LIGO-HF detector

We start with a conservative upgrade of the LIGO
detectors. This implies that we optimize parameters of
the detector under constraints of the current infrastructure
and optical configuration. In particular, we keep the arm
buildup in the LIGO-HF detector the same as in the current

LIGO detectors to recycle the test masses for the proposed
upgrade. We also have a discrete set of choices of the signal
recycling cavity length, 56, 356, and 656 m, to consider the
possibility of sharing the vacuum envelope of the 300 m
filter cavity for A+. Equation (7) implies that a long signal
recycling cavity improves the sensitivity of the detector.
However, from Eq. (1), we get w,/2z = 1.8 kHz for
Lgrc = 656 m, and the dip in the sensitivity curve due
to the coupled cavity resonance shifts outside of the
optimization window. Therefore, we choose Lgpc =
356 m and get w,/27x = 2.5 kHz.

Next, we optimize the power resonating in the arms and
finesse of the signal recycling cavity. Finesse is defined as
the ratio between the frequency separation of two conse-
quent modes of the resonator to the full width of half
maximum of the resonant peak. Shot noise from the
squeezed vacuum field given by Eq. (4) is inversely
proportional to P,,. However, shot noise given by
Eq. (6) grows with P, since espc ~ P2, according to
Eq. (3). The optimal value depends on the cancellation
factors of thermal gradients in the input test masses and the
beam splitter, Ky, and kgg. For the parameters shown in
Table I, the optimal arm power is around 4—5 MW. Figure 2
shows the value of the figure of merit for different arm
powers.

The proposed detectors require more powerful lasers
compared to the Advanced LIGO detectors. For a critically
coupled interferometer, the input power is given by the
equation Py, = 2YP,.,/(1 — 1), where ¥ =50 ppm is a
round trip loss in the arms and n =~ 0.2 is the power
loss between the laser and interferometer input. For
P,m =4 MW, we require an input interferometer power
of 500 W. Such power can be achieved by combining laser
beams from four 150 W lasers using, for example, Mach-
Zehnder interferometers.

Our design focuses on improving the quantum noise of
the detector. Classical noises in the LIGO-HF detector are
similar to the ones in the A+ proposal [26]. At high
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FIG. 2. The power dependence of the figure of merit X defined
in Eq. (8). The inset shows the sensitivity curve for the arm cavity
power being 4.0 MW.
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noise is significantly reduced above 1 kHz. In our design, the sum of classical noises equals the quantum noise in the frequency range
from 1 up to 4 kHz. Right: Noise budget of the folded 4 km detector—12 km-HF. Folding the arm cavities can improve classical noises
and reduce quantum shot noise. The resonance dip at high frequency is, however, smeared out due to the optical loss in the signal

recycling cavity.

frequencies, the sensitivity is limited by shot noise, dis-
cussed in Sec II C; gas phase noise; and thermal noises. Gas
phase noise is induced by the stochastic transit of molecules
through the laser beam in the arm cavities [17,47]. We
calculate this noise assuming the residual pressure in the
arms is equal to 3 nTorr and is dominated by hydrogen.
Thermal noises come from the thermal heat flows and
Brownian motion of atoms in the substrate [48] and coating
of the mirrors [16,49]. The level of classical noises at 3 kHz
is &5 x 1072 strain/v/Hz. At low frequencies, the sensi-
tivity is limited by seismic noise, gravity-gradient
(Newtonian) noise [50], and suspension thermal noise
[51]. Figure 3 shows the noise budget of the proposed
LIGO-HF detector. Technical noises, such as actuator
noise, scattered light, controls of auxiliary degrees of
freedom, laser frequency, amplitude, and pointing noises,
also couple to the GW readout but are suppressed below the
fundamental noises [8,32].

B. 12 km-HF folded detector

We can further increase the high-frequency sensitivity of
the proposed detectors by introducing two folding mirrors
in each arm cavity. The total arm lengths and optical loss in
these cavities increase by a factor of 3. Therefore, we need
to triple the input power to sustain the same power in the
arms as in the case of linear cavities. However, thermal
lenses and other high-power effects are similar to the
current LIGO design. Therefore, using folding, we can
achieve a higher sensitivity to neutron star postmerger
oscillations while keeping requirements similar to the
thermal compensation system for the linear cavities. We
optimize the parameters of the folded detector to minimize
shot noise at high frequencies according to Eq. (8). In

contrast to the previous section, we treat the arm gain as a
free parameter. The only constraint we impose on the folded
design is egg < Gy X 5 ppm. It is required to minimize the
arm imbalance and reduce the coupling of technical noises,
such as laser frequency and intensity noises, to the GW
channel. Figure 3 (right) shows that the resulting shot noise at

2.5kHzis around 5.0 x 1072 strain/+/Hz. This also implies
that with folding we can achieve the sensitivity of
10724 strain/v/Hz at kHz even with less than 1 MW of
arm power.

