Non-Extensive Statistical Analysis of Energetic Particle Flux Enhancements Caused by the Interplanetary Coronal Mass Ejection-Heliospheric Current Sheet Interaction
<p>Velocity (<b>upper panel</b>) and density (<b>lower panel</b>) 3-D reconstructions before, after and during the passage of an Interplanetary Corona Mass Ejections (ICME) surrounded by the rippled Heliospheric current sheet, which led to the occurrence of regions filled with trapped energetic particles around the ICME (modified from [<a href="#B1-entropy-21-00648" class="html-bibr">1</a>]). All measurements are recalculated to the Earth fixed position (the blue dot). The heliographic longitude of STEREO A was 20.220 deg (in the anticlockwise direction with respect to the Earth) and the heliolatitude was –0.311 deg. (Exact coordinates of the STEREO A location for the specified period can be found, for example, at <a href="https://stereo-ssc.nascom.nasa.gov/cgi-bin/make_where_gif" target="_blank">https://stereo-ssc.nascom.nasa.gov/cgi-bin/make_where_gif</a>).</p> "> Figure 2
<p>Energetic particle flux enhancements (EPFEs), observed by the STERO A spacecraft, caused by the ICME interaction with the rippled HCS: (<b>upper panel</b>) Energetic ion flux in the three energy channels from 101 keV to 2 MeV. EPFEs are not observed during the ICME magnetic cloud passage (bounded by black vertical lines), but there are two strong increases associated with the areas filled with magnetic islands (areas bounded by green vertical lines); (<b>bottom panel</b>) Interplanetary Magnetic Field (IMF) magnitude in Radial Tangential Normal (RTN) coordinates for the same period.</p> "> Figure 3
<p>Quiet period observed during the identified “quiet” periods for: (<b>a</b>) Energetic ion intensities; (<b>b</b>) magnetic field.</p> "> Figure 4
<p>Variation of the Flatness coefficient of energetic particle fluxes during the event. The blue line corresponds to original Time Series (TMS), while the red line corresponds to first difference TMS. The dashed lines indicate the “limit” of Gaussian character of the system: (<b>a</b>) (<b>upper panel</b>) Energetic ion fluxes in 312–555 keV energy range, (<b>middle panel</b>) Flatness coefficient of original TMS, (<b>bottom panel</b>) Flatness coefficient of first difference TMS; (<b>b</b>) mean value of Flatness coefficient for periods quiet, pre-event, ICME, and post-event. (<b>Upper panel</b>) original TMS, (<b>bottom panel</b>) first difference TMS.</p> "> Figure 5
<p>Mean value of Flatness coefficient for each period. The blue lines correspond to original TMS, while the red lines correspond to first difference TMS. The dashed lines indicate the “limit” of Gaussian character of the system: (<b>a</b>) Energetic ion intensity TMS; (<b>b</b>) Magnetic field TMS.</p> "> Figure 6
<p>Singularity spectrum for energetic ion intensity (<b>left column</b>) and magnetic field (<b>right column</b>) TMS, shows the related singularity spectra <math display="inline"><semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>α</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> as a function of singularity strength <math display="inline"><semantics> <mi>α</mi> </semantics></math>. The red dashed line corresponds to a nonlinear regression best fit of the data (p-model): (<b>a,b</b>) Quiet periods; (<b>c,d</b>) pre-event periods; (<b>e,f</b>) EPFE 1 periods; (<b>g,h</b>) ICME periods; (<b>i,j</b>) EPFE 2 periods; (<b>k,l</b>) post-event periods.</p> "> Figure 6 Cont.
<p>Singularity spectrum for energetic ion intensity (<b>left column</b>) and magnetic field (<b>right column</b>) TMS, shows the related singularity spectra <math display="inline"><semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>α</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> as a function of singularity strength <math display="inline"><semantics> <mi>α</mi> </semantics></math>. The red dashed line corresponds to a nonlinear regression best fit of the data (p-model): (<b>a,b</b>) Quiet periods; (<b>c,d</b>) pre-event periods; (<b>e,f</b>) EPFE 1 periods; (<b>g,h</b>) ICME periods; (<b>i,j</b>) EPFE 2 periods; (<b>k,l</b>) post-event periods.</p> "> Figure 7
<p>Generalized dimension spectrum for all examined periods: (<b>a</b>) Energetic ion intensity TMS; (<b>b</b>) Magnetic field TMS. The blue line corresponds to quiet period, the dark green line to pre-event period, the red line to EPFE 1 period, the brown line to ICME period, the light green line to EPFE 2 period and the magenta line corresponds to post-event period.</p> "> Figure 8
<p>Characteristics parameters of singularity spectrum profile for all periods under study: (<b>a</b>) Energetic ion intensity TMS; (<b>b</b>) magnetic field TMS.</p> "> Figure 9
<p>The linear fit on mutual information curve: (<b>a</b>) EPFE 1 period for energetic ion intensities; (<b>b</b>) EPFE 1 period for magnetic field; (<b>c</b>) EPFE 2 period for energetic ion intensities; (<b>d</b>) EPFE 2 period for magnetic field.</p> "> Figure 10
<p>The index <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> for energetic particle intensities (312–555 keV). Figures in the left column shows linear correlation, while figures in the right column shows the PDF, with q-Gaussian function that fits for each period: (<b>a,b</b>) Quiet period; (<b>c,d</b>) pre-event period; (<b>e,f</b>) EPFE 1 period; (<b>g,h</b>) ICME period; (<b>i,j</b>) EPFE 2 period; (<b>k,l</b>) post-event period.</p> "> Figure 10 Cont.
