[go: up one dir, main page]

 
 
entropy-logo

Journal Browser

Journal Browser

Theoretical Aspects of Kappa Distributions

A special issue of Entropy (ISSN 1099-4300). This special issue belongs to the section "Statistical Physics".

Deadline for manuscript submissions: closed (31 December 2019) | Viewed by 33492

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Space Science and Engineering, Southwest Research Institute, San Antonio, TX 78238, USA
Interests: statistical physics & thermodynamics; mathematical physics; plasma & space physics; nonlinear dynamics & complexity

Special Issue Information

Dear Colleagues,

Classical particle systems reside at thermal equilibrium with their velocity distribution function, stabilized into a Maxwell distribution. On the other hand, collisionless and correlated particle systems, such as space plasmas, are characterized by a non-Maxwellian behavior, typically described by the so-called kappa distributions. Empirical kappa distributions have become increasingly widespread across space and plasma physics. However, a breakthrough in the field came with the connection of kappa distributions with the solid background of non-extensive statistical mechanics. Understanding the statistical background and origin of kappa distributions was a cornerstone of further theoretical developments, for example, among many others: the physical meaning of thermal parameters, e.g., temperature and kappa index; the N-particle description of kappa distributions; the generalization to phase-space kappa distribution of a Hamiltonian with non-zero potential; the entropy associated with kappa distributions.

In this Special Issue, we welcome papers reporting on the progress of the theory of kappa distributions. The subjects may include, but are not limited to, the following three broad areas:

A.    Statistical background:

-    Connection of kappa distributions with Non-extensive statistical mechanics;
-    Superstatistics and formulation of kappa distributions;
-    Superposition on kappa indices.

B.    Formulation:

-     Multi-particle distributions;
-     Distributions in the presence of potential energy;
-     Anisotropy of velocity space;
-     Relativistic distributions;
-     Further generalization in Lp norms;
-     Discrete formalism.

C.    Properties:

-     Concept of temperature for stationary states out of thermal equilibrium;
-     Physical meaning of kappa and its connection to particle correlations;
-     Higher statistical moments;
-     Parameter estimation methods;
-     Rankine–Hugoniot conditions for shocks in particle systems described by kappa distributions;
-     Polytropic relations and connection with the theory of kappa distributions;
-     Entropic formulations associated with kappa distributions;
-     Information measures and kappa distributions.

Dr. George  Livadiotis
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 3606 KiB  
Article
Characteristics of Nonthermal Dupree Diffusion on Space-Charge Wave in a Kappa Distribution Plasma Column with Turbulent Diffusion
by Myoung-Jae Lee and Young-Dae Jung
Entropy 2020, 22(2), 257; https://doi.org/10.3390/e22020257 - 24 Feb 2020
Cited by 2 | Viewed by 2465
Abstract
The nonthermal diffusion effects on the dispersion equations of ion-acoustic space-charge wave (SCW) in a nonthermal plasma column composed of nonthermal turbulent electrons and cold ions are investigated based on the analysis of normal modes and the separation of variables. It is found [...] Read more.
The nonthermal diffusion effects on the dispersion equations of ion-acoustic space-charge wave (SCW) in a nonthermal plasma column composed of nonthermal turbulent electrons and cold ions are investigated based on the analysis of normal modes and the separation of variables. It is found that the real portion of the wave frequency of the SCW in a Maxwellian plasma is greater than that in a nonthermal plasma. It is also found that the magnitude of the damping rate of the SCW decreases with an increase of the spectral index of the nonthermal plasma. It is also shown that the magnitude of the scaled damping rate increases with an increase of the Dupree diffusion coefficient. Moreover, the influence of the nonthermal character of the nonthermal plasma on the damping rate is found to be more significant in turbulent plasmas with higher diffusion coefficient. The variations of the wave frequency and the growth rate due to the characteristics of nonthermal diffusion are also discussed. Full article
(This article belongs to the Special Issue Theoretical Aspects of Kappa Distributions)
Show Figures

Figure 1

Figure 1
<p>The scaled real part <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ω</mi> <mo stretchy="false">¯</mo> </mover> <mi>R</mi> </msub> </mrow> </semantics></math> of the wave frequency of the space-charge wave (SCW) as a function of the scaled axial wave number <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>k</mi> <mo stretchy="false">¯</mo> </mover> <mo>∥</mo> </msub> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>R</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and the first-harmonic, i.e., <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mn>01</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mrow> <mo>.</mo> <mn>4048</mn> </mrow> </mrow> </semantics></math>. The solid line is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The dashed line is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. The dotted line is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>. The dash-dot is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>, i.e., Maxwellian case.</p>
Full article ">Figure 2
<p>The scaled real part <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ω</mi> <mo stretchy="false">¯</mo> </mover> <mi>R</mi> </msub> </mrow> </semantics></math> of the wave frequency of the SCW as a function of the scaled axial wave number <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>k</mi> <mo stretchy="false">¯</mo> </mover> <mo>∥</mo> </msub> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>R</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>. The solid line is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and the first-harmonic, i.e., <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mn>01</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mrow> <mo>.</mo> <mn>4048</mn> </mrow> </mrow> </semantics></math>. The dashed line is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and the second-harmonic, i.e., <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mn>02</mn> </mrow> </msub> <mo>=</mo> <mn>5</mn> <mrow> <mo>.</mo> <mn>5201</mn> </mrow> </mrow> </semantics></math>. The dotted line is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> and the first-harmonic, i.e., <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mn>01</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mrow> <mo>.</mo> <mn>4048</mn> </mrow> </mrow> </semantics></math>. The dash-dot is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> and the second-harmonic, i.e., <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mn>02</mn> </mrow> </msub> <mo>=</mo> <mn>5</mn> <mrow> <mo>.</mo> <mn>5201</mn> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>(<b>a</b>) Surface plot; (<b>b</b>) Contour plot of the scaled real part <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ω</mi> <mo stretchy="false">¯</mo> </mover> <mi>R</mi> </msub> </mrow> </semantics></math> of the wave frequency of the SCW as a function of the spectral index <math display="inline"><semantics> <mi>κ</mi> </semantics></math> and the scaled radius <math display="inline"><semantics> <mover accent="true"> <mi>R</mi> <mo stretchy="false">¯</mo> </mover> </semantics></math> of the cylindrical plasma column for <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>k</mi> <mo stretchy="false">¯</mo> </mover> <mo>∥</mo> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> and the first-harmonic, i.e., <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mn>01</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mrow> <mo>.</mo> <mn>4048</mn> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The scaled imaginary part of the wave frequency, i.e., the scaled damping rate <math display="inline"><semantics> <mover accent="true"> <mi>γ</mi> <mo stretchy="false">¯</mo> </mover> </semantics></math>, as a function of the scaled axial wave number <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>k</mi> <mo stretchy="false">¯</mo> </mover> <mo>∥</mo> </msub> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>D</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>R</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>; and the first-harmonic, i.e., <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mn>01</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mrow> <mo>.</mo> <mn>4048</mn> </mrow> </mrow> </semantics></math>. The solid line is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The dashed line is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. The dotted line is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>. The dash-dot is the case of <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>, i.e., Maxwellian case.</p>
Full article ">Figure 5
<p>The scaled damping rate <math display="inline"><semantics> <mover accent="true"> <mi>γ</mi> <mo stretchy="false">¯</mo> </mover> </semantics></math> of the SCW as a function of the scaled axial wave number <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>k</mi> <mo stretchy="false">¯</mo> </mover> <mo>∥</mo> </msub> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>R</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>. The solid line is the case of <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>D</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and the first-harmonic, i.e., <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mn>01</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mrow> <mo>.</mo> <mn>4048</mn> </mrow> </mrow> </semantics></math>. The dashed line is the case of <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>D</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and the second-harmonic, i.e., <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mn>02</mn> </mrow> </msub> <mo>=</mo> <mn>5</mn> <mrow> <mo>.</mo> <mn>5201</mn> </mrow> </mrow> </semantics></math>. The dotted line is the case of <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>D</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and the first-harmonic, i.e., <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mn>01</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mrow> <mo>.</mo> <mn>4048</mn> </mrow> </mrow> </semantics></math>. The dash-dot is the case of <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>D</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and the second-harmonic, i.e., <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mn>02</mn> </mrow> </msub> <mo>=</mo> <mn>5</mn> <mrow> <mo>.</mo> <mn>5201</mn> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>(<b>a</b>) Surface plot; (<b>b</b>) Contour plot of the scaled damping rate <math display="inline"><semantics> <mover accent="true"> <mi>γ</mi> <mo stretchy="false">¯</mo> </mover> </semantics></math> of the SCW as a function of the scaled radius <math display="inline"><semantics> <mover accent="true"> <mi>R</mi> <mo stretchy="false">¯</mo> </mover> </semantics></math> of the cylindrical plasma column and the spectral index <math display="inline"><semantics> <mi>κ</mi> </semantics></math> for <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>k</mi> <mo stretchy="false">¯</mo> </mover> <mo>∥</mo> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>D</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>(<b>a</b>) Surface plot; (<b>b</b>) Contour plot of the scaled damping rate <math display="inline"><semantics> <mover accent="true"> <mi>γ</mi> <mo stretchy="false">¯</mo> </mover> </semantics></math> of the SCW as a function of the scaled diffusion coefficient <math display="inline"><semantics> <mover accent="true"> <mi>D</mi> <mo stretchy="false">¯</mo> </mover> </semantics></math> and the spectral index <math display="inline"><semantics> <mi>κ</mi> </semantics></math> for <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>k</mi> <mo stretchy="false">¯</mo> </mover> <mo>∥</mo> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>R</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p>
Full article ">
11 pages, 2279 KiB  
Article
On the Determination of Kappa Distribution Functions from Space Plasma Observations
by Georgios Nicolaou, George Livadiotis and Robert T. Wicks
Entropy 2020, 22(2), 212; https://doi.org/10.3390/e22020212 - 13 Feb 2020
Cited by 14 | Viewed by 4452
Abstract
The velocities of space plasma particles, often follow kappa distribution functions. The kappa index, which labels and governs these distributions, is an important parameter in understanding the plasma dynamics. Space science missions often carry plasma instruments on board which observe the plasma particles [...] Read more.
The velocities of space plasma particles, often follow kappa distribution functions. The kappa index, which labels and governs these distributions, is an important parameter in understanding the plasma dynamics. Space science missions often carry plasma instruments on board which observe the plasma particles and construct their velocity distribution functions. A proper analysis of the velocity distribution functions derives the plasma bulk parameters, such as the plasma density, speed, temperature, and kappa index. Commonly, the plasma bulk density, velocity, and temperature are determined from the velocity moments of the observed distribution function. Interestingly, recent studies demonstrated the calculation of the kappa index from the speed (kinetic energy) moments of the distribution function. Such a novel calculation could be very useful in future analyses and applications. This study examines the accuracy of the specific method using synthetic plasma proton observations by a typical electrostatic analyzer. We analyze the modeled observations in order to derive the plasma bulk parameters, which we compare with the parameters we used to model the observations in the first place. Through this comparison, we quantify the systematic and statistical errors in the derived moments, and we discuss their possible sources. Full article
(This article belongs to the Special Issue Theoretical Aspects of Kappa Distributions)
Show Figures

