A Systematic Literature Review (SLR) on Autonomous Path Planning of Unmanned Aerial Vehicles
<p>The exponential increase in the number of articles published on UAVs in the past two decades imploring the need for review studies. (Source: Web of Science, Dated: 2 January 2023, Search Keyword: UAV).</p> "> Figure 2
<p>UAVs contributing to multi-disciplinary research in the past two decades (Source: Web of Science).</p> "> Figure 3
<p>The Systematic Literature Review (SLR) process adopted.</p> "> Figure 4
<p>PRISMA-inspired inclusion/exclusion criteria for primary studies selection.</p> "> Figure 5
<p>Twenty parameters for review synthesis.</p> "> Figure 6
<p>The possible combination of Heuristics and Stochastics for optimal solutions (hybrid).</p> "> Figure 7
<p>Problem domains in autonomous path planning of unmanned systems.</p> "> Figure 8
<p>ALFUS (Autonomy Levels for Unmanned Systems) model for autonomy.</p> "> Figure 9
<p>Levels of autonomy for unmanned systems.</p> "> Figure 10
<p>‘Complexity Matrix’ as a measure of UAV’s autonomy through their environment.</p> ">
Abstract
:1. Introduction
- Identify various parameters that are usually considered for the selection of literature from the primary studies and offer them as a look-up referral for the readers; and
- Establish research directions, open challenges, and highlight state-of-the-art solutions through SLR methodology.
Why Systematic Literature Review (SLR)?
2. SLR Methodology
- Identify the key Research Questions (RQs);
- Define the Review Protocol (RP) based on the following:
- Database selection;
- Inclusion and exclusion Criteria;
- Quality assurance; and
- Biased studies identification
- Related work;
- Review parameters and synthesis; and
- Research Directions (RDs)
Research Questions
- RQ1:
- What are the key research tracks, their open challenges, and their significant contributions to autonomous path planning of UAVs?
- RQ2:
- How the extent of a UAV’s autonomy can be or should be measured?
- RQ3:
- What frameworks and technologies have been used by researchers to research autonomous UAVs?
- RQ4:
- What and if there has been a critique or a fundamental challenge that AI faces and which may affect the future of autonomous systems?
3. Review Protocol
3.1. Employed Database
Database: | Web of Science Core Collection |
Keywords set: | Autonomous + path planning + UAV |
Search Field: | All Fields |
3.2. Inclusion Criteria
Duration: | 5 years approx. (2017–2022). |
Publications Type: | Journal Articles. |
Journals Credibility: | Q1–Q4 (JCR 2020). |
Access Consideration: | Open access |
3.3. Exclusion Criteria
Publication Type: | Review Articles. |
Meetings: | Conference Proceedings. |
Language: | Other than the English language. |
Access Consideration: | Early Access. |
3.4. Quality Assurance
3.5. Bias Evasion
3.6. Internal Peer Review
4. Related Work
5. Review Parameters and Synthesis
5.1. Metrics for Workspace and Environment Configuration
5.2. Trajectory Modes and Dimensions
5.3. Nature of Computation
5.4. Solution Characterization
5.5. Testing and Validation
5.6. UAV Configuration by Flight & Design
6. Research Directions (RD)
6.1. RD1: Research Sectors and Challenges in Autonomous Path Planning
6.1.1. Research Sectors
- Nature of computational algorithm and the type of its solution
6.1.2. Current Challenges and Significant Contributions
- Large and complex Environment
- ⚬
- Machine learning-based approaches:
- ⚬
- Efficient Mapping Techniques:
- Perception Problems in Cooperative UAVs:
- Tracking targets with moving obstacles:
- Remote Sensing and Inspections in unknown environments:
- Collaboration with heterogeneous robots in complex/hazardous scenarios:
6.2. RD2: The Measure of Autonomy among Autonomous Systems
6.3. RD3: Employed Technologies
6.4. RD4: The ‘Explain-Ability’ in AI Decisions (XAI)
7. Discussion
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borrego, M.; Foster, M.J.; Froyd, J.E. Systematic Literature Reviews in Engineering Education and Other Developing Interdisciplinary Fields. J. Eng. Educ. 2014, 103, 45–76. [Google Scholar] [CrossRef]
- PRISMA. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Available online: https://www.prisma-statement.org/PRISMAStatement/ (accessed on 15 October 2021).