<p>The index <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> for energetic particle intensities (312–555 keV). Figures in the left column shows linear correlation, while figures in the right column shows the PDF, with q-Gaussian function that fits for each period: (<b>a,b</b>) Quiet period; (<b>c,d</b>) pre-event period; (<b>e,f</b>) EPFE 1 period; (<b>g,h</b>) ICME period; (<b>i,j</b>) EPFE 2 period; (<b>k,l</b>) post-event period.</p> "> Figure 11
<p>Variation of Tsallis q-triplet during the event: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> index; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math> index; (<b>c</b>) q-entropy maximum <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>q</mi> </msub> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math> index.</p> "> Figure 12
<p>Linear correlation between q-entropy and <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>: (<b>a</b>) For energetic ion intensity TMS; (<b>b</b>); for magnetic field TMS.</p> "> Figure 13
<p>The slopes of the correlation integral as a function of the radius <span class="html-italic">r</span>. Blue bar corresponds to the first difference TMS and red bar corresponds to its surrogate data. (<b>a</b>) For energetic ion intensities during the EPFE periods (EPFEs) and for the rest of the periods (Non-EPFEs); (<b>b</b>) for the magnetic field TMS for the six periods.</p> "> Figure 14
<p>The Hurst exponent for the original signal (blue bar) and for the first difference signal (red bar): (<b>a</b>) For energetic ion intensity TMS; (<b>b</b>) for magnetic field TMS.</p> ">
Abstract
:1. Introduction
2. Theoretical Framework
3. Methodology of Data Analysis
- Flatness coefficient (F)
- Tsallis q-triplet
- Correlation Dimension (D)
- Hurst exponent (H)
3.1. Flatness Coefficient F
3.2. Tsallis q-Triplet
3.3. Correlation Dimension D and Surrogates Data
3.4. Hurst Exponent H
4. Description of Data Experimental Time Series
5. Data Analysis and Results
5.1. Flatness Coefficient Estimation
5.2. Tsallis q-Triplet Estimation
5.3. Correlation Dimension Estimation
5.4. Hurst Exponent Estimation
6. Summary of Data Analysis
- Concerning the Flatness coefficient:
- ○
- For the energetic ion intensities Flatness, the analysis showed two distinct characters between the periods EPFE 1 and EPFE 2 and the other periods (quiet, pre-event, ICME, post-event). During the EPFE periods a strong non-Gaussian character was clearly observed, while during the rest of the periods a weak non-Gaussian character was observed.
- ○
- For the magnetic field Flatness, a non-Gaussian character observed during the whole event with clear enhancement of coefficient during pre-event, EPFE 1, EPFE 2, and post-event periods. However, a stronger non-Gaussian character was observed during the pre-event, EPFE 2 and post-event periods in contrast to the EPFE 1 period.
- Concerning the Tsallis q-triplet:
- ○
- The non-extensive character of the SW statistics mirrored in the q-triplet of Tsallis, was present during all the periods, since the q-triplet values were found to be different than the value corresponding to the Boltzmann–Gibbs extensive statistics. This result, was observed for both the energetic ion intensity and magnetic field measurements. However, the non-extensive character of SW plasma was found to be stronger during the EPFE 1 and EPFE 2 periods, for both cases, as the values of q-triplet parameters were found to be much higher than the other periods.
- ○
- The multifractal plasma character mirrored at the functions was observed during all the periods for both cases of energetic ion intensities and magnetic field. However, during the two critical periods (EPFE 1 and EPFE 2) with strong energetic particle flux enhancements the multifractal character was found to be stronger than in the other periods, for both kind of measurements.
- ○
- The generalized dimensions for were found to decrease as we pass from the quiet period to the next periods. Also, the generalized dimensions for was found to be lower in the EPFE 2 than the EPFE 1 period, for both energetic ion and magnetic field TMS.
- ○
- The intermittent turbulence state of SW plasma was present during all the periods as the parameter of the p-model, was found to be higher than the value p = 0.5 corresponding to the K41 Kolmogorov’s theory of homogenous space filling turbulence. However, the intermittent character of SW turbulence was found to be stronger during periods EPFE 1 and EPFE 2 for both kind of measurements, as the value of p-model increases to higher values.
- ○
- The Tsallis q-entropy value and the rate of q-entropy production were found to decrease during the EPFE periods, for both the energetic ion and magnetic field measurements. In particular, for period EPFE 2 the parameters were found to be lower than those of the period EPFE 1.
- ○
- Non-Gaussianity, non-extensivity, multifractality, and intermittent turbulent character of the SW plasma becomes clearly stronger during the period EPFE 2 than the EPFE 1 period, for both energetic ion intensity and magnetic field TMS. In other words, the Flatness coefficient, the Tsallis q-triplet parameters, the and the p-model parameters were found to obtain higher values during the period EPFE 2 than the period EPFE 1. Also, the self-organization process was found to be stronger in EPFE 2 period than the EPFE 1 period, as the reduction of the dimension was found to be higher for EPFE 2.
- Concerning the Correlation Dimension:
- ○
- The Correlation Dimension corresponding to reconstructed dynamics of energetic ion intensity TMS, was found to decrease noticeably at value ≈7 and at the value ≈6.5 and ≈5.5 for the magnetic field during the periods EPFE 1 and EPFE 2, respectively. For energetic ion intensities, the observed reduction of dimensionality and the discrimination from surrogate TMS reveals a self-organization process of the underlying dynamics.
- ○
- For the magnetic field, the discrimination with surrogate data was significant for all the periods, except the quiet and ICME periods, while for the energetic ion intensities the significance of discrimination was observed only during periods EPFE 1 and EPFE 2. Moreover, the estimation of Correlation Dimension of original and surrogate TMS reveals different states of SW plasma turbulence, corresponding to different order of self-organization process. In the EPFE periods we observe fully developed turbulence, while in the rest of the periods we observe early and intermediate turbulence states.
- Concerning Hurst exponent:
- ○
- The anomalous diffusion character of the energetic ion intensities and magnetic field random walk process was present for all the observed periods as the Hurst exponent was found clearly different from the value H = 0.5, which corresponds to the normal (Gaussian) diffusion process. Moreover, the estimation of the Hurst exponent showed persistent (super-diffusion) anomalous diffusion for both the original TMS (energetic ion intensities and magnetic field) since the Hurst exponent was estimated to be much higher than the value 0.5. On the other hand, the Hurst exponent estimated for the first difference TMS for both kind of measurements, was found to be much lower than the value 0.5, revealing anti-persistent (sub-diffusion) anomalous diffusion process.
