Multifractal and Chaotic Properties of Solar Wind at MHD and Kinetic Domains: An Empirical Mode Decomposition Approach
<p>Solar wind magnetic field measurements during the time interval 05:30–06:30 UT on 10 January 2004. Data are obtained from Cluster 3 at the time resolution of 8.9 ms.</p> "> Figure 2
<p>Degree of stationarity (DS) of the three different magnetic field components during the selected time interval. The dashed line refers to the Doppler-shifted ion cyclotron frequency (<math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mspace width="3.33333pt"/> <mo>∼</mo> <mspace width="3.33333pt"/> <mn>0.4</mn> </mrow> </semantics></math> Hz).</p> "> Figure 3
<p>Empirical Mode Decomposition-Dominant Amplitude Multifractal Formalism (EMD-DAMF) results for the inertial range: compensated second-order structure function <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>τ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>upper panel</b>), scaling exponents <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math> (<b>middle panel</b>), and singularity spectrum <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>α</mi> <mo>)</mo> </mrow> </semantics></math> (<b>lower panel</b>). Red, blue and green symbols refer to the <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>B</mi> <mi>y</mi> </msub> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>B</mi> <mi>z</mi> </msub> </semantics></math> solar wind magnetic field components, respectively. Filled symbols in the upper panel refer to the magnetohydrodynamic (MHD)/inertial scales where a clear Iroshnikov-Kraichnan (IK) spectrum is found. The dashed and dashed-dotted lines in the middle panel refer to <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> <mo>=</mo> <mi>q</mi> <mo>/</mo> <mn>4</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> <mo>=</mo> <mi>q</mi> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>, respectively.</p> "> Figure 4
<p>EMD-DAMF results for the dissipative range: compensated second-order structure function <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>τ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>upper panel</b>), scaling exponents <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math> (<b>middle panel</b>), and singularity spectrum <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>α</mi> <mo>)</mo> </mrow> </semantics></math> (<b>lower panel</b>). Red, blue and green symbols refer to the <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>B</mi> <mi>y</mi> </msub> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>B</mi> <mi>z</mi> </msub> </semantics></math> solar wind magnetic field components, respectively. Filled symbols in the upper panel refer to the kinetic/dissipative scales. The dashed line in the middle panel refers to <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> <mo>=</mo> <mn>0.8</mn> <mspace width="0.166667em"/> <mi>q</mi> </mrow> </semantics></math>.</p> "> Figure 5
<p>Correlation dimension <math display="inline"><semantics> <msub> <mi>D</mi> <mn>2</mn> </msub> </semantics></math> of the different empirical modes as function of the mean frequency (<math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <mi>τ</mi> </mrow> </semantics></math>). The vertical dashed line separates the inertial range from the kinetic/dissipative one.</p> "> Figure 6
<p>Phase-space portraits for the MHD/inertial range dynamics (<b>left panels</b>) and for the kinetic/dissipative range one (<b>right panels</b>). Symbols mark different phase-space trajectories with colors corresponding to different time instants (each trajectory starts with a black symbol and ends with a magenta one).</p> "> Figure 7
<p>A sketch of the different dynamical regimes.</p> ">
Abstract
:1. Introduction
2. Data
3. Methods
3.1. The Empirical Mode Decomposition (EMD): A Brief History
- evaluate the mean of a signal and subtract from it to produce a zero-mean signal ;
- find local maxima and minima of ;
- use a cubic spline to evaluate the upper () and lower () envelopes from local maxima and minima, respectively;
- evaluate the mean envelope and subtract from to have ;
- check if , often called detail or “candidate” IMF, is an IMF that is, check if the number of zero crossings and local extrema differs at most by one and if the local mean is zero;
- if is an IMF, then store it (), else repeat steps from 1 to 5 on the signal until an IMF is obtained.