Figure 1

Figure 1
<p>The first order kinetic energy moment <math display="inline"><semantics> <mrow> <msup> <mi>M</mi> <mn>1</mn> </msup> </mrow> </semantics></math> as a function of the kappa index <span class="html-italic">κ</span>, for five different plasma temperatures <span class="html-italic">T</span>.</p>
Full article ">Figure 2
<p>Measurement sample for plasma with <span class="html-italic">n</span> = 20 cm<sup>−3</sup>, <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> </semantics></math> = 500 kms<sup>−1</sup> towards <span class="html-italic">Θ</span> = 0° and <span class="html-italic">Φ</span> = 0°, <span class="html-italic">T</span> = 20 eV, and <span class="html-italic">κ</span> = 3, recorded by the top-hat electrostatic analyzer design we consider in this study. The left panel shows the registered number of counts <span class="html-italic">C</span><sub>out</sub> as a function of log<sub>10</sub>(<span class="html-italic">E</span>) and <span class="html-italic">Θ</span> integrated over <span class="html-italic">Φ</span>, while the right panel shows <span class="html-italic">C</span><sub>out</sub> as a function of log<sub>10</sub>(<span class="html-italic">E</span>) and <span class="html-italic">Φ</span>, integrated over <span class="html-italic">Θ</span>.</p>
Full article ">Figure 3
<p>Histograms of the derived (<b>top left</b>) <span class="html-italic">n</span><sub>out</sub>, (<b>top right</b>) <span class="html-italic">u</span><sub>0,out</sub>, (<b>bottom left</b>) <span class="html-italic">T</span><sub>out</sub>, and (<b>bottom right</b>) <span class="html-italic">κ</span><sub>out</sub>, by the analysis of 1000 measurement samples considering plasma with <span class="html-italic">n</span> = 20 cm<sup>−3</sup>, <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> </semantics></math> = 500 kms<sup>−1</sup> towards <span class="html-italic">Θ</span> = 0° and <span class="html-italic">Φ</span> = 0°, <span class="html-italic">T</span> = 20 eV, and <span class="html-italic">κ</span> = 3. In each panel, we show the mean value <span class="html-italic">μ</span> and the standard deviation <span class="html-italic">σ</span> of the derived moments, while the vertical blue dashed line indicates the corresponding input value.</p>
Full article ">Figure 4
<p>The mean kappa index <span class="html-italic">κ</span><sub>out</sub> and its standard deviation σ<sub>κ,out</sub> as functions of the energy moment order we use to analyze the data-set.</p>
Full article ">Figure 5
<p>(<b>Top left</b>) The occurrence of <math display="inline"><semantics> <mrow> <msubsup> <mi>M</mi> <mrow> <mi>out</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </semantics></math> and (<b>lower right</b>) <span class="html-italic">T</span><sub>out</sub>, as derived from the analysis of 1000 samples of plasma with <span class="html-italic">n</span> = 20 cm<sup>−3</sup>, <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> </semantics></math> = 500 kms<sup>−1</sup> towards <span class="html-italic">Θ</span> = 0° and <span class="html-italic">Φ</span> = 0°, <span class="html-italic">T</span> = 20 eV, and <span class="html-italic">κ</span> = 3. (<b>Top right</b>) Solutions of <span class="html-italic">κ</span><sub>out</sub> as a function of <span class="html-italic">T</span><sub>out</sub> and <math display="inline"><semantics> <mrow> <msubsup> <mi>M</mi> <mrow> <mi>out</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </semantics></math> according to Equation (12). On each panel, the blue lines indicate the input parameters and the black lines the derived parameters in our example.</p>
Full article ">Figure 6
<p>Solutions of <span class="html-italic">κ</span><sub>out</sub> as a function of <span class="html-italic">T</span><sub>out</sub> and <math display="inline"><semantics> <mrow> <msubsup> <mi>M</mi> <mrow> <mi>out</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </semantics></math> according to Equation (12). The black circle indicates the average parameters as derived from the analysis of 1000 observation samples by our standard instrument model with field of view −22.5° &lt; <span class="html-italic">Θ</span> &lt; +22.5°, −45° &lt; <span class="html-italic">Φ</span> &lt; +45°, and angular resolution Δ<span class="html-italic">Θ</span> = 5° and Δ<span class="html-italic">Φ</span> = 6° respectively. The green circle indicates the average parameters as derived from the analysis of 1000 observation samples by an instrument with field of view −45° &lt; <span class="html-italic">Θ</span> &lt; +45°, −45° &lt; <span class="html-italic">Φ</span> &lt; +45°, and angular resolution Δ<span class="html-italic">Θ</span> = Δ<span class="html-italic">Φ</span> = 2.5°. The input plasma parameters are the same as in <a href="#sec3-entropy-22-00212" class="html-sec">Section 3</a> and are indicated by the blue circle.</p>
Full article ">
14 pages, 3812 KiB  
Article
Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements
by Georgios Nicolaou, Robert Wicks, George Livadiotis, Daniel Verscharen, Christopher Owen and Dhiren Kataria
Entropy 2020, 22(1), 103; https://doi.org/10.3390/e22010103 - 16 Jan 2020
Cited by 15 | Viewed by 4878
Abstract
Electrostatic analysers measure the flux of plasma particles in velocity space and determine their velocity distribution function. There are occasions when science objectives require high time-resolution measurements, and the instrument operates in short measurement cycles, sampling only a portion of the velocity distribution [...] Read more.
Electrostatic analysers measure the flux of plasma particles in velocity space and determine their velocity distribution function. There are occasions when science objectives require high time-resolution measurements, and the instrument operates in short measurement cycles, sampling only a portion of the velocity distribution function. One such high-resolution measurement strategy consists of sampling the two-dimensional pitch-angle distributions of the plasma particles, which describes the velocities of the particles with respect to the local magnetic field direction. Here, we investigate the accuracy of plasma bulk parameters from such high-resolution measurements. We simulate electron observations from the Solar Wind Analyser’s (SWA) Electron Analyser System (EAS) on board Solar Orbiter. We show that fitting analysis of the synthetic datasets determines the plasma temperature and kappa index of the distribution within 10% of their actual values, even at large heliocentric distances where the expected solar wind flux is very low. Interestingly, we show that although measurement points with zero counts are not statistically significant, they provide information about the particle distribution function which becomes important when the particle flux is low. We also examine the convergence of the fitting algorithm for expected plasma conditions and discuss the sources of statistical and systematic uncertainties. Full article
(This article belongs to the Special Issue Theoretical Aspects of Kappa Distributions)
Show Figures