- ○
- As the system deviates more and more further from Gaussian states, the anomalous diffusion, self-organization, multifractality, and non-extensivity increases simultaneously. This indicates that the Levy flight character of the random walk process is strengthened, as well as the anomalous (fractional) acceleration efficiency.
7. Discussion
- Enhancement of multifractal and intermittent turbulent character
- enhancement of the non-extensivity character
- strengthen of the self-organization process
- reduction of dimensionality
- reduction of optimum q-entropy
- topological SW phase transition process
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Space Plasmas Complexity Theory Highlights
Appendix A.1.1. Deterministic Nonlinear Dynamics
Appendix A.1.2. Stochastic and Statistical Description of Nonlinear Dynamics
- Near thermodynamic equilibrium: Euclidean geometry-topology of phase space, normal diffusion processes, Gaussian distributions, Boltzmann-Gibbs entropy function, and CLT.
- Far from thermodynamic equilibrium: Non-Euclidean fractal geometry-topology of phase space, long-range spatial-temporal correlations, topological phase transition, anomalous diffusion processes, non-Gaussian Levy processes, q-extension of CLT, self-organization and reduction of phase space dimensionality, non-extensive statistics fractional kinetic theory (fractional Langevin and Fokker-Planck equations), fractional dynamics (fractional electrodynamics, fractional fluids and MHD processes) [37,87,88,99,100].
Appendix A.1.3. Reconstruction of SW Dynamics by Observed Time Series
Appendix A.2. Non-Extensive Entropy (Sq) and q-Triplet of Tsallis Statistics
References
- Khabarova, O.V.; Zank, G.P.; Li, G.; Malandraki, O.E.; le Roux, J.A.; Webb, G.M. Small-scale magnetic islands in the solar wind and their role in particle acceleration. II. Particle energization inside magnetically confined cavities. Astrophys. J. 2016, 827, 122. [Google Scholar] [CrossRef]
- Adhikari, L.; Khabarova, O.; Zank, G.P.; Zhao, L.L. The Role of Magnetic Reconnection–associated Processes in Local Particle Acceleration in the Solar Wind. Astrophys. J. 2019, 873, 72. [Google Scholar] [CrossRef]
- Burlaga, L.F. Multifractal structure of the interplanetary magnetic field: Voyager 2 observations near 25AU, 1987–1988. Geophys. Res. Lett. 1991, 18, 69–72. [Google Scholar] [CrossRef]
- Burlaga, L.F. Intermittent turbulence in the solar wind. J. Geophys. Res. Space Phys. 1991, 96, 5847–5851. [Google Scholar] [CrossRef]
- Burlaga, L.F. Multifractal structure of speed fluctuations in recurrent streams at 1AU and near 6AU. Geophys. Res. Lett. 1991, 18, 1651–1654. [Google Scholar] [CrossRef]
- Burlaga, L.F. Multifractal structure of the magnetic field and plasma in recurrent streams at 1 AU. J. Geophys. Res. Space Phys. 1992, 97, 4283–4293. [Google Scholar] [CrossRef]
- Tu, C.-Y.; Marsch, E.; Rosenbauer, H. An extended structure function model and its application to the analysis of solar wind intermittency properties. Ann. Geophys. 1996, 14, 270–285. [Google Scholar] [CrossRef]
- Horbury, T.A.; Balogh, A. Structure function measurements of the intermittent turbulent cascade. Nonlinear Process. Geophys. 1997, 4, 185–199. [Google Scholar] [CrossRef]
- Strumik, M.; Macek, W.M. Testing for Markovian character and modeling of intermittency in solar wind turbulence. Phys. Rev. E 2008, 78, 026414. [Google Scholar] [CrossRef] [Green Version]
- Riazantseva, M.O.; Zastenker, G.N.; Karavaev, M.V. Intermittency of solar wind ion flux and magnetic field fluctuations in the wide frequency region from 10-5 Up To 1 Hz and the influence of sudden changes of ion flux. Aip Conf. Proc. 2010, 1216, 132–135. [Google Scholar]
- Bruno, R.; Carbone, V. The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2013, 2, 4. [Google Scholar] [CrossRef]
- Carbone, V. Cascade model for intermittency in fully developed magnetohydrodynamic turbulence. Phys. Rev. Lett. 1993, 71, 1546–1548. [Google Scholar] [CrossRef] [PubMed]
- Buti, B. Chaos and Turbulence in Solar Wind. Int. Astron. Union Colloq. 1996, 154, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Marsch, E.; Tu, C.Y. Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlinear Process. Geophys. 1997, 4, 101–124. [Google Scholar] [CrossRef] [Green Version]
- Sorriso-Valvo, L.; Carbone, V.; Veltri, P. Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 1999, 26, 1801–1804. [Google Scholar] [CrossRef] [Green Version]
- Macek, W. Modeling multifractality of the solar wind. Space Sci. Rev. 2006, 122, 329–337. [Google Scholar] [CrossRef]