3.2. The EMD-Based Multifractal Analysis
- derive instantaneous amplitude and mean timescale of each empirical mode;
- determine the dominant amplitude coefficients over a time support around the j-th local maximum
- evaluate the q-th-order structure function
- estimate the scaling exponent as the linear slope, in a log-log space, of vs. , such that
- derive the singularity strengths and spectrum by using the Legendre transform of the scaling exponents as usual
4. Results from the EMD-Based Multifractal Analysis
5. Chaotic Measures and Phase-Space Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DS | Degree of Stationarity |
EMD | Empirical Mode Decomposition |
EMD-DAMF | Empirical Mode Decomposition-Dominant Amplitude Multifractal Formalism |
ESA | European Space Agency |
FGM | Fluxgate Magnetometer |
GSE | Geocentric Solar Ecliptic |
HSA | Hilbert Spectral Analysis |
HT | Hilbert Transform |
IMF | Intrinsic Mode Function |
KAW | Kinetic Alfvén Wave |
MHD | Magnetohydrodynamics |
STAFF | Spatio Temporal Analysis of Field Fluctuations |
WTMM | Wavelet Transform Modulus Maxima |
References
- Bruno, R.; Carbone, V. Turbulence in the solar wind. In Lecture Notes in Physics; Springer: Heidelberg, Germany, 2016; p. 267. ISBN 978-3-319-43439-1. [Google Scholar]
- Matthaeus, W.H.; Goldstein, M.L. Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res. 1982, 87, 6011–6028. [Google Scholar] [CrossRef]
- Marsch, E. Turbulence in the solar wind. In Reviews in Modern Astronomy; Klare, G., Ed.; Springer: Berlin, Germany, 1990; pp. 145–156. ISBN 978-3-642-76750-0. [Google Scholar]
- Petrosyan, A.; Balogh, A.; Goldstein, M.L.; Léorat, J.; Marsch, E.; Petrovay, K.; Roberts, B.; von Steiger, R.; Vial, J.C. Turbulence in the solar atmosphere and solar wind. Space Sci. Rev. 2010, 156, 135–238. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 1941, 30, 301–305. [Google Scholar] [CrossRef]
- Obukhov, A.M. On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk SSSR 1941, 32, 22–24. [Google Scholar]
- Dobrowlny, M.; Mangeney, A.; Veltri, P. Fully developed anisotropic hydromagnetic turbulence in interplanetary plasma. Phys. Rev. Lett. 1980, 45, 144–147. [Google Scholar] [CrossRef]
- Tu, C.-Y.; Marsch, E. Evidence for a “background” spectrum of solar wind turbulence in the inner heliosphere. J. Geophys. Res. 1990, 95, 4337–4341. [Google Scholar] [CrossRef]
- Iroshnikov, P.S. Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 1964, 7, 556–571. [Google Scholar]
- Kraichnan, R.H. Intertial range spectrum of hydromagnetic turbulence. Phys. Fluids 1965, 8, 1385–1387. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000; p. 771. ISBN 9780511840531. [Google Scholar]
- Kolmogorov, A.N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 1962, 13, 82–85. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 1974, 62, 331–358. [Google Scholar] [CrossRef]
- Marsch, E.; Tu, C.-Y. Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlin. Process. Geophys. 1997, 4, 101–124. [Google Scholar] [CrossRef] [Green Version]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Speziale, C.G.; Sarkar, S.; Gatski, T.B. Modelling the pressure-strain correlation of turbulence: An invariant dynamical systems approach. J. Fluid Mech. 1991, 227, 245–272. [Google Scholar] [CrossRef]
- Mishra, A.A.; Girimaji, S.S. Toward approximating non-local dynamics in single-point pressure-strain correlation closures. J. Fluid Mech. 2017, 811, 168–188. [Google Scholar] [CrossRef]
- Sagaut, P. Large Eddy Simulation for Incompressible Flows: An Introduction; Springer Science Business Media: Berlin, Germany, 2006; p. 493. ISBN 978-3-540-26403-3. [Google Scholar]
- Valentini, F.; Califano, F.; Veltri, P. Two-dimensional kinetic turbulence in the solar wind. Phys. Rev. Lett. 2010, 104, 205002. [Google Scholar] [CrossRef]
- Servidio, S.; Carbone, V.; Primavera, L.; Veltri, P.; Stasiewicz, K. Compressible turbulence in hall magnetohydrodynamics. Planet. Space Sci. 2007, 55, 2239–2243. [Google Scholar] [CrossRef]
- Carbone, V.; Veltri, P. A shell model for anisotropic magnetohydrodynamic turbulence. Geophys. Astrophys. Fluid Dyn. 1990, 52, 153–181. [Google Scholar] [CrossRef]
- Yaglom, A.M. On the local structure of the temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR 1949, 69, 743–746. [Google Scholar]