Figure 1

Figure 1
<p>Schematic of a Solar Wind Analyser’s Electron Analyser System (SWA-EAS) top-hat analyser head and its angular field of view. (<b>Left</b>) The elevation angle is defined as the complement of the angle between the particle velocity vector and the <span class="html-italic">z</span>-axis, perpendicular to the top-hat plane. The elevation angle of the electrons is resolved in 16 electrostatic uniform steps. (<b>Right</b>) The azimuth angle is the angle within the projection of the velocity vector on the top-hat plane and the <span class="html-italic">x</span>-axis. Both SWA-EAS analyser heads resolve the azimuth direction on MCP detectors using 32 sectors.</p>
Full article ">Figure 2
<p>Modelled counts as a function energy and azimuth direction on the analyser’s head frame for (<b>left</b>) plasma density <span class="html-italic">n</span> = 5 cm<sup>−3</sup> and (<b>right</b>) <span class="html-italic">n</span> = 50 cm<sup>−3</sup>. For both examples, the magnetic field vector (magenta) is in the top-hat plane (<span class="html-italic">Θ</span> = <span class="html-italic">θ</span><sub>B</sub> = 0°) in azimuth direction <span class="html-italic">Φ</span> = 45°. The bulk flow of the electrons <span class="html-italic">u</span><sub>0</sub> = 500 kms<sup>−1</sup> along the <span class="html-italic">x</span>-axis (<span class="html-italic">Θ</span> = <span class="html-italic">Φ</span> = 0°). The parallel temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> = 10 eV, the perpendicular temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math> = 20 eV, and the kappa index <span class="html-italic">κ</span> = 3.</p>
Full article ">Figure 3
<p>(<b>Left</b>) Modelled counts as a function of energy and azimuth direction (instrument frame), using <span class="html-italic">n</span> = 20 cm<sup>−3</sup>, <span class="html-italic">u</span><sub>0</sub> = 500 kms<sup>−1</sup> towards the <span class="html-italic">x</span>-axis (<span class="html-italic">Θ</span> = <span class="html-italic">Φ</span> = 0°), <span class="html-italic">κ</span> = 3, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> = 10 eV, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math> = 20 eV, and a magnetic-field direction (magenta) in the top-hat plane (<span class="html-italic">Θ</span> = 0° and <span class="html-italic">Φ</span> = 45°). (<b>Right</b>) Result of our fit to the modelled observations. The model finds the optimal combination of <span class="html-italic">n</span>, <span class="html-italic">κ</span>, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math> that minimizes the <span class="html-italic">χ</span><sup>2</sup> value (see text for more).</p>
Full article ">Figure 4
<p>Histograms of (<b>top left</b>) density <span class="html-italic">n</span><sub>out</sub>, (<b>top right</b>) kappa index <span class="html-italic">κ</span><sub>out</sub>, (<b>bottom left</b>) parallel temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>∥</mo> <mo>,</mo> <mi>out</mi> </mrow> </msub> </mrow> </semantics></math> and (<b>bottom right</b>) perpendicular temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mo>⊥</mo> <mo>,</mo> <mi>out</mi> </mrow> </msub> </mrow> </semantics></math>, as determined from the analysis of 200 measurement samples of plasma with <span class="html-italic">n</span> = 7 cm<sup>−3</sup>, <span class="html-italic">u</span><sub>0</sub> = 500 kms<sup>−1</sup> pointing along the <span class="html-italic">x</span>-axis, <span class="html-italic">κ</span> = 3, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> = 10 eV and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math> = 20 eV. The blue histograms correspond to values derived by a fit that includes points with <span class="html-italic">C<sub>i</sub></span> = 0, while the red histograms represent values derived by a fit that excludes points with <span class="html-italic">C<sub>i</sub></span> = 0.</p>
Full article ">Figure 5
<p>(<b>From top to bottom</b>) The derived electron density over input density, kappa index, parallel and perpendicular temperature as functions of the input plasma density. The red points represent the mean values (over 200 samples) of the parameters derived by fitting only the measurements with <span class="html-italic">C<sub>i</sub></span> ≥ 1. The blue points represent the mean values of the parameters derived by fitting to all measurements including those with <span class="html-italic">C<sub>i</sub></span> = 0. The shadowed regions represent the standard deviations of the derived parameters.</p>
Full article ">Figure 6
<p>2D histograms of the <span class="html-italic">χ</span><sup>2</sup> value as a function of (<b>top</b>) the modelled <span class="html-italic">κ</span> and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> and (<b>bottom</b>) the modelled <span class="html-italic">κ</span> and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math>, as derived for plasma with two different input densities; (<b>left</b>) <span class="html-italic">n</span> = 10 cm<sup>−3</sup>, and (<b>right</b>) <span class="html-italic">n</span> = 50 cm<sup>−3</sup>. In both examples, we use <span class="html-italic">u</span><sub>0</sub> = 500 kms<sup>−1</sup> pointing along the x-axis, <span class="html-italic">κ</span> = 3, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> = 10 eV, and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math> = 20 eV as input parameters.</p>
Full article ">Figure 7
<p>Number of counts as a function of energy for the pitch-angle with the maximum flux assuming a plasma with <span class="html-italic">n</span> = 5 cm<sup>−3</sup>, <span class="html-italic">κ</span> = 3, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>∥</mo> </msub> </mrow> </semantics></math> = 10 eV and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mo>⊥</mo> </msub> </mrow> </semantics></math>= 20 eV. The blue line is the fitted model to the observations by (<b>left</b>) excluding points with <span class="html-italic">C<sub>i</sub></span> = 0 which are shown with red colour, and (<b>right</b>) including points with <span class="html-italic">C<sub>i</sub></span> = 0. The magenta line is the expected counts <span class="html-italic">C</span><sub>exp</sub>, given by Equation (2). The labels in each panel show the parameters as derived by the corresponding fit.</p>
Full article ">Figure 8
<p>Poisson distribution with average value (<b>top</b>) <span class="html-italic">C</span><sub>exp</sub> = 1, (<b>middle</b>) <span class="html-italic">C</span><sub>exp</sub> = 3, and (<b>bottom</b>) <span class="html-italic">C</span><sub>exp</sub> = 5. The vertical lines indicate the two modes of the distribution, <span class="html-italic">C</span><sub>exp</sub> (blue) and <span class="html-italic">C</span><sub>exp</sub> − 1 (orange) respectively. For small average values, the Poisson distribution is asymmetric, and the probability to measure number of counts lower than the average value is significant. This can bias the results to lower densities.</p>
Full article ">Figure 9
<p>Number of the expected average counts <span class="html-italic">C</span><sub>exp</sub> as a function of energy in the pitch-angle bin with the maximum particle flux, considering the same plasma conditions as in the example shown in <a href="#entropy-22-00103-f007" class="html-fig">Figure 7</a>. The blue curve is the model fitted to the observations by (<b>left</b>) excluding points with <span class="html-italic">C<sub>i</sub></span> = 0 which are shown with red colour, and (<b>right</b>) including points with <span class="html-italic">C<sub>i</sub></span> =0. The orange curve is the mode <span class="html-italic">C</span><sub>exp</sub> − 1. In each panel, we show the parameters as derived by the corresponding fit. In the absence of statistical fluctuations, both fitting strategies derive identical bulk parameters.</p>
Full article ">
20 pages, 1875 KiB  
Article
Kappa Distributions and Isotropic Turbulence
by Elias Gravanis, Evangelos Akylas, Constantinos Panagiotou and George Livadiotis
Entropy 2019, 21(11), 1093; https://doi.org/10.3390/e21111093 - 7 Nov 2019
Cited by 7 | Viewed by 2935
Abstract
In this work, the two-point probability density function (PDF) for the velocity field of isotropic turbulence is modeled using the kappa distribution and the concept of superstatistics. The PDF consists of a symmetric and an anti-symmetric part, whose symmetry properties follow from the [...] Read more.
In this work, the two-point probability density function (PDF) for the velocity field of isotropic turbulence is modeled using the kappa distribution and the concept of superstatistics. The PDF consists of a symmetric and an anti-symmetric part, whose symmetry properties follow from the reflection symmetry of isotropic turbulence, and the associated non-trivial conditions are established. The symmetric part is modeled by the kappa distribution. The anti-symmetric part, constructed in the context of superstatistics, is a novel function whose simplest form (called “the minimal model”) is solely dictated by the symmetry conditions. We obtain that the ensemble of eddies of size up to a given length r has a temperature parameter given by the second order structure function and a kappa-index related to the second and the third order structure functions. The latter relationship depends on the inverse temperature parameter (gamma) distribution of the superstatistics and it is not specific to the minimal model. Comparison with data from direct numerical simulations (DNS) of turbulence shows that our model is applicable within the dissipation subrange of scales. Also, the derived PDF of the velocity gradient shows excellent agreement with the DNS in six orders of magnitude. Future developments, in the context of superstatistics, are also discussed. Full article
(This article belongs to the Special Issue Theoretical Aspects of Kappa Distributions)
Show Figures