- Maw, A.A.; Tyan, M.; Nguyen, T.A.; Lee, J.W. iADA*-RL: Anytime Graph-Based Path Planning with Deep Reinforcement Learning for an Autonomous UAV. Appl. Sci. 2021, 11, 18. (In English) [Google Scholar] [CrossRef]
- Wang, B.; Bao, J.W.; Zhang, L.; Sheng, Q.H. UAV autonomous path optimization simulation based on radar tracking prediction. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 8. (In English) [Google Scholar] [CrossRef]
- Causa, F.; Fasano, G.; Grassi, M. Multi-UAV Path Planning for Autonomous Missions in Mixed GNSS Coverage Scenarios. Sensors 2018, 18, 27. (In English) [Google Scholar] [CrossRef]
- Mardani, A.; Chiaberge, M.; Giaccon, P. Communication-Aware UAV Path Planning. IEEE Access 2019, 7, 52609–52621. (In English) [Google Scholar] [CrossRef]
- Faria, M.; Marin, R.; Popovic, M.; Maza, I.; Viguria, A. Efficient Lazy Theta Path Planning over a Sparse Grid to Explore Large 3D Volumes with a Multirotor UAV. Sensors 2019, 19, 21. (In English) [Google Scholar] [CrossRef]
- de Santos, L.M.G.; Nores, E.F.; Sanchez, J.M.; Jorge, H.G. Indoor Path-Planning Algorithm for UAV-Based Contact Inspection. Sensors 2021, 21, 23. (In English) [Google Scholar] [CrossRef]
- Bayerlein, H.; Theile, M.; Caccamo, M.; Gesbert, D. Multi-UAV Path Planning for Wireless Data Harvesting with Deep Reinforcement Learning. IEEE Open J. Commun. Soc. 2021, 2, 1171–1187. (In English) [Google Scholar] [CrossRef]
- Jayaweera, H.; Hanoun, S. A Dynamic Artificial Potential Field (D-APF) UAV Path Planning Technique for Following Ground Moving Targets. IEEE Access 2020, 8, 192760–192776. (In English) [Google Scholar] [CrossRef]
- Zhao, Y.H.; Yan, L.; Chen, Y.; Dai, J.C.; Liu, Y.X. Robust and Efficient Trajectory Replanning Based on Guiding Path for Quadrotor Fast Autonomous Flight. Remote Sens. 2021, 13, 25. (In English) [Google Scholar] [CrossRef]
- Kwak, J.; Sung, Y. Autonomous UAV Flight Control for GPS-Based Navigation. IEEE Access 2018, 6, 37947–37955. (In English) [Google Scholar] [CrossRef]
- Popovic, M.; Vidal-Calleja, T.; Hitz, G.; Chung, J.J.; Sa, I.; Siegwart, R.; Nieto, J. An informative path planning framework for UAV-based terrain monitoring. Auton. Robot. 2020, 44, 889–911. (In English) [Google Scholar] [CrossRef]
- Wang, Q.; Chen, H.; Qiao, L.; Tian, J.W.; Su, Y. Path planning for UAV/UGV collaborative systems in intelligent manufacturing. IET Intell. Transp. Syst. 2020, 14, 1475–1483. (In English) [Google Scholar] [CrossRef]
- Nielsen, L.D.; Sung, I.; Nielsen, P. Convex Decomposition for a Coverage Path Planning for Autonomous Vehicles: Interior Extension of Edges. Sensors 2019, 19, 11. (In English) [Google Scholar] [CrossRef]
- Melo, A.G.; Pinto, M.F.; Marcato, A.L.M.; Honorio, L.M.; Coelho, F.O. Dynamic Optimization and Heuristics Based Online Coverage Path Planning in 3D Environment for UAVs. Sensors 2021, 21, 25. (In English) [Google Scholar] [CrossRef]
- Oh, D.; Han, J. Fisheye-Based Smart Control System for Autonomous UAV Operation. Sensors 2020, 20, 19. (In English) [Google Scholar] [CrossRef]
- Huang, H.L.; Savkin, A.V. Autonomous Navigation of a Solar-Powered UAV for Secure Communication in Urban Environments with Eavesdropping Avoidance. Future Internet 2020, 12, 14. (In English) [Google Scholar] [CrossRef]
- Faria, M.; Ferreira, A.S.; Perez-Leon, H.; Maza, I.; Viguria, A. Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR. Sensors 2019, 19, 24. (In English) [Google Scholar] [CrossRef]