- Gogoberidze, G.; Perri, S.; Carbone, V. The Yaglom law in the expanding solar wind. Astrophys. J. 2013, 769, 111. [Google Scholar] [CrossRef]
- Meneveau, C.; Sreenivasan, K.R.V. Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 1987, 59, 1424–1427. [Google Scholar] [CrossRef]
- Burlaga, L.F. Multifractal structure of the interplanetary magnetic field: Voyager 2 observations near 25 AU, 1987–1988. Geophys. Res. Lett. 1991, 18, 69–72. [Google Scholar] [CrossRef]
- Carbone, V. Cascade model for intermittency in fully developed magnetohydrodynamic turbulence. Phys. Rev. Lett. 1993, 71, 1546–1548. [Google Scholar] [CrossRef] [PubMed]
- Marsch, E.; Liu, S. Structure functions and intermittency of velocity fluctuations in the inner solar wind. Ann. Geophys. 1993, 11, 227–238. [Google Scholar]
- Frisch, U. Turbulence. The Legacy of A. N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1995; p. 296. ISBN 0-521-45713-0. [Google Scholar]
- Richardson, L.F. Weather Prediction by Numerical Process; Cambridge University Press: Cambridge, UK, 2007; p. 250. ISBN 978-3798510746. [Google Scholar]
- Saharoui, F.; Goldstein, M.L.; Robert, P.; Khotyaintsev, Y.V. Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 2009, 102, 231102. [Google Scholar] [CrossRef]
- Alexandrova, O.; Lacombe, C.; Mangeney, A.; Grappin, R.; Maksimovic, M. Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J. 2012, 760, 121. [Google Scholar] [CrossRef]
- Saharoui, F.; Huang, S.Y.; Belmont, G.; Goldstein, M.L.; Retinò, A.; Robert, P.; De Patoul, J. Scaling of the electron dissipation range of solar wind turbulence. Astrophys. J. 2013, 777, 15. [Google Scholar] [CrossRef]
- Marsch, E. Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 2006, 3, 1. [Google Scholar] [CrossRef]
- Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammet, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T. Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 2009, 182, 310–377. [Google Scholar] [CrossRef]
- Narita, Y. Space-time structure and wavevector anisotropy in space plasma turbulence. Living Rev. Sol. Phys. 2018, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Sorriso-Valvo, L.; Carbone, V.; Veltri, P.; Consolini, G.; Bruno, R. Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 1999, 26, 1801–1804. [Google Scholar] [CrossRef] [Green Version]
- Bruno, R.; Carbone, V.; Veltri, P.; Pietropaolo, E.; Bavassano, B. Identifying intermittency events in the solar wind. Planet. Space Sci. 2001, 49, 1201–1210. [Google Scholar] [CrossRef]
- Matthaeus, W.H.; Wan, M.; Servidio, S.; Greco, A.; Osman, K.T.; Oughton, S.; Dmitruk, P. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. Phil. Trans. Ser. A 2015, 373, 20140154. [Google Scholar] [CrossRef]
- Carbone, V. Scaling exponents of the velocity structure functions in the interplanetary medium. Ann. Geophys. 1994, 12, 585. [Google Scholar] [CrossRef]
- Carbone, V.; Veltri, P.; Bruno, R. Experimental evidence for differences in the extended self-similarity scaling laws between fluid and magnetohydrodynamic turbulent flows. Phys. Rev. Lett. 1995, 75, 3110–3113. [Google Scholar] [CrossRef]
- Politano, H.; Pouquet, A.; Carbone, V. Determination of anomalous exponents of structure functions in two-dimensional magnetohydrodynamic turbulence. Europhys. Lett. 1998, 43, 516. [Google Scholar] [CrossRef]
- Carbone, V.; Marino, R.; Sorriso-Valvo, L.; Noullez, A.; Bruno, R. Scaling laws of turbulence and heating of fast solar wind: The role of density fluctuations. Phys. Rev. Lett. 2009, 103, 061102. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lon. Ser. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Welter, G.S.; Esquef, P.A.A. Multifractal analysis based on amplitude extrema of intrinsic mode functions. Phys. Rev. E 2013, 87, 032916. [Google Scholar] [CrossRef]
- Chatfield, C. The Analysis of Time Series: An Introduction; Chapman and Hall/CRC: London, UK, 2016; p. 352. ISBN 9781584883173. [Google Scholar]
- Alberti, T. Multivariate empirical mode decomposition analysis of swarm data. Il Nuovo Cimento 2018, 41, 113. [Google Scholar]
- Rilling, G.; Flandring, P.; Goncalves, P. On empirical mode decomposition and its algorithms. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy, 8–11 June 2003. [Google Scholar]
- Flandring, P.; Rilling, G.; Goncalves, P. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 2004, 11, 2. [Google Scholar]