Figure 1

Figure 1
<p>Transformation of velocities under reflection.</p>
Full article ">Figure 2
<p>The dependence of the smallest scales kappa-index, <span class="html-italic">κ</span><sub>0</sub>(0), on the Reynolds number, according to a power fit of the flatness factor, Equation (28), and according to the specific fit of [<a href="#B5-entropy-21-01093" class="html-bibr">5</a>], for a range of Reynolds the best fit of [<a href="#B5-entropy-21-01093" class="html-bibr">5</a>] that have been covered by the recent direct numerical simulations (DNS).</p>
Full article ">Figure 3
<p>Plot of the function <span class="html-italic">g</span>(<span class="html-italic">κ</span><sub>0</sub>) defined by Equation (43). <span class="html-italic">g</span> becomes infinite as <span class="html-italic">κ</span><sub>0</sub> approaches the value 0.5.</p>
Full article ">Figure 4
<p>The ratio <span class="html-italic">g</span>(<span class="html-italic">κ</span><sub>0</sub>(0))<span class="html-italic">B</span><sub>3</sub>(<span class="html-italic">r</span>)/(<span class="html-italic">B</span><sub>2</sub>(<span class="html-italic">r</span>))<sup>3/2</sup>/<span class="html-italic">S</span> as it follows from DNS data [<a href="#B6-entropy-21-01093" class="html-bibr">6</a>] for Reynolds number Re<span class="html-italic"><sub>λ</sub></span>= 1131 (continuous line) and Re<span class="html-italic"><sub>λ</sub></span>= 732 (dashed line), and Equations (43) and (29).</p>
Full article ">Figure 5
<p>The kappa-index <span class="html-italic">κ</span><sub>0</sub>(<span class="html-italic">r</span>) as a function of <span class="html-italic">r</span>/<span class="html-italic">η</span> derived from DNS data [<a href="#B6-entropy-21-01093" class="html-bibr">6</a>] for Reynolds number Re<span class="html-italic"><sub>λ</sub></span>= 1131 (continuous line) and Re<span class="html-italic"><sub>λ</sub></span>= 732 (dashed line), and Equation (43). The kappa-index starts off with an estimated value <span class="html-italic">κ</span><sub>0</sub>(0) ~ 1.4 and <span class="html-italic">κ</span><sub>0</sub>(0) ~ 1.66, respectively, and increases without bound. The dotted lines indicate the expected behavior in the region where we do not have information from the DNS, through interpolation.</p>
Full article ">Figure 6
<p>Continuous line: The model probability density function (PDF) of the normalized (longitudinal) velocity derivative for Re<span class="html-italic"><sub>λ</sub></span> = 675, as it follows from Equations (61), (63), (29). Dashed line: The corresponding DNS data for Re<span class="html-italic"><sub>λ</sub></span> = 675 [<a href="#B5-entropy-21-01093" class="html-bibr">5</a>].</p>
Full article ">
17 pages, 5433 KiB  
Article
On the Calculation of the Effective Polytropic Index in Space Plasmas
by Georgios Nicolaou, George Livadiotis and Robert T. Wicks
Entropy 2019, 21(10), 997; https://doi.org/10.3390/e21100997 - 12 Oct 2019
Cited by 19 | Viewed by 4744
Abstract
The polytropic index of space plasmas is typically determined from the relationship between the measured plasma density and temperature. In this study, we quantify the errors in the determination of the polytropic index, due to uncertainty in the analyzed measurements. We model the [...] Read more.
The polytropic index of space plasmas is typically determined from the relationship between the measured plasma density and temperature. In this study, we quantify the errors in the determination of the polytropic index, due to uncertainty in the analyzed measurements. We model the plasma density and temperature measurements for a certain polytropic index, and then, we apply the standard analysis to derive the polytropic index. We explore the accuracy of the derived polytropic index for a range of uncertainties in the modeled density and temperature and repeat for various polytropic indices. Our analysis shows that the uncertainties in the plasma density introduce a systematic error in the determination of the polytropic index which can lead to artificial isothermal relations, while the uncertainties in the plasma temperature increase the statistical error of the calculated polytropic index value. We analyze Wind spacecraft observations of the solar wind protons and we derive the polytropic index in selected intervals over 2002. The derived polytropic index is affected by the plasma measurement uncertainties, in a similar way as predicted by our model. Finally, we suggest a new data-analysis approach, based on a physical constraint, that reduces the amount of erroneous derivations. Full article
(This article belongs to the Special Issue Theoretical Aspects of Kappa Distributions)
Show Figures