The folded design also improves classical noises which
limit the detector sensitivity at high frequencies, such as gas
phase noise and thermal noises [52]. Gas phase noise
improves by a factor of 3 due to folding since the beam size
and effective arm lengths are increased. Thermal noises
improve due to a longer arm length and larger beam sizes
on the test masses. We assume g-factor of the arm cavities
9= (1 Larm/Ritm)(l - Larm/Retm) =0.11, where Ry,
and R, are the radii of curvature of the input and end
test masses in the arm cavities. In this case, the amplitude
spectral density of the coating thermal noise is given by

3 kHz strain

107% .
v Hz

V/Sen = 2.27 x

©)

This noise spectrum is a factor of 1.16 smaller compared to
the coating thermal noise in the proposed A+ upgrade due
to the longer arm length and larger beam sizes. This factor
takes into account the amplification of the coating thermal
noise on the folding mirrors [53]. The noise budget of the
folded design is shown in Fig 3. The peak sensitivity of this
detector which can be implemented in the current facilities
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is 6.0 x 1072 strain/v/Hz. We note that the proposed
folded detector requires test masses with radii of curvature
equal to 30 km. Similar to the Cosmic Explorer design [26],
we propose to use flat mirrors and tune radii of curvature by
a thermal compensation system [35]. The beam size is
6.4 cm on the folded mirrors and 7.1 cm on the input and
end mirrors, and the mirror radius is 22 c¢cm. This radius
increases the mirror mass from the current value of 40 kg up
to 87 kg.

C. 20 km-HF detector

At low frequencies (below 100 Hz), the sensitivity of the
Advanced LIGO detectors is limited by two types of noise.
The first type is related to the motion of the mirror center of
mass and includes ground vibrations, suspension thermal
noises, gravity-gradient noises, scattered light noise, and
actuation electronics. The contribution of these noises to
the detector sensitivity scales as 1/L,,. The second type of
noise comes from the relative motion between the mirror
center of mass and the surface of the mirror probed by the
beam. The noise of this type, such as coating and substrate
thermal noise, scales in inverse proportion to the beam size,
which increases with arm length as 1/+/L,.,. Therefore,
the contribution of the second type of noise to the GW

channel in units of strain scales as 1/ Lir/r% Scaling factors
of both types of noises imply higher sensitivity at low
frequencies with longer arm lengths [26]. However, this
conclusion does not hold for the high-frequency sensitivity
for the following reasons.

First, a squeezed vacuum field from the antisymmetric
port of the interferometer leads to the shot noise, which is
inversely proportional to /L, rather than L, in units of
strain/+/Hz [cf. Eq. (4)]. This result is a direct consequence
of a tradeoff between the peak sensitivity and the band-
width of a shot-noise-limited interferometer. Second, losses
in the signal recycling cavity are responsible for the shot
noise, which is independent of L, [cf. Eq. (6)]. Third, the
antenna response is suppressed above 1 kHz for the
detectors with arm lengths comparable to the GW wave-
length at high frequencies [54]. Finally, the resonant
frequency of the coupled signal recycling and arm cavities
is inversely proportional to the arm length [cf. Eq. (1)].
Since the shot noise increases as Q? at frequencies Q > w,,
it is important to keep w,/2x above 2 kHz by reducing the
signal recycling cavity length compared with the LIGO-HF
design. However, since an optical telescope inside the
signal recycling cavity [55] reduces the beam size from
~]10 cm down to ~1 mm, decreasing the signal recycling
cavity length leads to optical losses. In particular, small
defects in the curvature of the telescope mirrors create a
mode mismatch between the coupled signal recycling and
arm cavities. Furthermore, the beam sees different hori-
zontal and vertical curvatures of the spherical mirrors in the
folded recycling cavities. These two losses due to the

curvature mismatch €., and folding in the recycling
cavities €g,q can be approximated by

56 m\ 26/ L 18/ ¢ \2
Coury 0 (LSRC) <4 km) (10_4> ppm,
56 m\7/L 7/2
=11 _—arm 1
€told ( LSRC) < 4 km) ppm, (10)

where ( is a relative defect in the radius of curvature in one
of the telescope mirrors in the signal recycling cavity.

We maximize the figure of merit X by optimizing the
finesse of the arm cavity and the parameters of the signal
recycling cavity, such as its finesse and length. Table II
summarizes the optimal parameters for different arm
lengths. We calculate losses in the signal recycling cavity
according to Eq. (3) and assume cancellation of the wave
front distortion by a factor of k;y,, , = 70 for the input test
masses and xgg = 10 for the beam splitter. We minimize
the coupling of the laser noises to the GW channel by
setting a constraint on the imbalance between the two arms
caused by thermal lensing ey < Gy X 5 ppm. During the
optimization process, we keep the arm power equal to
4 MW and the observed level of squeezing to 10 dB. We do
not include the classical noises to provide an upper bound
to the figure of merit. The classical noises are significantly
smaller than the quantum shot noise for the detectors longer
than 8 km. For the 4 km long detectors, we find that the
classical noises reduce the figure of merit X from 8.6 (see
Fig. 4) down to 5.3 (see Fig. 2).