- Macek, W. Multifractality and intermittency in the solar wind. Nonlinear Process. Geophys. 2007, 14, 695–700. [Google Scholar] [CrossRef]
- Marino, R.; Sorriso-Valvo, L.; Carbone, V.; Noullez, A.; Bruno, R.; Bavassano, B. Heating a solar wind by a magnetohydrodynamic turbulent energy cascade. Astrophys. J. Lett. 2008, 677, L71–L74. [Google Scholar] [CrossRef]
- Leitner, M.; Vörös, Z.; Leubner, M.P. Introducing log-kappa distributions for solar wind analysis. J. Geophys. Res. Space Phys. 2009, 114, A12104. [Google Scholar] [CrossRef]
- Burlaga, L.F.; Ness, N.F.; McDonald, F.B. Large-scale fluctuations between 13 AU and 25 AU and their effects on cosmic rays. J. Geophys. Res. Space Phys. 1987, 92, 13647–13652. [Google Scholar] [CrossRef]
- Burlaga, L.F. Intermittent turbulence in large-scale velocity fluctuations at 1 AU near solar maximum. J. Geophys. Res. Space Phys. 1993, 98, 17467–17473. [Google Scholar] [CrossRef]
- Pavlos, G.P.; Rigas, A.G.; Kyriakou, G.A.; Dialetis, D. Chaotic Dynamics in Astrophysics and space physics. In Proceedings of the 1st General Conference of the Balkan Physical Union, Thessaloniki, Greece, 26–28 September 1991; Paraskevopoulos, K.M., Ed.; Hellenic Physical Society: Athens, Greece, 1992. [Google Scholar]
- Pavlos, G.P.; Rigas, A.G.; Dialetis, D.; Sarris, E.T.; Karakatsanis, L.P.; Tsonis, A.A. Evidence for chaotic dynamics in the outer solar plasma and the Earth magnetosphere. In Chaotic Dynamics NATO ASI Series; Bountis, T., Ed.; Springer: Boston, MA, USA, 1992; Volume 298, pp. 327–339. ISBN 978-1-4615-3464-8. [Google Scholar]
- Pavlos, G.P.; Kyriakou, G.A.; Rigas, A.G.; Liatsis, P.I.; Trochoutsos, P.C.; Tsonis, A.A. Evidence for strange attractor structures in space plasmas. Ann. Geophys. 1992, 10, 309–322. [Google Scholar]
- Pavlos, G.P.; Karakatsanis, L.P.; Xenakis, M.N.; Sarafopoulos, D.; Pavlos, E.G. Tsallis statistics and magnetospheric self-organization. Phys. A Stat. Mech. Its Appl. 2012, 391, 3069–3080. [Google Scholar] [CrossRef]
- Pavlos, G.P.; Karakatsanis, L.P.; Xenakis, M.N. Tsallis Non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part one: Sunspot dynamics. Phys. A Stat. Mech. Its Appl. 2012, 391, 6287–6319. [Google Scholar] [CrossRef]
- Pavlos, G.P.; Karakatsanis, L.P.; Xenakis, M.N.; Pavlos, E.G.; Iliopoulos, A.C.; Sarafopoulos, D.V. Universality of Tsallis Non-Extensive Statistics and Time Series Analysis: Theory and Applications. Phys. A Stat. Mech. Its Appl. 2014, 395, 58–95. [Google Scholar] [CrossRef]
- Pavlos, G.P.; Iliopoulos, A.C.; Zastenker, G.N.; Zelenyi, L.M.; Karakatsanis, L.P.; Riazantseva, M.O.; Xenakis, M.N.; Pavlos, E.G. Tsallis Non-extensive Statistics and Solar Wind Plasma Complexity. Phys. A Stat. Mech. Its Appl. 2015, 422, 113–135. [Google Scholar] [CrossRef]
- Pavlos, G.P.; Malandraki, O.E.; Pavlos, E.G.; Iliopoulos, A.C.; Karakatsanis, L.P. Non-extensive statistical analysis of magnetic field during the March 2012 ICME event using a multi-spacecraft approach. Phys. A Stat. Mech. Its Appl. 2016, 464, 149–181. [Google Scholar] [CrossRef]
- Karakatsanis, L.P.; Pavlos, G.P.; Xenakis, M.N. Tsallis non-extensive statistics, intermittence turbulence, SOC and Chaos in the Solar Plasma Part two: Solar flare dynamics. Phys. A Stat. Mech. Its Appl. 2013, 392, 3920–3944. [Google Scholar] [CrossRef]
- Burlaga, L.F.; Forman, M.A. Large-scale speed fluctuations at 1 AU on scales from 1 hour to ≈1 year: 1999 and 1995. J. Geophys. Res. Space Phys. 2002, 107, SSH–18. [Google Scholar] [CrossRef]
- Burlaga, L.F.; Wang, C.; Richardson, J.D.; Ness, N.F. Evolution of the multiscale statistical properties of corotating streams from 1 to 95 AU. J. Geophys. Res. Space Phys. 2003, 108, SSH–10. [Google Scholar] [CrossRef]
- Yang, Y.; Wan, M.; Matthaeus, W.H.; Sorriso-Valvo, L.; Parashar, T.N.; Lu, Q.; Shi, Y.; Chen, S. Scale dependence of energy transfer in turbulent plasma. Mon. Not. R. Astron. Soc. 2018, 482, 4933–4940. [Google Scholar] [CrossRef]
- Alberti, T.; Consolini, G.; Carbone, C.; Yordanova, E.; Marcucci, M.F.; De Michelis, P. Multifractal and Chaotic Properties of Solar Wind at MHD and Kinetic Domains: An Empirical Mode Decomposition Approach. Entropy 2019, 21, 320. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Non-Extensive Statistical Mechanics; Springer-Verlag: New York, NY, USA, 2009; ISBN 978-0-387-85359-8. [Google Scholar]
- Zelenyi, L.M.; Milovanov, A.V. Fractal topology and strange kinetics: From percolation theory to problems in cosmic electrodynamics. Pysics-Uspekhi 2004, 47, 749–788. [Google Scholar] [CrossRef]