Figure 1

Figure 1
<p>Model of plasma temperature <span class="html-italic">T</span> as a function of the modeled plasma density <span class="html-italic">n</span> for (<b>left</b>) adiabatic plasma with <span class="html-italic">γ</span> = 5/3, (<b>middle</b>) isothermal plasma with <span class="html-italic">γ</span> = 1 and (<b>right</b>) for isobaric plasma with <span class="html-italic">γ</span> = 0. In each panel, we plot <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>∝</mo> <msup> <mi>n</mi> <mrow> <mi>γ</mi> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (grey dashed). For all the examples here, the plasma density ranges between <span class="html-italic">n</span><sub>min</sub> = 4 cm<sup>−3</sup> and <span class="html-italic">n</span><sub>max</sub> = 5 cm<sup>−3</sup> and <span class="html-italic">T</span><sub>0</sub> = 5 eV.</p>
Full article ">Figure 2
<p>Modeled samples of ln<span class="html-italic">T</span> as a function of ln<span class="html-italic">n</span>, for adiabatic plasma and (<b>left</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math> = 1%, (<b>middle</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> = 3%, <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math> = 1% and (<b>right</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> = 3%, <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math> = 5%. In each plot, the black data-points correspond to the modeled plasma parameters while the red dots correspond to the measurement samples. We model 1000 measurement samples, considering a log-normal distribution around the plasma parameters (black dots) and standard deviation as indicated by the error bar.</p>
Full article ">Figure 3
<p>Histogram of the derived <span class="html-italic">γ</span> over 1000 samples, considering adiabatic plasma, and uncertainties <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math> = 5%. Although the modeled plasma has <span class="html-italic">γ</span> = 5/3, the distribution of the derived values is slightly asymmetric with the most frequent value 1.45 and mean <span class="html-italic">γ</span><sub>m</sub> ~1.56. The standard deviation of the distribution is <span class="html-italic">σ<sub>γ</sub></span> ~0.33. The plasma uncertainty in the plasma parameters introduces a systematical (different mean and mode) and statistical (<span class="html-italic">σ<sub>γ</sub></span> &gt; 0) error in the calculation of <span class="html-italic">γ</span>.</p>
Full article ">Figure 4
<p>The average <span class="html-italic">γ</span><sub>m</sub> as a function of (<b>left</b>) density and (<b>right</b>) temperature measurement uncertainty. The average <span class="html-italic">γ</span><sub>m</sub> and its standard error δ<span class="html-italic"><sub>γ</sub></span> are calculated over 1000 samples of <span class="html-italic">n</span>-<span class="html-italic">T</span> measurements. Lines with different colors represent different input <span class="html-italic">γ</span> values. For the specific examples, we set <span class="html-italic">n</span><sub>min</sub> = 3.675 cm<sup>−3</sup>, Δ<span class="html-italic">n</span> = n<sub>max</sub> − n<sub>min</sub> = 0.35 cm<sup>−3</sup>, and <span class="html-italic">T</span><sub>0</sub> = 3.275 eV, which correspond to typical values of solar wind protons as observed by Wind in 2002.</p>
Full article ">Figure 5
<p>The derived polytropic index averages (over 1000 samples) as a function of (<b>left</b>) density and (<b>right</b>) temperature measurement uncertainty, for several Δ<span class="html-italic">n</span> ranges. For all the examples shown here, we consider an adiabatic plasma (input <span class="html-italic">γ</span> = 5/3).</p>
Full article ">Figure 6
<p>Wind high-resolution measurements of (from top to bottom) density, bulk speed, thermal speed, and magnetic field strength, during 2002.</p>
Full article ">Figure 7
<p>Histogram of the average solar wind protons parameters within the selected subintervals in 2002, which we analyze to derive the polytropic index, (<b>a</b>) the average density <span class="html-italic">n</span> and (<b>b</b>) average temperature <span class="html-italic">T</span>, (<b>c</b>) density range Δ<span class="html-italic">n</span>, (<b>d</b>) temperature range Δ<span class="html-italic">T</span> and (<b>e</b>) the derived polytropic index <span class="html-italic">γ</span>. In each panel, we note the most frequent value (mode) of each parameter, which we use as input to our model to predict the misestimation of <span class="html-italic">γ</span> as a function of the measurement uncertainties.</p>
Full article ">Figure 8
<p>Occurrence of (<b>upper left</b>) the average <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math>, (<b>lower</b>) the average <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> and (<b>upper right</b>) the 2D histogram of <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> of the Wind observations in 2002. The white line indicates the mode of <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math> in each <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> bin.</p>
Full article ">Figure 9
<p>Normalized histograms of (<b>left</b>) <span class="html-italic">γ</span> as a function of <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math> &lt; 15% and (<b>right</b>) <span class="html-italic">γ</span> as a function of <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> &lt; 1%. The white line is the mean value of the histogram in each column. We display only the range of uncertainties for which we have more than 100 data points. On each panel, we show the predictions of our model (red) for plasma parameters corresponding to the mode values of each parameter for the analyzed intervals (see also <a href="#entropy-21-00997-f007" class="html-fig">Figure 7</a>).</p>
Full article ">Figure 10
<p>The 2D histogram of (<b>left</b>) mean calculated polytropic index <span class="html-italic">γ</span><sub>m</sub> and (<b>right</b>) the average Pearson correlation coefficient of ln<span class="html-italic">T</span> and ln<span class="html-italic">n</span> as a function of <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math> for modeled plasma with <span class="html-italic">γ</span> = 1.9, <span class="html-italic">n</span><sub>min</sub> = 3.675 cm<sup>−3</sup>, Δ<span class="html-italic">n</span> = n<sub>max</sub> − n<sub>min</sub> = 0.35 cm<sup>−3</sup>, and <span class="html-italic">T</span><sub>0</sub> = 3.275 eV. The average polytropic indices and correlation coefficients are calculated for 1000 modeled measurement samples per each combination of <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>(<b>Left</b>) average <span class="html-italic">ν</span><sub>inv</sub>,<sub>m</sub> as a function of <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math> = 0 and (<b>right</b>) as a function of <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> = 0 and for several <span class="html-italic">γ</span>. The average <span class="html-italic">ν</span><sub>inv,m</sub> is calculated over 1000 samples for each uncertainty setting in our model. For the specific examples we consider <span class="html-italic">T</span><sub>0</sub> = 3.275 eV and <math display="inline"><semantics> <mrow> <mrow> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>T</mi> </mrow> <mo>/</mo> <mrow> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </mrow> </mrow> </semantics></math> ~ 10%.</p>
Full article ">Figure 12
<p>(<b>Left</b>) the calculated <span class="html-italic">ν</span> as a function of the calculated <span class="html-italic">γ</span> for 250,000 samples with input <span class="html-italic">γ</span> = 1.9, <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mrow> </semantics></math> = <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> </mrow> <mo>/</mo> <mi>T</mi> </mrow> </mrow> </semantics></math> = 8%, and (<b>right</b>) the same plot for the analyzed intervals from Wind measurements during 2002. In both plots, the blue data-points satisfy the criterion | 1/<span class="html-italic">ν</span><sub>inv</sub> – (<span class="html-italic">γ</span>-1)| &lt; 0.1, while the red-data points do not, as they lie further from the expected <span class="html-italic">ν</span> ≡ (<span class="html-italic">γ</span> − 1)<sup>−1</sup> (dashed).</p>
Full article ">Figure 13
<p>Histograms of <span class="html-italic">γ</span> as derived by the analysis of Wind observation over 2002, before (grey) and after the filter application with (green) α = 1, and (blue) α = 0.1. The filtered <span class="html-italic">γ</span> values are recorded within a shorter range, and the corresponding histogram has a sharp dip at <span class="html-italic">γ</span> = 1 for which the linear fitting cannot derive an accurate <span class="html-italic">ν</span> index.</p>
Full article ">
45 pages, 8763 KiB  
Article
Non-Extensive Statistical Analysis of Energetic Particle Flux Enhancements Caused by the Interplanetary Coronal Mass Ejection-Heliospheric Current Sheet Interaction
by Evgenios G. Pavlos, Olga E. Malandraki, Olga V. Khabarova, Leonidas P. Karakatsanis, George P. Pavlos and George Livadiotis
Entropy 2019, 21(7), 648; https://doi.org/10.3390/e21070648 - 30 Jun 2019
Cited by 6 | Viewed by 4309
Abstract
In this study we use theoretical concepts and computational-diagnostic tools of Tsallis non-extensive statistical theory (Tsallis q-triplet: q s e n ,   q r e l ,   q s t a t ), complemented by other known tools of nonlinear dynamics [...] Read more.
In this study we use theoretical concepts and computational-diagnostic tools of Tsallis non-extensive statistical theory (Tsallis q-triplet: q s e n ,   q r e l ,   q s t a t ), complemented by other known tools of nonlinear dynamics such as Correlation Dimension and surrogate data, Hurst exponent, Flatness coefficient, and p-modeling of multifractality, in order to describe and understand Small-scale Magnetic Islands (SMIs) structures observed in Solar Wind (SW) with a typical size of ~0.01–0.001 AU at 1 AU. Specifically, we analyze ~0.5 MeV energetic ion time-intensity and magnetic field profiles observed by the STEREO A spacecraft during a rare, widely discussed event. Our analysis clearly reveals the non-extensive character of SW space plasmas during the periods of SMIs events, as well as significant physical complex phenomena in accordance with nonlinear dynamics and complexity theory. As our analysis also shows, a non-equilibrium phase transition parallel with self-organization processes, including the reduction of dimensionality and development of long-range correlations in connection with anomalous diffusion and fractional acceleration processes can be observed during SMIs events. Full article
(This article belongs to the Special Issue Theoretical Aspects of Kappa Distributions)
Show Figures