The optimization result is shown in Fig. 4. The detector
sensitivity to high-frequency GW improves approximately
as L;r/[f} below 18 km according to the discussion in Sec. III
C. For longer facilities, diminished antenna response from
the free spectral range limits the sensitivity at high
frequencies. The free spectral range equals 4 kHz for
Loym = 37.5 km. Above this length, the sensitivity
improves again since the shot noise decreases and the
damage from the free spectral range does not get worse; the
sensitivity is actually improved for some sky locations. We
find that 18-km-long instruments maximize the figure of
merit X. Such detectors can be implemented using linear
arm cavities or shorter folded cavities. In the next section,

TABLE II. Values of the optimization parameters for different
arm lengths. Parameters for the 4 km detector are different from
the ones used in Table I because we do not impose any constraints
related to the existing facilities in the current optimization
process.

Parameters 4km 10km 20km 30km 40 km

Mirror mass (kg) 40 40 111 205 316
ITM transmission 0.04 0.04 0.04 0.04 0.04
SRM transmission 0.045 0.022 0.016  0.054 0.11
SRC length (m) 563 215 94 105 137
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FIG. 4. Left: Quantum noise curves for the optimized configurations with different arm lengths. We have included the antenna
response of the normal incidence. Right: Value of the figure of merit for different arm lengths.

we study the astrophysical reach of the proposed detectors
and confirm that the optimal arm length to study neutron
star physics is ~20 km.

IV. POSTMERGER NEUTRON STAR PHYSICS

In this and the next section, we discuss the science case for
the proposed detectors and compare their performance with
existing and proposed future instruments. This section
focuses on the neutron star postmerger emission, which
contains information about the dense nuclear matter in its
“hot" state. A multimessenger detection of the postmerger
GW and electromagnetic emission will help settle many
important questions related to the engine of short gamma-ray
bursts, the properties of kilonova ejecta, the structure of
neutron stars, and the nuclear equation of state. Specifically,
we discuss the resulting SNR for detecting the postmerger
emission in Sec. IV A for different detectors and distinguish-
ability of different equations of state in Sec. IV B.

A. SNR for detecting postmerger emission

To show the capability of detecting the postmerger GW
emissions for different detectors, we use the Monte Carlo
simulation to sample 1.35 My — 1.35 M binary neutron
star events with random sky positions, inclinations, polari-
zation angles, and distances using a merger rate of
1540753% Gpe=3 yr~! [1]. We compute the 50th percentile
(median) for both the number of detections (events with
SNR > 5 [42,56,57]) and the SNR of the loudest event for
one year of observation time. The SNR is defined as

|A(f)P
Sun(f)

SNR =2 /°° df

fconlacl

(11)

Here, h(f) is the GW waveform in the frequency domain,
and fonwet 15 the contact frequency, which depends on the

equation of state, which is obtained using the fitting
formula derived in Refs. [58,59]. We choose three repre-
sentative equations of state, SFHo [60,61], SLY [62], and
APRA4 [63], to cover a wide range of stiffness of the nuclear
matter. These equations of state satisfy the most recent
tidal-Love number constraint from GW170817 and result
in maximum neutron star mass above 2 M. The corre-
sponding numerical postmerger waveforms and star com-
pactness for these equations of state are presented in
Refs. [59,64].

The simulation result is shown in Fig. 5. The upper (and
lower) ends of the error bars are associated with the upper
(and lower) limit of the merger rate. We find that LIGO-HF
has a performance comparable to Einstein Telescope and
Cosmic Explorer in measuring postmerger waveforms. The
expected number of detections with LIGO-HF, Einstein
Telescope, Cosmic Explorer, and 20 km-HF is roughly
between 1 and 100. A+ will detect a loud event in a few
years. We apply a similar procedure to calculate the number
of detected sources for different arm lengths ranging from
4 to 40 km. The results are shown in Fig. 6. An optimal arm
length to detect postmerger remnants is around 16 to 22 km,
depending on the equation of state.

In addition to the above-mentioned quadrupole defor-
mation which dominates the early postmerger GW emis-
sion, there is also the possibility of a longer-lived GW
signal such as from the postmerger neutron star undergoing
the one-armed spiral, or m = 1, instability. The one-armed
spiral instability was originally found in studies of isolated
differentially rotating stars [65-69] and later in hydro-
dynamic simulations of neutron star cores arising from the
core collapse [70-72]. It has also been found to arise in
postmerger neutron stars for some binary parameters
[73-76], sourcing GW radiation that is narrowly peaked
in the range of approximately 1-2 kHz (at a lower
frequency than those coming from m = 2 azimuthal
density oscillations) and that can be long lived, potentially
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FIG. 5. Number of detected postmerger oscillations per year
with SNR more than 5 (top) and maximum SNR (loudest events)
for the postmerger GW emissions assuming a one-year observa-
tion (bottom). These correspond to the 50th percentile (median)
of the distribution obtained using the Monte Carlo simulation.
The detector sensitivities are shown in Fig. 1. The range of
merger rates is assumed to be within 320-4540 Gpc = yr—!, with
the filled symbols associated with the most probable merger rate
1540 Gpc= yr~!. The equations of state are chosen to cover a
range of the stiffness of nuclear matter and to obtain a maximum
neutron star mass above 2 M.