- National Research Council. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Malandraki, O.E. Heliospheric Energetic Particles and Galactic Cosmic Ray Modulation. J. Phys. Conf. Ser. 2015, 632, 012070. [Google Scholar] [CrossRef] [Green Version]
- Malandraki, O.E.; Crosby, N.B. The HESPERIA HORIZON 2020 project and book on Solar Particle Radiation Storms Forecasting and Analysis. Space Weather 2018, 16, 591–592. [Google Scholar] [CrossRef]
- Malandraki, O.E.; Crosby, N.B. Solar Energetic Particles and Space Weather: Science and Applications. In Solar Particle Radiation Storms Forecasting and Analysis; Malandraki, O.E., Crosby, N.B., Eds.; Springer: Cham, Germany, 2018; Volume 444, pp. 1–26. ISBN 978-3-319-60051-2. [Google Scholar]
- Khabarova, O.; Zank, G.P.; Li, G.; Le Roux, J.A.; Webb, G.M.; Dosch, A.; Malandraki, O.E. Small-scale magnetic islands in the solar wind and their role in particle acceleration. I. Dynamics of magnetic islands near the heliospheric current sheet. Astrophys. J. 2015, 808, 181. [Google Scholar] [CrossRef]
- Khabarova, O.V.; Zank, G.P.; Malandraki, O.E.; Li, G.; le Roux, J.A.; Webb, G.M.; RAS, R.P. Observational evidence for local particle acceleration associated with magnetically confined magnetic islands in the heliosphere-a review. Sun Geosph. 2017, 12, 23–30. [Google Scholar]
- Khabarova, O.; Malandraki, O.; Zank, G.; Li, G.; Le Roux, J.; Webb, G. Re-Acceleration of Energetic Particles in Large-Scale Heliospheric Magnetic Cavities. Proc. Int. Astron. Union 2017, 13, 75–81. [Google Scholar] [CrossRef]
- Zank, G.L.; Le Roux, J.A.; Webb, G.M.; Dosch, A.; Khabarova, O. Particle acceleration via reconnection processes in the supersonic solar wind. Astrophys. J. 2014, 797, 28. [Google Scholar] [CrossRef]
- Zank, G.P.; Hunana, P.; Mostafavi, P.; Le Roux, J.A.; Li, G.; Webb, G.M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R. Diffusive shock acceleration and reconnection acceleration processes. Astrophys. J. 2015, 814, 137. [Google Scholar] [CrossRef]
- Zank, G.P.; Hunana, P.; Mostafavi, P.; Le Roux, J.A.; Li, G.; Webb, G.M.; Khabarova, O. Particle acceleration by combined diffusive shock acceleration and downstream multiple magnetic island acceleration. J. Phys. Conf. Ser. 2015, 642, 012031. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, J.A.; Zank, G.P.; Webb, G.M.; Khabarova, O. A kinetic transport theory for particle acceleration and transport in regions of multiple contracting and reconnecting inertial-scale flux ropes. Astrophys. J. 2015, 801, 112. [Google Scholar] [CrossRef]
- Le Roux, J.A.; Zank, G.P.; Webb, G.M.; Khabarova, O.V. Combining diffusive shock acceleration with acceleration by contracting and reconnecting small-scale flux ropes at heliospheric shocks. Astrophys. J. 2016, 827, 47. [Google Scholar] [CrossRef]
- Le Roux, J.A.; Zank, G.P.; Khabarova, O.V. Investigation of different small-scale flux-rope acceleration scenarios for energetic particles in the solar wind near Earth. J. Phys. Conf. Ser. 2018, 1100, 012015. [Google Scholar] [CrossRef]
- Le Roux, J.A.; Zank, G.P.; Khabarova, O.V. Self-consistent Energetic Particle Acceleration by Contracting and Reconnecting Small-scale Flux Ropes: The Governing Equations. Astrophys. J. 2018, 864, 158. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371, 461–580. [Google Scholar] [CrossRef]
- Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 1st ed.; Springer: New York, NY, USA, 2012; ISBN 978-1-4684-0315-2. [Google Scholar]
- Shlesinger, M.F.; Zaslavsky, G.M.; Klafter, J. Strange kinetics. Nature 1993, 363, 31–37. [Google Scholar] [CrossRef]
- Tarasov, V.E. Magnetohydrodynamics of fractal media. Phys. Plasmas 2006, 13, 052107. [Google Scholar] [Green Version]
- Alemany, P.A.; Zanette, D.H. Fractal random walks from a variational formalism for Tsallies entropies. Phys. Rev. E 1994, 49, R956–R958. [Google Scholar] [CrossRef]
- Zanette, D.H.; Alemany, P.A. Thermodynamics of anomalous diffusion. Phys. Rev. Lett. 1995, 75, 366. [Google Scholar] [CrossRef] [PubMed]
- Consolini, G.; Marcucci, M.F.; Candidi, M. Multifractal structure of auroral electrojet index data. Phys. Rev. Lett. 1996, 76, 4082–4085. [Google Scholar] [CrossRef] [PubMed]
- Ferri, G.L.; Reynoso Savio, M.F.; Plastino, A. Tsallis q-triplet and the ozone layer. Phys. A Stat. Mech. Its Appl. 2010, 389, 1829–1833. [Google Scholar] [CrossRef]
- Macek, W.M. Chaos and multifractals in the solar wind. Adv. Space Res. 2010, 46, 526–531. [Google Scholar] [CrossRef]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, 2nd ed.; Rand, D., Young, L.-S., Eds.; Springer: Berlin/Heidelberg, Germany, 1981; Volume 898, pp. 366–381. ISBN 978-3-540-11171-9. [Google Scholar]