Figure 1

Figure 1
<p>Velocity (<b>upper panel</b>) and density (<b>lower panel</b>) 3-D reconstructions before, after and during the passage of an Interplanetary Corona Mass Ejections (ICME) surrounded by the rippled Heliospheric current sheet, which led to the occurrence of regions filled with trapped energetic particles around the ICME (modified from [<a href="#B1-entropy-21-00648" class="html-bibr">1</a>]). All measurements are recalculated to the Earth fixed position (the blue dot). The heliographic longitude of STEREO A was 20.220 deg (in the anticlockwise direction with respect to the Earth) and the heliolatitude was –0.311 deg. (Exact coordinates of the STEREO A location for the specified period can be found, for example, at <a href="https://stereo-ssc.nascom.nasa.gov/cgi-bin/make_where_gif" target="_blank">https://stereo-ssc.nascom.nasa.gov/cgi-bin/make_where_gif</a>).</p>
Full article ">Figure 2
<p>Energetic particle flux enhancements (EPFEs), observed by the STERO A spacecraft, caused by the ICME interaction with the rippled HCS: (<b>upper panel</b>) Energetic ion flux in the three energy channels from 101 keV to 2 MeV. EPFEs are not observed during the ICME magnetic cloud passage (bounded by black vertical lines), but there are two strong increases associated with the areas filled with magnetic islands (areas bounded by green vertical lines); (<b>bottom panel</b>) Interplanetary Magnetic Field (IMF) magnitude in Radial Tangential Normal (RTN) coordinates for the same period.</p>
Full article ">Figure 3
<p>Quiet period observed during the identified “quiet” periods for: (<b>a</b>) Energetic ion intensities; (<b>b</b>) magnetic field.</p>
Full article ">Figure 4
<p>Variation of the Flatness coefficient of energetic particle fluxes during the event. The blue line corresponds to original Time Series (TMS), while the red line corresponds to first difference TMS. The dashed lines indicate the “limit” of Gaussian character of the system: (<b>a</b>) (<b>upper panel</b>) Energetic ion fluxes in 312–555 keV energy range, (<b>middle panel</b>) Flatness coefficient of original TMS, (<b>bottom panel</b>) Flatness coefficient of first difference TMS; (<b>b</b>) mean value of Flatness coefficient for periods quiet, pre-event, ICME, and post-event. (<b>Upper panel</b>) original TMS, (<b>bottom panel</b>) first difference TMS.</p>
Full article ">Figure 5
<p>Mean value of Flatness coefficient for each period. The blue lines correspond to original TMS, while the red lines correspond to first difference TMS. The dashed lines indicate the “limit” of Gaussian character of the system: (<b>a</b>) Energetic ion intensity TMS; (<b>b</b>) Magnetic field TMS.</p>
Full article ">Figure 6
<p>Singularity spectrum for energetic ion intensity (<b>left column</b>) and magnetic field (<b>right column</b>) TMS, shows the related singularity spectra <math display="inline"><semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>α</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> as a function of singularity strength <math display="inline"><semantics> <mi>α</mi> </semantics></math>. The red dashed line corresponds to a nonlinear regression best fit of the data (p-model): (<b>a,b</b>) Quiet periods; (<b>c,d</b>) pre-event periods; (<b>e,f</b>) EPFE 1 periods; (<b>g,h</b>) ICME periods; (<b>i,j</b>) EPFE 2 periods; (<b>k,l</b>) post-event periods.</p>
Full article ">Figure 6 Cont.
<p>Singularity spectrum for energetic ion intensity (<b>left column</b>) and magnetic field (<b>right column</b>) TMS, shows the related singularity spectra <math display="inline"><semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>α</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> as a function of singularity strength <math display="inline"><semantics> <mi>α</mi> </semantics></math>. The red dashed line corresponds to a nonlinear regression best fit of the data (p-model): (<b>a,b</b>) Quiet periods; (<b>c,d</b>) pre-event periods; (<b>e,f</b>) EPFE 1 periods; (<b>g,h</b>) ICME periods; (<b>i,j</b>) EPFE 2 periods; (<b>k,l</b>) post-event periods.</p>
Full article ">Figure 7
<p>Generalized dimension spectrum for all examined periods: (<b>a</b>) Energetic ion intensity TMS; (<b>b</b>) Magnetic field TMS. The blue line corresponds to quiet period, the dark green line to pre-event period, the red line to EPFE 1 period, the brown line to ICME period, the light green line to EPFE 2 period and the magenta line corresponds to post-event period.</p>
Full article ">Figure 8
<p>Characteristics parameters of singularity spectrum profile for all periods under study: (<b>a</b>) Energetic ion intensity TMS; (<b>b</b>) magnetic field TMS.</p>
Full article ">Figure 9
<p>The linear fit on mutual information curve: (<b>a</b>) EPFE 1 period for energetic ion intensities; (<b>b</b>) EPFE 1 period for magnetic field; (<b>c</b>) EPFE 2 period for energetic ion intensities; (<b>d</b>) EPFE 2 period for magnetic field.</p>
Full article ">Figure 10
<p>The index <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> for energetic particle intensities (312–555 keV). Figures in the left column shows linear correlation, while figures in the right column shows the PDF, with q-Gaussian function that fits for each period: (<b>a,b</b>) Quiet period; (<b>c,d</b>) pre-event period; (<b>e,f</b>) EPFE 1 period; (<b>g,h</b>) ICME period; (<b>i,j</b>) EPFE 2 period; (<b>k,l</b>) post-event period.</p>
Full article ">Figure 10 Cont.
<p>The index <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> for energetic particle intensities (312–555 keV). Figures in the left column shows linear correlation, while figures in the right column shows the PDF, with q-Gaussian function that fits for each period: (<b>a,b</b>) Quiet period; (<b>c,d</b>) pre-event period; (<b>e,f</b>) EPFE 1 period; (<b>g,h</b>) ICME period; (<b>i,j</b>) EPFE 2 period; (<b>k,l</b>) post-event period.</p>
Full article ">Figure 11
<p>Variation of Tsallis q-triplet during the event: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> index; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math> index; (<b>c</b>) q-entropy maximum <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>q</mi> </msub> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math> index.</p>
Full article ">Figure 12
<p>Linear correlation between q-entropy and <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>: (<b>a</b>) For energetic ion intensity TMS; (<b>b</b>); for magnetic field TMS.</p>
Full article ">Figure 13
<p>The slopes of the correlation integral as a function of the radius <span class="html-italic">r</span>. Blue bar corresponds to the first difference TMS and red bar corresponds to its surrogate data. (<b>a</b>) For energetic ion intensities during the EPFE periods (EPFEs) and for the rest of the periods (Non-EPFEs); (<b>b</b>) for the magnetic field TMS for the six periods.</p>
Full article ">Figure 14
<p>The Hurst exponent for the original signal (blue bar) and for the first difference signal (red bar): (<b>a</b>) For energetic ion intensity TMS; (<b>b</b>) for magnetic field TMS.</p>
Full article ">
16 pages, 1430 KiB  
Article
Tsallis Entropy Index q and the Complexity Measure of Seismicity in Natural Time under Time Reversal before the M9 Tohoku Earthquake in 2011
by Panayiotis A. Varotsos, Nicholas V. Sarlis and Efthimios S. Skordas
Entropy 2018, 20(10), 757; https://doi.org/10.3390/e20100757 - 2 Oct 2018
Cited by 34 | Viewed by 3442
Abstract
The observed earthquake scaling laws indicate the existence of phenomena closely associated with the proximity of the system to a critical point. Taking this view that earthquakes are critical phenomena (dynamic phase transitions), here we investigate whether in this case the Lifshitz–Slyozov–Wagner (LSW) [...] Read more.