lasting hundreds of milliseconds. Hence, this could provide
not only another probe of the neutron star equation of state
but also information about the longer-term survival and
dynamics of the postmerger remnant. Though the GW
signal is weaker than the initial postmerger component, the
increased sensitivity of the instrument proposed here in the
1 to 2 kHz range would significantly increase the detect-
ability. This instability has only been studied for a limited
number of parameters, and the possible impact of magnetic
fields and other microphysical effects on the long-term
evolution are not known. For such a signal at 1 kHz, lasting
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FIG. 6. Number of detected postmerger oscillations as a
function of arm length after one year of observation assuming
a merger rate of 1540 Gpc™3 yr~! .

100 ms, the horizon for an SNR = 5 threshold detection by
LIGO-HF is around 20 to 90 Mpc for nearly equal-mass
binaries [74,75], or possibly even hundreds of megaparsecs
for binaries with disparate mass ratio [76].

B. Distinguishing different equations of state

Complementary to the number of detected events, we
present a study of how well different detector designs can
distinguish between different equations of state using the
postmerger signal. For this purpose, we perform a model
selection analysis using Bayes factors. Given some data d
and postmerger waveform parameters 0, the Bayes factor is

calculated as B = Z,/Z,, where Z, and Z, are Bayesian
evidences defined as

z= / a0 L(310,H,)x(9), (12)
5, H,) is the likelihood probability function

where L(d

under the hypothesis of having a signal and 7(0) is the prior
probability function [77] defined by the equation of state.
For postmerger waveforms, we assume a Dirac delta

-

function prior, 7(6) = 5(5 - 50), over all parameters 6 at
the waveform true values 50. This assumption comes from
the lack of postmerger waveform approximates to margin-
alize over all waveform parameters efficiently. Therefore,
our results should be treated as upper limits. Similar to the
analysis in the previous section, we perform Monte Carlo
simulations (assuming random sky location, polarization
angles, and distances) and calculate the Bayes factor for
each simulation. Only events with log B > 8 are considered
as distinguishable [77]. The results are shown in Table III.

The 20 km-HF detector has more distinguishable events
than Cosmic Explorer and Einstein Telescope for all
considered equations of state. In addition, the detectors
dedicated for high frequencies and Cosmic Explorer can
distinguish between APR4, SLY, and SFHo, because the

TABLE III. Number of distinguishable postmerger detections
between different equations of state after one year of observation.
The results shown are obtained from Monte Carlo simulations by
only considering events with log B > 8 as distinguishable. We
assume the perfect knowledge of a 1.35 My — 1.35 M, binary
neutron star postmerger waveform to provide the upper limit. The
numbers listed above will decrease if we consider theoretical
uncertainties in current numerical simulation of binary neutron
star mergers.

SLY/APR4 SLY/SFHo APR4/SFHo
LIGO-HF 0.53%4 22242 12153
Einstein Telescope 0,15j8:1123 0,42j8:§7 ().27jg:265
Cosmic Explorer 1,44fll381 s 4.841’31:85@215 3.941’%‘5}571 .
20 km-HF 01811822 37 37460325 9p p7+ds3
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frequency of the dominant mode is =~3.2 kHz. Only
detectors sensitive in this frequency range are able to
detect postmerger remnants with such spectral features.
The 20 km-HF detector is more sensitive than Einstein
Telescope around the mode frequency.

V. PREMERGER NEUTRON STAR PHYSICS

This section focuses on the late-inspiral part of binary
neutron star and black hole—neutron star mergers when
matter effects start to take place through the tidal inter-
actions between the compact objects. This allows us to
study the physics of nuclear matter in its “cold” state.
Specifically, we discuss the tidal deformability in Sec. VA,
the binary neutron star as standard sirens for cosmology in
Sec. VB, and the black hole-neutron star binaries in
Sec. V C.

A. Measurement of the tidal deformability

During the late binary neutron star inspiral, the infor-
mation about the equation of state can be quantified by the
tidal deformability parameter A. To leading order, the
quadrupole moment tensor Q;; is related to the tidal field
tensor £; by Q;; = AE;;, where 1 = (2/3)k,R°/G [78].
The value of 4 depends on the second Love number k, and
the radius R of the neutron star, where both of these
quantities depend on the equation of state. For this reason,
if the parameter A is constrained, the equation of state can
be constrained as well. In addition, as suggested in
Ref. [40], one can study the property of hybrid EOS
and test the existence of first-order phase transition in
the nuclear matter by combining the information about the
tidal Love number and the postmerger mode frequency.
For the purpose of our analysis, we focus our attention
on the dimensionless tidal deformability parameter A =
GA[c?/(Gm)]>. Moreover, since the tidal deformability for
each neutron star A; and A, are highly correlated, it is
convenient to parametrize the tidal deformability in terms
of the weighted average parameters A and SA defined in
Egs. (5) and (6) of Ref. [79].