- Broomhead, D.S.; King, G.P. Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 1986, 20, 217–236. [Google Scholar] [CrossRef]
- Theiler, J.; Eubank, S.; Longtin, A.; Galdrikian, B.; Farmer, J.D. Testing for nonlinearity in time series: The method of surrogate data. Phys. D Nonlinear Phenom. 1992, 58, 77–94. [Google Scholar] [CrossRef]
- Schreiber, T.; Schmitz, A. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 1996, 77, 635. [Google Scholar] [CrossRef]
- Pavlos, G.P.; Athanasiu, M.A.; Kugiumtzis, D.; Hatzigeorgiu, N.; Rigas, A.G.; Sarris, E.T. Nonlinear analysis of magnetospheric data Part, I. Geometric characteristics of the AE index time series and comparison with nonlinear surrogate data. Nonlinear Process. Geophys. 1999, 6, 51–65. [Google Scholar] [CrossRef]
- Pavlos, G.P.; Kugiumtzis, D.; Athanasiu, M.A.; Hatzigeorgiu, N.; Diamantidis, D.; Sarris, E.T. Nonlinear analysis of magnetospheric data Part II. Dynamical characteristics of the AE index time series and comparison with nonlinear surrogate data. Nonlinear Process. Geophys. 1999, 6, 79–98. [Google Scholar] [CrossRef] [Green Version]
- Gneiting, T.; Schlather, M. Stochastic models that separate fractal dimension and Hurst effect. Siam Rev. 2001, 46, 269–282. [Google Scholar] [CrossRef]
- Weron, R. Estimating long-range dependence: Finite sample properties and confidence intervals. Phys. A Stat. Mech. Its Appl. 2002, 312, 285–299. [Google Scholar] [CrossRef]
- Bisi, M.M.; Jackson, B.V.; Hick, P.P.; Buffington, A.; Odstrcil, D.; Clover, J.M. Three-dimensional reconstructions of the early November 2004 Coordinated Data Analysis Workshop geomagnetic storms: Analyses of STELab IPS speed and SMEI density data. J. Geophys. Res. Space Phys. 2008, 113, A00A11. [Google Scholar] [CrossRef]
- Jackson, B.V.; Buffington, A.; Hick, P.P.; Bisi, M.M.; Clover, J.M. A heliospheric imager for deep space: Lessons learned from Helios, SMEI, and STEREO. Sol. Phys. 2010, 265, 257–275. [Google Scholar] [CrossRef]
- Jackson, B.V.; Buffington, A.; Clover, J.M.; Hick, P.P.; Yu, H.-S.; Bisi, M.M. Using comet plasma tails to study the solar wind. Aip Conf. Proc. 2013, 1539, 364–369. [Google Scholar] [Green Version]
- Tokumaru, M. Three-dimensional exploration of the solar wind using observations of interplanetary scintillation. Proc. Jpn. Acad. 2013, 89, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Mellin, R.; Böttcher, S.; Falenski, J.; Rode, E.; Duvet, L.; Sanderson, T.; Butler, B.; Johlander, B.; Smit, H. The solar electron and proton telescope for the STEREO mission. In The STEREO Mission; Russel, C.T., Ed.; Springer: New York, NY, USA, 2008; pp. 363–389. ISBN 978-0-387-09649-0. [Google Scholar]
- Acuña, M.H.; Curtis, D.; Scheifele, J.L.; Russell, C.T.; Schroeder, P.; Szabo, A.; Luhmann, J.G. The STEREO/IMPACT magnetic field experiment. Space Sci. Rev. 2008, 136, 203–226. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Szczepaniak, A.; Macek, W.M. Asymmetric multifractal model for solar wind intermittent turbulence. Nonlinear Process. Geophys. 2008, 15, 615–620. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Li, Q.-X.; Zou, P. Multifractal properties of solar filaments and sunspots numbers. New Astron. 2015, 38, 1–10. [Google Scholar] [CrossRef]
- Sen, A.K. Multifractality as a measure of complexity in solar flare activity. Sol. Phys. 2007, 241, 67–76. [Google Scholar] [CrossRef]
- Milovanov, A.V.; Zelenyi, L.M. Functional background of the Tsallis entropy: Coarse-grained systems and “kappa” distribution functions. Nonlinear Process. Geophys. 2000, 7, 211–221. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. Space Phys. 2009, 114, A11105. [Google Scholar] [CrossRef]
- Livadiotis, G. Kappa Distribution: Theory and Applications in Plasmas, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–724. ISBN 978-0-12-804638-8. [Google Scholar]
- Milovanov, A.V. Topological proof for the Alexander-Orbach conjecture. Phys. Rev. E 1997, 56, 2437. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-14003-7. [Google Scholar]
- Tarasov, V.E. Possible experimental test of continuous medium model for fractal media. Phys. Lett. A 2005, 341, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Pavlos, G.P. Complexity theory, time series analysis and Tsallis q-entropy principle part one: Theoretical aspects. J. Mech. Behav. Mater. 2017, 26, 139–180. [Google Scholar]
- Tarasov, V.E. Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 2008, 323, 2756–2778. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional systems and fractional Bogoliubov hierarchy equations. Phys. Rev. E 2005, 71, 011102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarasov, V.E. Fractional Fokker–Planck equation for fractal media. Chaos 2005, 15, 023102. [Google Scholar] [CrossRef] [PubMed]