The observed earthquake scaling laws indicate the existence of phenomena closely associated with the proximity of the system to a critical point. Taking this view that earthquakes are critical phenomena (dynamic phase transitions), here we investigate whether in this case the Lifshitz–Slyozov–Wagner (LSW) theory for phase transitions showing that the characteristic size of the minority phase droplets grows with time as t 1 / 3 is applicable. To achieve this goal, we analyzed the Japanese seismic data in a new time domain termed natural time and find that an LSW behavior is actually obeyed by a precursory change of seismicity and in particular by the fluctuations of the entropy change of seismicity under time reversal before the Tohoku earthquake of magnitude 9.0 that occurred on 11 March 2011 in Japan. Furthermore, the Tsallis entropic index q is found to exhibit a precursory increase. Full article
(This article belongs to the Special Issue Theoretical Aspects of Kappa Distributions)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>–<b>f</b>) Plot of the complexity measure <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Λ</mi> <mi>i</mi> </msub> </semantics></math> versus the conventional time for the scales <span class="html-italic">i</span> = 2000 (red), 3000 (blue) and 4000 events (green) from 1 January 1984 until the M9 Tohoku earthquake on 11 March 2011. The vertical lines ending at circles depict the magnitudes (M ≥ 7) of earthquakes read in the right scale.</p>
Full article ">Figure 2
<p>An almost three-month excerpt of <a href="#entropy-20-00757-f001" class="html-fig">Figure 1</a> in expanded time scale which shows the change <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi mathvariant="sans-serif">Λ</mi> <mi>i</mi> </msub> </mrow> </semantics></math> of <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Λ</mi> <mi>i</mi> </msub> </semantics></math> values versus the conventional time after the occurrence of the M7.8 earthquake on 22 December 2010 with an epicenter at 27.05<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> N 143.94<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> E. Note that, after the M7.3 foreshock that occurred on 9 March 2011, a decrease of the <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi mathvariant="sans-serif">Λ</mi> <mi>i</mi> </msub> </mrow> </semantics></math> appears.</p>
Full article ">Figure 3
<p>Log-log plot of the change <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi mathvariant="sans-serif">Λ</mi> <mi>i</mi> </msub> </mrow> </semantics></math> of the complexity measures <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Λ</mi> <mn>2000</mn> </msub> </semantics></math> (red), <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Λ</mi> <mn>3000</mn> </msub> </semantics></math> (green) and <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Λ</mi> <mn>4000</mn> </msub> </semantics></math> (blue) versus the elapsed time <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> in days since the establishment of scaling behavior after the occurrence of the M7.8 earthquake on 22 December 2010. The value of <math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math> is approximately 0.2 days measured from the M7.8 earthquake occurrence and <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The same as <a href="#entropy-20-00757-f003" class="html-fig">Figure 3</a>, but for the M7.1 earthquake on 2 November 1989 with an epicenter at 39.86<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> N 143.05<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> E. The value of <math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math> is 0.022 days measured from the M7.1 earthquake occurrence and <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>The same as <a href="#entropy-20-00757-f003" class="html-fig">Figure 3</a>, but for the M7.5 earthquake on 15 January 1993 with an epicenter at 42.92<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> N 144.35<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> E. The value of <math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math> is 0.014 days measured from the M7.5 earthquake occurrence and <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>(<b>a</b>–<b>f</b>) Plots of the values of the Tsallis entropic index <span class="html-italic">q</span> at several scales <span class="html-italic">i</span> = 1000, 2000, 3000, 4000 and 5000; events as shown by the colors in the inset.</p>
Full article ">Figure 7
<p>An almost three-month excerpt of <a href="#entropy-20-00757-f006" class="html-fig">Figure 6</a> after the occurrence of the M7.8 earthquake on 22 December 2010.</p>
Full article ">Figure 8
<p>Log-log plot of the change <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>q</mi> </mrow> </semantics></math> of the values of the Tsallis entropic index <span class="html-italic">q</span> versus the elapsed time <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> in days since the establishment of scaling behavior after the occurrence of the M7.8 earthquake on 22 December 2010. The value of <math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math> is 0.2 days measured from the M7.8 earthquake occurrence and <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>The <math display="inline"><semantics> <msub> <mi>κ</mi> <mn>1</mn> </msub> </semantics></math> values as well as the values of the change <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi mathvariant="sans-serif">Λ</mi> <mn>2000</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi mathvariant="sans-serif">Λ</mi> <mn>3000</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi mathvariant="sans-serif">Λ</mi> <mn>4000</mn> </msub> </mrow> </semantics></math> of the complexity measures versus the conventional time since 00:00 LT on 9 March 2011 until the M9 Tohoku earthquake occurrence. The shaded area marks the period in the morning of 10 March 2011 during which the condition <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.070</mn> </mrow> </semantics></math> is fulfilled.</p>
Full article ">Figure 10
<p>The fluctuations <math display="inline"><semantics> <msub> <mi>β</mi> <mn>200</mn> </msub> </semantics></math> of the order parameter of seismicity when a window comprising 200 events is sliding through the JMA catalog (M <math display="inline"><semantics> <mrow> <mo>≥</mo> <mn>3.5</mn> </mrow> </semantics></math>) in the area N<math display="inline"><semantics> <msubsup> <mrow/> <mn>28</mn> <mn>46</mn> </msubsup> </semantics></math>E<math display="inline"><semantics> <msubsup> <mrow/> <mn>125</mn> <mn>148</mn> </msubsup> </semantics></math> which does not contain the epicenter (27.05<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> N,143.94<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> E) of the M7.8 earthquake on 22 December 2010 for the periods: (<b>a</b>) 1 January 1984–1 January 2000; and (<b>b</b>) 1 January 2000 until the M9 Tohoku earthquake occurrence.</p>
Full article ">
21 pages, 19549 KiB  
Article
High Density Nodes in the Chaotic Region of 1D Discrete Maps
by George Livadiotis
Entropy 2018, 20(1), 24; https://doi.org/10.3390/e20010024 - 4 Jan 2018
Cited by 4 | Viewed by 5442
Abstract
We report on the definition and characteristics of nodes in the chaotic region of bifurcation diagrams in the case of 1D mono-parametrical and S-unimodal maps, using as guiding example the logistic map. We examine the arrangement of critical curves, the identification and arrangement [...] Read more.
We report on the definition and characteristics of nodes in the chaotic region of bifurcation diagrams in the case of 1D mono-parametrical and S-unimodal maps, using as guiding example the logistic map. We examine the arrangement of critical curves, the identification and arrangement of nodes, and the connection between the periodic windows and nodes in the chaotic zone. We finally present several characteristic features of nodes, which involve their convergence and entropy. Full article
(This article belongs to the Special Issue Theoretical Aspects of Kappa Distributions)
Show Figures