We estimate the expected error in the measurement A
using the Fisher matrix analysis [80]. The relevant param-

eters are 6 — (M, n, A, te, e, A), where M is the chirp
mass, f. is the time of coalescence, ¢, is the phase of
coalescence, and A is the waveform amplitude, which
depends on sky position, inclination, GW polarization
angle, and distance. We assume a 1.35 My —1.35 Mg
binary neutron star located at a distance of 100 Mpc and
study three different equation of states, APR4 (A = 321.7),
SLY (A =390.2), and SFHo (A = 387) [59] averaging
over sky position, inclination, and GW polarization angle.
The waveform IMRPHENOMD_NRTIDAL [81-83]1s used in
all calculations starting at 20 Hz. The errors are shown in
Table IV, where we find that for the considered equations of

TABLE IV. Fractional errors in the tidal deformability AA/A
for a 1.35 My —1.35 M binary neutron star located at a
distance of 100 Mpc averaged over sky position, inclination,
and GW polarization angle.

SLY APR4 SFHo
A+ 0.147 0.173 0.148
LIGO-HF 0.055 0.064 0.056
Einstein Telescope 0.038 0.043 0.038
Cosmic Explorer 0.027 0.032 0.03
20 km-HF 0.017 0.020 0.017

state LIGO-HF can constrain A approximately two times
better than A+. Interestingly, 20 km-HF will perform
similarly to Cosmic Explorer since tidal effects become
significant around 1 kHz, where the sensitivities of these
two detectors are comparable.

In this study, we consider equal-mass binary neutron
stars; however, we expect some binaries to have moderate
mass asymmetry [44]. If this is the case, the errors
presented in Table IV are not expected to significantly
change because there is only a small correlation between
the tidal deformability and mass ratio (see, e.g., Fig. 12 of
Ref. [84]). The fractional change depends on the equation
of state and mass ratio of the binary neutron star [80].

B. Cosmology

Another interesting aspect of binary neutron stars is their
role as standard sirens for cosmology. Messenger and Read
showed that if the equation of state is known it is possible to
measure the redshift z even without an electromagnetic
counterpart [14]. The main idea behind this work is that if
tidal effects are included during the inspiral phase, the rest
frame mass M, can be measured independently from the
redshifted mass M_; hence, the degeneracy between these
two quantities related by M, = M, (1 + z) is broken [14].
With future detectors, the equation of state will be well
constrained, and we can obtain uncertainty in z. Similar to
the previous section, the waveform used in our calculation
is IMRPHENOMD_NRTIDAL, and we assume a 1.35 M, —
1.35 M, binary with the same list of equations of state. To
calculate the error in redshift z, we again use the Fisher
Matrix analysis, the same as the previous section. The

parameter space is 6 = (M,n, A, z,t.,¢.). The spin is
assumed to be zero for both neutron stars, and the errors are
calculated at redshift z = 0.01 starting at a frequency of
20 Hz, where we have assumed the standard cosmological
model [85]. The results are shown in Table V, where one
can approximate the error in redshift to the error in the
Hubble constant if the luminosity distance is well
constrained.

In contrast, if a binary neutron star detection is accom-
panied by an electromagnetic counterpart (without know-
ing the equation of state), the main error in the Hubble
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TABLE V. Errors in the redshift Az/z for a 1.35 Mg —
1.35 M, binary neutron star located at redshift z = 0.01 aver-
aged over sky position, inclination, and GW polarization angle.
We assume that the equation of state is known without an
electromagnetic counterpart.

SLY APR4 SFHo
A+ 1.009 1.206 1.008
LIGO-HF 0.384 0.448 0.383
Einstein Telescope 0.259 0.310 0.259
Cosmic Explorer 0.187 0.195 0.186
20 km-HF 0.119 0.139 0.119

TABLE VI. SNRs for detecting different types of black hole—
neutron star postmerger signals. The source is assumed to be at
100 Mpc and having a polytropic equation of state I' =2
(GAM2). We consider mass ratios of Mgy /Mys = 1.5 for type
I, Mgy/Mys = 3 for type II, and Mgy /Mys =5 for type 1T
waveforms.

Type 1 Type 11 Type III
LIGO-HF 1.59 3.65 4.05
Einstein Telescope 1.37 2.44 2.98
Cosmic Explorer 2.00 3.27 4.18
20 km-HF 4.86 10.98 12.61

constant will be dominated by the error in the luminosity
distance. For GW170817, the 1o error in the luminosity
distance is ~11%, implying a 1o error in the Hubble
constant of ~14% [1,86]. Although the error for the case
with an electromagnetic counterpart is smaller compared to
the one without, it is expected that in the future most binary
neutron star detections will not have electromagnetic
counterparts [87]. The error of estimating z for the
Einstein Telescope ranges from 25% to 31%, while for
Cosmic Explorer and 20 km-HF, it ranges from around
11% to 15% for a sky-averaged binary neutron star merger
located at z = 0.01.