- Mingalev, O.V.; Khabarova, O.V.; Malova, H.V.; Mingalev, I.V.; Kislov, R.A.; Melnik, M.N.; Sezko, P.V.; Zelenyi, L.M.; Zank, G.P. Modeling of proton acceleration in a magnetic island inside the ripple of the heliospheric current sheet. Sol. Syst. Res. 2019, 53, 1–27. [Google Scholar] [CrossRef]
- Chang, T. Low-dimensional behavior and symmetry breaking of stochastic systems near criticality-can these effects be observed in space and in the laboratory? IEEE Trans. Plasma Sci. 1992, 20, 691–694. [Google Scholar] [CrossRef]
- Chang, T.; Wu, C.-C. Complexity and anomalous transport in space plasmas. Phys. Plasmas 2002, 9, 3679–3684. [Google Scholar] [CrossRef]
- Leubner, M.P.; Vörös, Z. A nonextensive entropy approach to solar wind intermittency. Astrophys. J. 2005, 618, 547. [Google Scholar] [CrossRef]
- Tsallis, C. Non-Extensive Statistical Mechanics: Construction and Physical Interpretation. In Non-Extensive Entropy–Interdisciplinary Applications; Gell-Mann, M., Tsallis, C., Eds.; Oxford University Press Inc.: New York, NY, USA, 2004; pp. 1–53. ISBN 0-19-515976-4. [Google Scholar]
- Krall, N.A.; Trivelpiece, A.W. Principles of plasma physics. Am. J. Phys. 1973, 41, 1380–1381. [Google Scholar] [CrossRef]
- Rumer, I.B.; Ryvkin, M.S. Thermodynamics, Statistical Physics, and Kinetics, 1st ed.; Pearson: Moscow, Russia, 1980. [Google Scholar]
- Haken, H. Synergetics. Phys. Bull. 1977, 8, 412. [Google Scholar] [CrossRef]
- Falconer, K. Fractal Geometry, 2nd ed.; John Wiley & Sons: West Sussex, UK, 2003; ISBN 978-1-1187-6285-1. [Google Scholar]
- West, B.J. Thoughts on modeling complexity. Complexity 2006, 11, 33–43. [Google Scholar] [CrossRef]
- Zaslavsky, G.M.; Edelman, M. Hierarchical structures in the phase space and fractional kinetics: I. Classical systems. Chaos 2000, 10, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Arneodo, A.; Bacry, E.; Muzy, J.F. The thermodynamics of fractals revisited with wavelets. Phys. A Stat. Mech. Its Appl. 1995, 213, 232–275. [Google Scholar] [CrossRef]
- Athanasiu, M.A.; Pavlos, G.P. SVD analysis of the magnetospheric AE index time series and comparison with low-dimensional chaotic dynamics. Nonlinear Process. Geophys. 2001, 8, 95–125. [Google Scholar] [CrossRef]
- Nicolis, G. Irreversible thermodynamics. Rep. Prog. Phys. 1979, 42, 225. [Google Scholar] [CrossRef]
- Beck, C. From the Perron-Frobenius equation to the Fokker-Planck equation. J. Stat. Phys. 1995, 79, 875–894. [Google Scholar] [CrossRef]
- Livadiotis, G. Kappa distribution in the presence of a potential energy. J. Geophys. Res. Space Phys. 2015, 120, 880–903. [Google Scholar] [CrossRef]
- Livadiotis, G. Introduction to special section on origins and properties of Kappa Distributions: Statistical Background and Properties of Kappa distributions in space plasmas. J. Geophys. Res. Space Phys. 2015, 120, 1607–1619. [Google Scholar] [CrossRef]
- Tsallis, C. Dynamical scenario for non-extensive statistical mechanics. Phys. A Stat. Mech. Its Appl. 2004, 340, 1–10. [Google Scholar] [CrossRef]
- Umarov, S.; Tsallis, C.; Steinberg, S. On a q-Central Limit Theorem Consistent with Non-extensive Statistical Mechanics. Milan J. Math. 2008, 76, 307–328. [Google Scholar] [CrossRef]
Parameter | Period 1 (Quiet) | Period 2 (Pre-event) | Period 3 (EPFE 1) | Period 4 (ICME) | Period 5 (EPFE 2) | Period 6 (Post-Event) |
---|---|---|---|---|---|---|
F (Original TMS) | 3.10 ± 0.07 | 2.74 ± 0.07 | 4.81 ± 0.24 | 3.05 ± 0.17 | 5.04 ± 0.84 | 3.17 ± 0.15 |
F (FD TMS) | 3.07 ± 0.06 | 2.85 ± 0.06 | 3.91 ± 0.16 | 2.95 ± 0.19 | 4.66 ± 0.73 | 3.05 ± 0.11 |
Parameter | Period 1 (Quiet) | Period 2 (Pre-event) | Period 3 (EPFE 1) | Period 4 (ICME) | Period 5 (EPFE 2) | Period 6 (Post-Event) |
---|---|---|---|---|---|---|
F (Original TMS) | 10.45 ± 1.15 | 15.27 ± 1.96 | 10.58 ± 1.55 | 8.17 ± 0.85 | 14.72 ± 1.81 | 16.09 ± 2.09 |
F (FD TMS) | 7.26 ± 0.37 | 16.31 ± 2.56 | 10.02 ± 1.50 | 6.98 ± 0.79 | 14.22 ± 1.74 | 14.78 ± 1.98 |
Parameter | Period 1 (Quiet) | Period 2 (Pre-Event) | Period 3 (EPFE 1) | Period 4 (ICME) | Period 5 (EPFE 2) | Period 6 (Post-Event) |
---|---|---|---|---|---|---|
α0 | 1.010 | 1.023 | 1.087 | 1.028 | 1.103 | 1.022 |
A | 1.046 ± 0.008 | 1.006 ± 0.084 | 0.978 ± 0.035 | 0.857 ± 0.068 | 1.148 ± 0.007 | 0.849 ± 0.042 |
Δα | 0.386 ± 0.001 | 0.546 ± 0.002 | 0.936 ± 0.001 | 0.656 ± 0.002 | 1.066 ± 0.001 | 0.573 ± 0.002 |
ΔDq | 0.180 | 0.313 | 0.641 | 0.425 | 0.822 | 0.327 |
qsen | −1.527 ± 0.007 | −0.779 ± 0.187 | −0.040 ± 0.005 | −0.526 ± 0.110 | 0.199 ± 0.004 | −0.766 ± 0.117 |