- Alberti, T.; Consolini, G.; De Michelis, P.; Laurenza, M.; Marcucci, M.F. On fast and slow Earth’s magnetospheric dynamics during geomagnetic storms: A stochastic Langevin approach. J. Space Weather Space Clim. 2018, 8, A56. [Google Scholar] [CrossRef]
- Alberti, T.; Consolini, G.; Lepreti, F.; Laurenza, M.; Vecchio, A.; Carbone, V. Timescale separation in the solar wind-magnetosphere coupling during St. Patrick’s Day storms in 2013 and 2015. J. Geophys. Res. 2017, 122, 4266–4283. [Google Scholar] [CrossRef]
- Vecchio, A.; Lepreti, F.; Laurenza, M.; Alberti, T.; Carbone, V. Connection between solar activity cycles and grand minima generation. Astron. Astrophys. 2017, 599, A058. [Google Scholar] [CrossRef]
- Consolini, G.; Alberti, T.; Yordanova, E.; Marcucci, M.F.; Echim, M. A Hilbert-Huang transform approach to space plasma turbulence at kinetic scales. J. Phys. Conf. Ser. 2017, 900, 012003. [Google Scholar] [CrossRef] [Green Version]
- Carbone, F.; Sorriso-Valvo, L.; Alberti, T.; Lepreti, F.; Chen, C.H.K.; Nemecek, Z.; Safránková, J. Arbitrary-order Hilbert Spectral Analysis and intermittency in solar wind density fluctuations. Astrophys. J. 2018, 859, 27. [Google Scholar] [CrossRef]
- Kiyani, K.H.; Osman, K.T.; Chapman, S.C. Dissipation and heating in solar wind turbulence: From the macro to the micro and back again. Phil. Trans. R. Soc. A 2015, 373, 20140155. [Google Scholar] [CrossRef]
- Huang, Y.X.; Schmitt, F.G.; Lu, Z.M.; Liu, Y.L. An amplitude-frequency study of turbulent scaling intermittency using Empirical Mode Decomposition and Hilbert Spectral Analysis. Europhys. Lett. 2008, 84, 40010. [Google Scholar] [CrossRef] [Green Version]
- Takens, F. Detecting strange attractors in turbulence. In Lecture Notes in Mathematics; Rand, D.A., Young, L.-S., Eds.; Springer: Berlin, Germany, 1981; pp. 336–381. [Google Scholar]
- Grassberger, P.; Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50, 346–349. [Google Scholar] [CrossRef]
- Consolini, G.; Alberti, T.; De Michelis, P. On the forecast horizon of magnetospheric dynamics: A scale-to-scale approach. J. Geophys. Res. 2018, 123, 9065–9077. [Google Scholar] [CrossRef]
- Alberti, T.; Lepreti, F.; Vecchio, A.; Bevacqua, E.; Capparelli, V.; Carbone, V. Natural periodicities and northern hemisphere-southern hemisphere connection of fast temperature changes during the last glacial period: EPICA and NGRIP revisited. Clim. Past 2014, 10, 1751–1762. [Google Scholar] [CrossRef]
- Alberti, T.; Piersanti, M.; Vecchio, A.; De Michelis, P.; Lepreti, F.; Carbone, V.; Primavera, L. Identification of the different magnetic field contributions during a geomagnetic storm in magnetospheric and ground observations. Annal. Geophys. 2016, 34, 1069–1084. [Google Scholar] [CrossRef] [Green Version]
- Piersanti, M.; Alberti, T.; Bemporad, A.; Berrilli, F.; Bruno, R.; Capparelli, V.; Carbone, V.; Cesaroni, C.; Consolini, G.; Cristaldi, A.; et al. Comprehensive analysis of the geoeffective solar event of 21 June 2015: Effects on the magnetosphere, plasmasphere, and ionosphere systems. Sol. Phys. 2017, 292, 169. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberti, T.; Consolini, G.; Carbone, V.; Yordanova, E.; Marcucci, M.F.; De Michelis, P. Multifractal and Chaotic Properties of Solar Wind at MHD and Kinetic Domains: An Empirical Mode Decomposition Approach. Entropy 2019, 21, 320. https://doi.org/10.3390/e21030320
Alberti T, Consolini G, Carbone V, Yordanova E, Marcucci MF, De Michelis P. Multifractal and Chaotic Properties of Solar Wind at MHD and Kinetic Domains: An Empirical Mode Decomposition Approach. Entropy. 2019; 21(3):320. https://doi.org/10.3390/e21030320
Chicago/Turabian StyleAlberti, Tommaso, Giuseppe Consolini, Vincenzo Carbone, Emiliya Yordanova, Maria Federica Marcucci, and Paola De Michelis. 2019. "Multifractal and Chaotic Properties of Solar Wind at MHD and Kinetic Domains: An Empirical Mode Decomposition Approach" Entropy 21, no. 3: 320. https://doi.org/10.3390/e21030320
APA StyleAlberti, T., Consolini, G., Carbone, V., Yordanova, E., Marcucci, M. F., & De Michelis, P. (2019). Multifractal and Chaotic Properties of Solar Wind at MHD and Kinetic Domains: An Empirical Mode Decomposition Approach. Entropy, 21(3), 320. https://doi.org/10.3390/e21030320