C. Tidal disruption in black hole-neutron star binaries

So far, we have discussed the tidal deformability in binary
neutron star mergers. A coalescence of a low mass black hole
and a neutron star can also provide an interesting case for the
high-frequency detectors. No such events were detected
during the first two science runs of the LIGO/Virgo network.
However, the 90% upper limit on the neutron star—black hole
merger rate equals 610 Gpc™ yr~! [88] and is still significant
since the range of the A+ and LIGO-HF detectors for the
events with black hole and neutron star masses of Mgy =
3 Mg and Myg = 1.35 M equals =500 Mpc. If the ratio
between the mass of a black hole Mgy and the mass of the
neutron star Myg is small enough, the neutron star will be
tidally disrupted before the merger. Along with the GW
radiation, this process can produce copious electromagnetic
emission and offer a new opportunity to probe nuclear
physics with multimessenger signals.

Using numerical relativity simulations, Shibata e al.
[89] showed that black hole-neutron star merger can be
categorized into three different kinds of waveforms. For
type I (Mgy/Mys < 2), the tidal disruption occurs during
the inspiral, outside the innermost stable circular orbit. The
GW amplitude decreases rapidly after the disruption, which
makes the postmerger GW signal difficult to detect if the
detector sensitivity is not high enough. For type II
(Mgy/Myg = 2-3), the tidal disruption occurs during the
plunging phase, and the ringdown of the system is still
significant. Because the ringdown is significantly affected
by the disrupted matter, the merger-ringdown signal is

different from those of binary black holes. Finally, if the
mass ratio between the black hole and neutron star is
beyond Mgy /Mys = 5, the black hole swallows the neu-
tron star during the merger without tidal disruption (type
II). The GW from the merger and ringdown phase is
similar to the one from a binary black hole system.
Considering these three types of events, we calculate the
corresponding SNR given a fixed neutron star mass Myg =
1.35 M, and different black hole masses at a fixed source
distance of 100 Mpc. The postmerger waveform for
computing the SNR starts from the tidal-disruption fre-
quency, which depends on the mass ratio and the equation
of state; for type III binaries, such a frequency is approx-
imately equal to the quasinormal mode frequency of the
final black hole. We parametrize the waveforms and fit
them to the numerical ones presented in Ref. [89]. The
resulting SNRs are shown in Table VI, where we only show
detectors that achieve SNR greater than or equal to 1.

VI. CONCLUSIONS

Reducing the quantum shot noise at high frequencies is
essential to the detection of GWs from neutron star
postmerger oscillations. Precise postmerger GW observa-
tions will lead to answers to important questions regarding
the structure of neutron stars, the equation of state of
nuclear matter, and the role of the remnants as the central
engine for energetic electromagnetic emissions. This calls
for an improved optical configuration of the GW detectors
operating at high optical power. In particular, the proposed
upgrade of the 4 km facilities requires (i) development of
500 W lasers, (ii) increasing the signal recycling cavity
length and finesse, and (iii) cancellation of thermal wave-
front distortion in the input test masses and the beam
splitter. The LIGO-HF has a similar or better sensitivity for
probing neutron star physics compared with other proposed
future detectors, such as Cosmic Explorer and Einstein
Telescope. Therefore, the existing 3 and 4 km facilities
could still have a long-term impact as neutron star observa-
tories in the era of the next generation detectors.

Our study also shows that the optimal arm length for
observing neutron star postmerger oscillations is ~20 km,
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and 20 km-HF allows us to detect ~30 events per year
with a maximum SNR of ~20. The detector perfor-

mance improves approximately as L;ﬁl below 18 km.
For longer facilities, diminished antenna response from
the free spectral range limits the sensitivity at high
frequencies. Since the gap between the shot noise and
classical noise increases proportionally to the arm

length, which is faster than L;r/rf], we may take advantage
of this fact by using folded arms to reduce the con-
struction costs without compromising the high-
frequency sensitivity.
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APPENDIX

1. High-power effects in the interferometer

Apart from the thermal lenses considered in Sec. II B of
the main text, optical power in the arm cavities also creates
angular and parametric instabilities [90,91]. In this sub-
section, we consider how these instabilities influence the
detector performance at high frequencies. Small beam off-
centering results in the radiation pressure torque given by
the equation [92]

(A1)

where £ is the beam motion on the cavity mirrors due to the
tilt € of these mirrors. Arm cavities have two angular
modes, known as hard (¢ = —2.2 x 10* m/rad) and soft
(¢ = 10° m/rad), which correspond to the tilt and shift of
the optical axis [93]. Since the radiation torque is propor-
tional to the tilt angle of the mirrors, it modifies their
dynamics. If & <0, then the mechanical resonance of
suspended mirrors shifts up, and if £ > O then the reso-
nance shifts down, and the mode can become unstable.
The instability occurs when Ty = Iﬁﬁng, where [ is the
moment of inertia and €., %27 x 0.5 rad/s is the
mechanical angular resonance frequency of the test masses.