Figure 1

Figure 1
<p>Division or merge of CB sections: (<b>Left</b>) The chaotic zone of the Logistic bifurcation diagram after <span class="html-italic">t</span> = 500 iterations. (<b>Right</b>) Sketch of the chaotic zone, indicating the numbering of CBs (the window of period three is also sketched; of course, the shapes and scales of the figure are not realistic). In both diagrams, we indicate the CB’s generation <span class="html-italic">n</span> and band-mergings {<span class="html-italic">Q<sub>n</sub></span>}. (Note: There is an infinite number of WOMs in each CB, but we only sketch the WOM of period 3 for simplicity. For the same reason, the three bifurcation miniature diagrams, located within the WOM of period 3, are illustrated with a simple straight vertical line.) (Taken from [<a href="#B9-entropy-20-00024" class="html-bibr">9</a>]).</p>
Full article ">Figure 2
<p>(<b>a</b>) Main bifurcation diagram for 1 ≤ <span class="html-italic">p</span> ≤ 4 (main zones of order and chaos). (<b>b</b>) Main chaotic zone. (<b>c</b>) Single Chaotic Band (SCB), that is, the basic unit being repeated in smaller scales in the reverse period-doubling cascade. (<b>d</b>) WOM of period 3 in SCB. (<b>e</b>) Upper periodic attractor inside the WOM of period 3 and the produced secondary bifurcation diagram, a miniature of the main bifurcation diagram. (<b>f</b>) Secondary chaotic zone of the upper periodic attractor inside the WOM of period 3. The similarities between the main chaotic zone in (<b>b</b>) and the miniature chaotic zone in (<b>e</b>) are remarkable. The arrangements of WOMs, critical curves, and nodes, are some of the common features of the main and miniature chaotic zones. (Notes: Each of the colored indicated areas is magnified in the respective sequential panel. The diagrams are computed for 10<sup>6</sup> iterations.). (Taken from [<a href="#B16-entropy-20-00024" class="html-bibr">16</a>]).</p>
Full article ">Figure 3
<p>Formation of the chaotic zone as the number of iterations increases.</p>
Full article ">Figure 4
<p>Similar to <a href="#entropy-20-00024-f003" class="html-fig">Figure 3</a>e, we plot the upper periodic attractor inside WOM of period 3 (and the produced secondary bifurcation diagram), and co-plot the critical curves with multiplicity <span class="html-italic">n</span> = 0 (blue) and <span class="html-italic">n</span> = 3 (green). We observe that the chaotic curves of the main chaotic zone appear also in miniature chaotic zones inside WOMs but with smaller multiplicity. Indeed, the critical curve with multiplicity <span class="html-italic">n</span> = 3 appears to pass through the lowest <span class="html-italic">x</span>-values of the miniature chaotic zone, that is, the role of the critical curve with multiplicity <span class="html-italic">n</span> = 1. What is happening is that if <span class="html-italic">n</span> is the multiplicity of a critical curve in the main chaotic zone, then in a WOM of period <span class="html-italic">T</span>, the same critical curve becomes of multiplicity <span class="html-italic">n</span>/<span class="html-italic">T</span>. If this ratio is less than 1, then the critical curve does not appear in that WOM.</p>
Full article ">Figure 5
<p>Plot of the chaotic zone and critical curves of multiplicity 0–6, as modelled in Equation (2).</p>
Full article ">Figure 6
<p>Density profiles near the node of order 0 (band-merging <span class="html-italic">Q</span><sub>1</sub>), for: (<b>a</b>) <span class="html-italic">p</span> = 3.7; (<b>b</b>) <span class="html-italic">p</span> = 3.69; (<b>c</b>) <span class="html-italic">p</span> = 3.68; and (<b>d</b>) <span class="html-italic">p</span> = <span class="html-italic">Q</span><sub>1</sub>. (<b>e</b>) The chaotic band SCB near the node of order 0, <span class="html-italic">N</span><sub>0</sub>.</p>
Full article ">Figure 7
<p>The single chaotic band (SCB), where we observe the encircled primary nodes of order 0 and 1. The arrow indicates the critical curve responsible for the nodal order 1.</p>
Full article ">Figure 8
<p>Density profiles at primary nodes of order 0–4 and ∞. The arrows indicate the density peaks that correspond to critical curves (and not to the edges or the node itself), whose number defines the nodal order.</p>
Full article ">Figure 8 Cont.
<p>Density profiles at primary nodes of order 0–4 and ∞. The arrows indicate the density peaks that correspond to critical curves (and not to the edges or the node itself), whose number defines the nodal order.</p>
Full article ">Figure 9
<p>Sequence of the subintervals <math display="inline"> <semantics> <mrow> <msubsup> <mrow> <mrow> <mo>{</mo> <mrow> <msub> <mi>I</mi> <mi>n</mi> </msub> </mrow> <mo>}</mo> </mrow> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mo>∞</mo> </msubsup> </mrow> </semantics> </math> and their boundary points <math display="inline"> <semantics> <mrow> <msubsup> <mrow> <mrow> <mo>{</mo> <mrow> <msub> <mi>u</mi> <mi>n</mi> </msub> </mrow> <mo>}</mo> </mrow> </mrow> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mo>∞</mo> </msubsup> </mrow> </semantics> </math>. (Taken and modified from [<a href="#B16-entropy-20-00024" class="html-bibr">16</a>]).</p>
Full article ">Figure 10
<p>(<b>a</b>) Plot of SCB with critical curves (green) and preimages (blue). (<b>b</b>) The intersections of the preimages un with the lowest <span class="html-italic">x</span>-value give the <span class="html-italic">p</span>-value of the primary nodes. (<b>c</b>) The same as (<b>b</b>) but on log–log scale and the horizontal axis is 4 − <span class="html-italic">p</span>. (<b>d</b>) Plot of 4 − <span class="html-italic">N<sub>n</sub></span> vs. the nodal order <span class="html-italic">n</span>; we observe that the primary nodes approach <span class="html-italic">p</span> = 4 with a geometric sequence (Equation (10)).</p>
Full article ">Figure 10 Cont.
<p>(<b>a</b>) Plot of SCB with critical curves (green) and preimages (blue). (<b>b</b>) The intersections of the preimages un with the lowest <span class="html-italic">x</span>-value give the <span class="html-italic">p</span>-value of the primary nodes. (<b>c</b>) The same as (<b>b</b>) but on log–log scale and the horizontal axis is 4 − <span class="html-italic">p</span>. (<b>d</b>) Plot of 4 − <span class="html-italic">N<sub>n</sub></span> vs. the nodal order <span class="html-italic">n</span>; we observe that the primary nodes approach <span class="html-italic">p</span> = 4 with a geometric sequence (Equation (10)).</p>
Full article ">Figure 11
<p>The pair of secondary nodes of order 3 surrounding the WOM of the same period in SCB.</p>
Full article ">Figure 12
<p>Sketch of the main chaotic band, SCB, of the chaotic zone. We show the location of the first four pyramids, their associated primary nodes, and the secondary nodes surrounding their main WOM. All the nodes, primary and secondary ones, are located at the orbit of period 1, <span class="html-italic">x</span><sub>∞</sub>(<span class="html-italic">p</span>) = 1 − 1/<span class="html-italic">p</span> (dash line). The period of the main WOM (blue) is the same as the order of the surrounding secondary nodes. The number of the pairs of the surrounding secondary nodes is the same as the order of the next primary node (green).</p>
Full article ">Figure 13
<p>Sketch of the universal WOM-arrangement. Between any two consecutive primary nodes (green), WOMs are arranged in a pyramidal configuration: each WOM is surrounded by pairs of other WOMs with higher period, that is. The main WOMs (those with minimum period) are in the top of the pyramids (red).</p>
Full article ">Figure 14
<p>Convergence towards primary nodes: (<b>a</b>) <span class="html-italic">N</span><sub>0</sub>; (<b>b</b>) <span class="html-italic">N</span><sub>1</sub>; and (<b>c</b>) <span class="html-italic">N</span><sub>∞</sub> (upper panels); and their exponential rates (lower panels).</p>
Full article ">Figure 15
<p>Convergence of Feigenbaum sequences <math display="inline"> <semantics> <mrow> <msubsup> <mrow> <mo>{</mo> <msub> <mi>F</mi> <mi>n</mi> </msub> <mo>}</mo> </mrow> <mn>0</mn> <mo>∞</mo> </msubsup> </mrow> </semantics> </math> toward their limit, i.e., the Feigenbaum constant <math display="inline"> <semantics> <mrow> <mi>δ</mi> <mo>=</mo> <msub> <mi>F</mi> <mo>∞</mo> </msub> </mrow> </semantics> </math>, for the sequences toward the primary nodes: (<b>a</b>) <span class="html-italic">N</span><sub>0</sub>; (<b>b</b>) <span class="html-italic">N</span><sub>1</sub>; and (<b>c</b>) <span class="html-italic">N</span><sub>∞</sub>, shown in <a href="#entropy-20-00024-f014" class="html-fig">Figure 14</a> (using the tables in <a href="#app1-entropy-20-00024" class="html-app">Appendix A</a>). We observe the convergence toward the Feigenbaum constant (upper panels), and the corresponding exponential rates (lower panels).</p>
Full article ">Figure 16
<p>Entropy <span class="html-italic">S<sub>q</sub></span> computed and plotted for entropic index <span class="html-italic">q</span> = 2, [1/<span class="html-italic">σ<sub>x</sub></span>] = 100, and nonlinear parameter <span class="html-italic">p</span> values taken near the primary nodes <span class="html-italic">N</span><sub>1</sub> and <span class="html-italic">N</span><sub>2</sub>.</p>
Full article ">
Back to TopTop