- Hayat, S.; Yanmaz, E.; Bettstetter, C.; Brown, T.X. Multi-objective drone path planning for search and rescue with quality-of-service requirements. Auton. Robot. 2020, 44, 1183–1198. (In English) [Google Scholar] [CrossRef]
- Tullu, A.; Endale, B.; Wondosen, A.; Hwang, H.Y. Machine Learning Approach to Real-Time 3D Path Planning for Autonomous Navigation of Unmanned Aerial Vehicle. Appl. Sci. 2021, 11, 19. (In English) [Google Scholar] [CrossRef]
- Koohifar, F.; Guvenc, I.; Sichitiu, M.L. Autonomous Tracking of Intermittent RF Source Using a UAV Swarm. IEEE Access 2018, 6, 15884–15897. (In English) [Google Scholar] [CrossRef]
- Schellenberg, B.; Richardson, T.; Richards, A.; Clarke, R.; Watson, M. On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments. Sensors 2019, 19, 21. (In English) [Google Scholar] [CrossRef] [PubMed]
- Xie, R.L.; Meng, Z.J.; Wang, L.F.; Li, H.C.; Wang, K.P.; Wu, Z. Unmanned Aerial Vehicle Path Planning Algorithm Based on Deep Reinforcement Learning in Large-Scale and Dynamic Environments. IEEE Access 2021, 9, 24884–24900. (In English) [Google Scholar] [CrossRef]
- Zhang, C.; Hu, C.X.; Feng, J.R.; Liu, Z.B.; Zhou, Y.; Zhang, Z.X. A Self-Heuristic Ant-Based Method for Path Planning of Unmanned Aerial Vehicle in Complex 3-D Space With Dense U-Type Obstacles. IEEE Access 2019, 7, 150775–150791. (In English) [Google Scholar] [CrossRef]
- Sanchez-Lopez, J.L.; Wang, M.; Olivares-Mendez, M.A.; Molina, M.; Voos, H. A Real-Time 3D Path Planning Solution for Collision-Free Navigation of Multirotor Aerial Robots in Dynamic Environments. J. Intell. Robot. Syst. 2019, 93, 33–53. (In English) [Google Scholar] [CrossRef]
- Tan, L.G.; Wu, J.C.; Yang, X.Y.; Song, S.M. Research on Optimal Landing Trajectory Planning Method between an UAV and a Moving Vessel. Appl. Sci. 2019, 9, 14. (In English) [Google Scholar] [CrossRef]
- Razzaq, S.; Xydeas, C.; Everett, M.E.; Mahmood, A.; Alquthami, T. Three-Dimensional UAV Routing With Deconfliction. IEEE Access 2018, 6, 21536–21551. (In English) [Google Scholar] [CrossRef]
- Liu, Z.F.; Wang, X.Y.; Liu, Y.Y. Application of Unmanned Aerial Vehicle Hangar in Transmission Tower Inspection Considering the Risk Probabilities of Steel Towers. IEEE Access 2019, 7, 159048–159057. (In English) [Google Scholar] [CrossRef]
- Hong, Y.; Jung, S.; Kim, S.; Cha, J. Autonomous Mission of Multi-UAV for Optimal Area Coverage. Sensors 2021, 21, 21. (In English) [Google Scholar] [CrossRef]
- Wu, C.X.; Ju, B.B.; Wu, Y.; Lin, X.; Xiong, N.X.; Xu, G.Q.; Li, H.Y.; Liang, X.F. UAV Autonomous Target Search Based on Deep Reinforcement Learning in Complex Disaster Scene. IEEE Access 2019, 7, 117227–117245. (In English) [Google Scholar] [CrossRef]
- Andrade, F.A.D.; Hovenburg, A.R.; de Lima, L.N.; Rodin, C.D.; Johansen, T.A.; Storvold, R.; Correia, C.A.M.; Haddad, D.B. Autonomous Unmanned Aerial Vehicles in Search and Rescue Missions Using Real-Time Cooperative Model Predictive Control. Sensors 2019, 19, 22. (In English) [Google Scholar] [CrossRef]
- Liu, J.; Han, W.; Liu, C.; Peng, H.J. A New Method for the Optimal Control Problem of Path Planning for Unmanned Ground Systems. IEEE Access 2018, 6, 33251–33260. (In English) [Google Scholar] [CrossRef]