In Advanced LIGO, soft modes of the test masses become
unstable at the threshold power of P,,, = 0.5 MW, as shown
in Fig. 7. However, the unstable mode frequency does not
exceed 2 Hz for arm powers less than 5 MW. The tilt angle 6
of the test masses is measured using wave front sensors, and
the instability can be suppressed in a feedback loop with a
bandwidth of 5 Hz. Therefore, angular instabilities do not
influence the detector sensitivity at high frequencies and
inject angular control noise below 20 Hz. We can suppress
this noise by increasing the mirror mass up to 200 kg [94]. In
this case, angular modes are stable up to the arm power of
4.2 MW as shown in Fig. 7.

Parametric instabilities are excitations of the mirror body
modes in an unstable feedback loop due to radiation
pressure force from higher-order optical modes [91].
Quantitatively, the mode growth rate is characterized by
the parametric gain, which is given by the equation [95]

R :%i(ﬁ[(} B (A2)
" MQhcd & e
n=0
8 T \
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FIG. 7. Shift of the angular mode frequency due to the radiation

torque. For the current mirror mass of 40 kg, the soft mode
becomes unstable at the arm power of 0.5 MW. This power can be
increased up to 4.2 MW by using 200 kg test masses.
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where Q,, and Q,, = Q,,/AQ,, are the frequency and
quality factor of the mechanical mode, AQ,, is the
bandwidth of the resonance, ¢ is the speed of light, 1 =
1064 nm is the laser wavelength, i[G,,] is the real part of
the optical gain, and B,, , is the spacial overlap between the
mechanical mode m and optical mode n. If the parametric
gain R,, > 1, the mode can become unstable and grow
exponentially. For Advanced LIGO operating at full power,
the largest expected parametric gain is R,, ~ 10, and the
number of unstable modes is =40 in the frequency range
10-50 kHz. In the proposed detector, we plan to increase
P, up to 4 MW and have a maximum parametric gain of
R,, ~50 and see unstable modes up to 80 kHz. These
modes can be passively and actively suppressed by reduc-
ing their Q-factors [96]. Passive dampers reduce the quality
factor of the modes by an order of magnitude [97] and are
installed perpendicular to the beam direction. Therefore,
thermal noise of the test masses is not compromised and
does not reduce sensitivity of the detector at high
frequencies.

2. Black hole and neutron star science

Another important comparison that can be studied is how
well the proposed detector will perform at detecting binary
black holes and binary neutron stars during the inspiral,
merger, and ringdown. In this section, we determine the
range distance R following the similar procedure defined
by Chen et al. [98]. The range distance R is calculated as
the radius of the redshifted detectable volume defined by
the equation

D .
B ch<dh rwchdQ sin idt dl//

V b
¢ [ sin udi dy

(A3)

where D, is the comoving distance, d, is the horizon
distance, Q is the solid angle, ¢ is the inclination of

TABLE VII. Values for the range distance of a 1.4 My —
1.4 M binary neutron star and 30 My — 30 M, binary black
hole.

14Mg —1.4Mg 30Mg —30 Mg

(Gpo) (Gpe)
Advanced LIGO 0.16 1.5
A+ 0.35 2.6
LIGO-HF 0.38 2.8
Einstein 2.10 5.81

Telescope

Cosmic Explorer 4.23 6.1
20 km-HF 1.91 5.6

the binary system, and y is the polarization angle.
Equation (A3) takes into account the interferometer’s
antenna response and the dependence of the merger rate
reduction as a function of redshift. The results are shown in
Table VII. In addition, plots of the maximum SNR as a
function of redshift are shown in Fig. 8.

3. Stochastic background

The stochastic gravitational wave background is usually
searched by cross-correlating data from two different
interferometers. To show the sensitivity to the gravitational
wave background, the fractional energy density of gravi-
tational waves €,,,(f) is often plotted instead of the usual
power spectral density S, (f) shown in Fig. 1. We limit our
study to gravitational wave backgrounds that follow a
power law distribution given by Q,,(f) = (f/frr)”, where
S is a spectral index and equals 2/3 for binary coalescences
and f. is a reference frequency set to 100 Hz for ground-
based detectors. For a detailed analysis of the method used
in our study, refer to the work by Thrane and Romano [99],
where a method to the increase sensitivity by integrating
gravitational backgrounds in frequency and time is used.

1.4M, — 1.4M,, 30M, — 30M,
...... Advanced LIGO . ------ Advanced LIGO
—————— A+ e At
) —— LIGO-HF e T —— LIGO-HF
= 1074 —— 20km-HF = 10 \— 20km-HF
wn Einstein Telescope wn Einstein Telescope |
g ****** Cosmic Explorer g ””” Cosmic Explorer
Rl 210
= =
10° e : 0°
107! 10° 10! 10° 10!
Redshift z Redshift z
FIG. 8. Left: Maximum SNR as a function of redshift for a 1.4 My — 1.4 M, binary neutron system. (Right) Maximum SNR as a

function of redshift for a 30 M — 30 M. For both systems, the spin is equal to zero. The proposed LIGO-HF detector has similar low-

frequency sensitivity to the A+ upgrade.
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FIG. 9. Sensitivity curves for the gravitational wave back-
ground Q. We have assumed that two interferometers with the
same characteristics are built in the current LIGO Hanford and

Livingston facilities and an observation period of one year.