p-model | 0.560 | 0.587 | 0.649 | 0.606 | 0.671 | 0.589 |
Parameter | Period 1 (Quiet) | Period 2 (Pre-Event) | Period 3 (EPFE 1) | Period 4 (ICME) | Period 5 (EPFE 2) | Period 6 (Post-Event) |
---|---|---|---|---|---|---|
α0 | 1.038 | 1.128 | 1.238 | 1.038 | 1.219 | 1.148 |
A | 0.935 ± 0.006 | 1.836 ± 0.071 | 1.689 ± 0.233 | 1.609 ± 0.028 | 1.592 ± 0.207 | 1.257 ± 0.124 |
Δα | 0.683 ± 0.001 | 1.062 ± 0.001 | 1.315 ± 0.010 | 0.851 ± 0.001 | 1.478 ± 0.010 | 1.281 ± 0.010 |
ΔDq | 0.430 | 0.821 | 1.003 | 0.559 | 1.142 | 0.955 |
qsen | −0.442 ± 0.010 | 0.377 ± 0.010 | 0.459 ± 0.045 | 0.177 ± 0.012 | 0.623 ± 0.030 | 0.418 ± 0.031 |
p-model | 0.609 | 0.669 | 0.705 | 0.621 | 0.720 | 0.693 |
Parameter | Period 1 (Quiet) | Period 2 (Pre-Event) | Period 3 (EPFE 1) | Period 4 (ICME) | Period 5 (EPFE 2) | Period 6 (Post-Event) |
---|---|---|---|---|---|---|
qstationary | 1.08 ± 0.04 | 1.11 ± 0.08 | 1.47 ± 0.06 | 1.07 ± 0.07 | 1.57 ± 0.11 | 1.11 ± 0.05 |
qsensitivity | −1.527 ± 0.007 | −0.779 ± 0.187 | −0.040 ± 0.0.005 | −0.526 ± 0.110 | 0.199 ± 0.0.004 | −0.766 ± 0.117 |
qrelaxation | - | - | 7.43 ± 0.14 | - | 8.63 ± 0.18 | - |
Sq | 3.06 ± 0.07 | 2.93 ± 0.06 | 1.72 ± 0.02 | 3.13 ± 0.07 | 1.51 ± 0.01 | 2.92 ± 0.06 |
dSq/dt | 4786.00 ± 581.00 | 386.80 ± 40.50 | 40.20 ± 3.05 | 174.30 ± 15.30 | 20.97 ± 1.43 | 372.50 ± 35.08 |
κ | 12.50 | 9.09 | 2.13 | 14.29 | 1.75 | 9.09 |
Parameter | Period 1 (Quiet) | Period 2 (Pre-Event) | Period 3 (EPFE 1) | Period 4 (ICME) | Period 5 (EPFE 2) | Period 6 (Post-Event) |
---|---|---|---|---|---|---|
qstationary | 1.46 ± 0.04 | 1.58 ± 0.04 | 1.72 ± 0.04 | 1.57 ± 0.02 | 1.81 ± 0.04 | 1.70 ± 0.02 |
qsensitivity | −0.442 ± 0.010 | 0.377 ± 0.010 | 0.459 ± 0.045 | 0.177 ± 0.012 | 0.623 ± 0.030 | 0.418 ± 0.031 |
qrelaxation | 3.05 ± 0.04 | 3.73 ± 0.05 | 4.25 ± 0.06 | 3.55. ± 0.06 | 5.65 ± 0.09 | 4.80 ± 0.08 |
Sq | 1.71 ± 0.04 | 1.47 ± 0.04 | 1.26 ± 0.02 | 1.43 ± 0.02 | 1.16 ± 0.02 | 1.29 ± 0.02 |
dSq/dt | 121.80 ± 18.29 | 12.50 ± 1.31 | 10.34 ± 0.91 | 20.85 ± 2.02 | 7.01 ± 0.62 | 11.23 ± 1.15 |
κ | 2.17 | 1.72 | 1.39 | 1.75 | 1.23 | 1.43 |
Parameter | Period 1 (Quiet) | Period 2 (Pre-Event) | Period 3 (EPFE 1) | Period 4 (ICME) | Period 5 (EPFE 2) | Period 6 (Post-Event) |
---|---|---|---|---|---|---|
D (FD TMS) | ≈ 9.3 ± 0.06 | ≈ 7.9 ± 0.06 | ≈ 6.6 ± 0.04 | ≈ 9.5 ± 0.05 | ≈ 5.6 ± 0.02 | ≈ 7.1 ± 0.02 |
D (Surrogate Data) | ≈ 9.6 ± 0.04 | ≈ 8.6 ± 0.06 | ≈ 8.3 ± 0.05 | ≈ 9.6 ± 0.03 | ≈ 7.3 ± 0.04 | ≈ 8.6 ± 0.03 |
Parameter | Period 1 (Quiet) | Period 2 (Pre-Event) | Period 3 (EPFE 1) | Period 4 (ICME) | Period 5 (EPFE 2) | Period 6 (Post-Event) |
---|---|---|---|---|---|---|
H (Original TMS) | 0.66 ± 0.05 | 0.72 ± 0.06 | 1.00 ± 0.06 | 0.64 ± 0.06 | 1.00 ± 0.05 | 0.87 ± 0.06 |
H (FD TMS) | 0.12 ± 0.03 | 0.12 ± 0.03 | 0.25 ± 0.05 | 0.11 ± 0.03 | 0.29 ± 0.05 | 0.13 ± 0.04 |
Parameter | Period 1 (Quiet) | Period 2 (Pre-Event) | Period 3 (EPFE 1) | Period 4 (ICME) | Period 5 (EPFE 2) | Period 6 (Post-Event) |
---|---|---|---|---|---|---|
H (Original TMS) | 0.96 ± 0.03 | 0.96 ± 0.03 | 0.96 ± 0.03 | 0.99 ± 0.02 | 0.96 ± 0.02 | 0.96 ± 0.03 |
H (FD TMS) | 0.38 ± 0.04 | 0.36 ± 0.04 | 0.36 ± 0.04 | 0.44 ± 0.04 | 0.36 ± 0.04 | 0.37 ± 0.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlos, E.G.; Malandraki, O.E.; Khabarova, O.V.; Karakatsanis, L.P.; Pavlos, G.P.; Livadiotis, G. Non-Extensive Statistical Analysis of Energetic Particle Flux Enhancements Caused by the Interplanetary Coronal Mass Ejection-Heliospheric Current Sheet Interaction. Entropy 2019, 21, 648. https://doi.org/10.3390/e21070648
Pavlos EG, Malandraki OE, Khabarova OV, Karakatsanis LP, Pavlos GP, Livadiotis G. Non-Extensive Statistical Analysis of Energetic Particle Flux Enhancements Caused by the Interplanetary Coronal Mass Ejection-Heliospheric Current Sheet Interaction. Entropy. 2019; 21(7):648. https://doi.org/10.3390/e21070648
Chicago/Turabian StylePavlos, Evgenios G., Olga E. Malandraki, Olga V. Khabarova, Leonidas P. Karakatsanis, George P. Pavlos, and George Livadiotis. 2019. "Non-Extensive Statistical Analysis of Energetic Particle Flux Enhancements Caused by the Interplanetary Coronal Mass Ejection-Heliospheric Current Sheet Interaction" Entropy 21, no. 7: 648. https://doi.org/10.3390/e21070648
APA StylePavlos, E. G., Malandraki, O. E., Khabarova, O. V., Karakatsanis, L. P., Pavlos, G. P., & Livadiotis, G. (2019). Non-Extensive Statistical Analysis of Energetic Particle Flux Enhancements Caused by the Interplanetary Coronal Mass Ejection-Heliospheric Current Sheet Interaction. Entropy, 21(7), 648. https://doi.org/10.3390/e21070648