The results are shown in Fig. 9, noting that the sensitivity
curves we show are analogous to the sensitivity curves
shown in Fig. 1, but for Q, (f). In addition, we have
assumed that two interferometers with the same character-
istics are built in the current LIGO Hanford and Livingston
facilities and that the results shown in Fig. 9 assume an
observation period of one year.

4. Superradiant instability of ultralight bosons

Another application of GW observations to fundamental
physics of recent interest is the possibility of searching for
ultralight bosons with Compton wavelength comparable to
the radius of stellar mass black holes [100-107]. If such
ultralight bosons exist, spinning black holes develop
massive boson clouds—up to approximately 10% of the
black hole’s mass—that grow at the expense of the black
hole’s rotational energy [108—111]. These oscillating
bosons clouds would produce nearly monochromatic
GW signals, allowing GW detectors to look for axions
[108,112,113], dark photons [114,115], or other types of
dark bosonic matter that is weakly coupled to the Standard
Model. This could include searches that target newly
formed black holes (e.g., arising from mergers)
[116,117], as well as all-sky continuous wave searches
[118,119], or searches for a possible stochastic background
due to superradiance [103,104,107].

The frequency of the cloud oscillations, and hence GW
signals, is roughly proportional to the boson mass, and
there is theoretical interest in probing a wide range of
possible boson masses. A GW detector with improved
sensitivity in the frequency range of 300 Hz to 5 kHz would
probe boson masses of 6 x 10713 to 10~!! eV, which could
efficiently grow through superradiance around black holes
with masses in the approximately 1-100 M range (with
lower black hole masses corresponding to higher boson
masses and GW frequencies). It should be noted, however,

that this boson mass range is already disfavored by x-ray
measurements of black hole spins [100,102], so such GW
observations would provide an independent check of these
spin measurement models.

The above refers to the so-called annihilation GW
signals from an oscillating boson cloud that is dominated
by a single unstable mode. In some special cases, multiple
modes may be populated, leading to a GW signal due to the
beating of the different frequency modes (referred to as the
“transition” GW signal) [100], which can be used to probe
higher boson masses. For example, a 2 x 107" eV axion
(at the upper edge of the range probed by x-ray observa-
tions) around a 2.7 solar mass black hole would produce a
f ~ 300 Hz GW signal from the most favorable transition
(the 6g — 5¢g; see Refs. [100,120]). In this scenario,
improved sensitivity at 300 Hz and above could enhance
GW probes of superradiance occurring around light black
holes—as might arise from binary neutron star mergers—
not probed by x-ray spin measurements.

5. Black hole spectroscopy

Black hole ringdown encodes critical information of the
black hole spacetime and its progenitors (i.e., merging
binary black holes) that lead to the ringing black hole. As
modified gravity theories generically predict a different
ringing black hole spectrum from the Kerr spectrum at a
certain length scale, measuring quasinormal modes of black
holes provides an important opportunity to constrain
modified gravity theories and search for new fundamental
physics [15]. Many modified gravity theories that contain
high-order temporal and spatial derivatives in the action
(such as the dynamical Chern-Simon theory [121] and the
Einstein-dilaton-Gauss-Bonet theory [122]) preferably
deviate from General Relativity at short length scales
and high frequencies. Because of the superior sensitivity
of the high-frequency detector beyond 500 Hz, it is
reasonable to apply it for the black hole spectroscopy
measurement.

In Fig. 10, we present the SNR of the dominant (22)
mode of a ringing black hole [123], originated from an
equal-mass binary black hole merger located at 200 Mpc.
The black holes within the binary are assumed to be not
spinning, and the detection is assumed to be made in the
maximally emitting direction. As expected, LIGO-HF
achieves higher SNR of the 22-mode than A+. In addition,
as shown in the top panel of Fig. 10, Einstein Telescope
always outperforms LIGO-HF below approximately
3500 Hz. However, a detailed analysis reveals that most
of the mode SNR for Einstein Telescope comes from the
tail of quasinormal mode spectrum below 600 Hz. As the
tail part is insensitive of the quasinormal mode frequency,
it has less impact on the parameter estimation. For
example, we have performed a Fisher analysis for the
22-mode, with the mode amplitude A, frequency f5,,
damping rate y,,, and phase ¢ being the unknown
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FIG. 10. Black hole spectroscopy at high frequencies. The left panel presents the SNR for the 22-mode, during an equal-mass binary
black hole coalescence at 200 Mpc. The right panel shows the measurement accuracy of the 22-mode frequency given such events.

parameters. The corresponding measurement uncertainty
associated with each detector is shown in the bottom panel
of Fig. 10. We find that LIGO-HF outperforms Einstein
Telescope in such parameter estimation task beyond

approximately 1500 Hz. Precision measurement of mode
frequencies from the ringdown waveform alone is impor-
tant, as they may be compared with the General Relativity
implication using the inspiral parameters [124].
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