- Ling, H.F.; Luo, H.C.A.; Chen, H.S.; Bai, L.Y.; Zhu, T.; Wang, Y.J. Modelling and Simulation of Distributed UAV Swarm Cooperative Planning and Perception. Int. J. Aerosp. Eng. 2021, 2021, 11. (In English) [Google Scholar] [CrossRef]
- Akagi, J.; Morris, T.D.; Moon, B.; Chen, X.G.; Peterson, C.K. Gesture commands for controlling high-level UAV behavior. SN Appl. Sci. 2021, 3, 23. (In English) [Google Scholar] [CrossRef]
- Charrier, T.; Queffelec, A.; Sankur, O.; Schwarzentruber, F. Complexity of planning for connected agents. Auton. Agents Multi-Agent Syst. 2020, 34, 31. (In English) [Google Scholar] [CrossRef]
- Li, Z.Y.; Liu, W.D.; Gao, L.E.; Li, L.; Zhang, F.H. Path Planning Method for AUV Docking Based on Adaptive Quantum-Behaved Particle Swarm Optimization. IEEE Access 2019, 7, 78665–78674. (In English) [Google Scholar] [CrossRef]
- Kuhlman, M.J.; Otte, M.W.; Sofge, D.; Gupta, S.K. Multipass Target Search in Natural Environments. Sensors 2017, 17, 36. (In English) [Google Scholar] [CrossRef]
- Sanchez, P.; Casado, R.; Bermudez, A. Real-Time Collision-Free Navigation of Multiple UAVs Based on Bounding Boxes. Electronics 2020, 9, 19. (In English) [Google Scholar] [CrossRef]
- Lee, G.T.; Kim, C.O. Autonomous Control of Combat Unmanned Aerial Vehicles to Evade Surface-to-Air Missiles Using Deep Reinforcement Learning. IEEE Access 2020, 8, 226724–226736. (In English) [Google Scholar] [CrossRef]
- Simon, J.; Petkovic, I.; Petkovic, D.; Petkovics, A. Navigation and Applicability of Hexa Rotor Drones in Greenhouse Environment. Teh. Vjesn. 2018, 25, 249–255. (In English) [Google Scholar] [CrossRef]
- Papa, U.; Ponte, S. Preliminary Design of an Unmanned Aircraft System for Aircraft General Visual Inspection. Electronics 2018, 7, 15. (In English) [Google Scholar] [CrossRef]
- Allak, E.; Brommer, C.; Dallenbach, D.; Weiss, S. AMADEE-18: Vision-Based Unmanned Aerial Vehicle Navigation for Analog Mars Mission (AVI-NAV). Astrobiology 2020, 20, 1321–1337. (In English) [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Huie, X.L.; Zhao, X.G.; Tan, M. A monocular vision-based perception approach for unmanned aerial vehicle close proximity transmission tower inspection. Int. J. Adv. Robot. Syst. 2019, 16, 20. (In English) [Google Scholar] [CrossRef]
- Lazna, T.; Gabrlik, P.; Jilek, T.; Zalud, L. Cooperation between an unmanned aerial vehicle and an unmanned ground vehicle in highly accurate localization of gamma radiation hotspots. Int. J. Adv. Robot. Syst. 2018, 15, 16. (In English) [Google Scholar] [CrossRef]
- Pinto, M.F.; Honorio, L.M.; Melo, A.; Marcato, A.L.M. A Robotic Cognitive Architecture for Slope and Dam Inspections. Sensors 2020, 20, 19. (In English) [Google Scholar] [CrossRef]
- Mazzia, V.; Salvetti, F.; Aghi, D.; Chiaberge, M. DeepWay: A Deep Learning waypoint estimator for global path generation. Comput. Electron. Agric. 2021, 184, 9. (In English) [Google Scholar] [CrossRef]
- Masone, C.; Mohammadi, M.; Giordano, P.R.; Franchi, A. Shared planning and control for mobile robots with integral haptic feedback. Int. J. Robot. Res. 2018, 37, 1395–1420. (In English) [Google Scholar] [CrossRef]
- Loianno, G.; Brunner, C.; McGrath, G.; Kumar, V. Estimation, Control, and Planning for Aggressive Flight With a Small Quadrotor with a Single Camera and IMU. IEEE Robot. Autom. Lett. 2017, 2, 404–411. (In English) [Google Scholar] [CrossRef]
- Woods, A.C.; La, H.M. A Novel Potential Field Controller for Use on Aerial Robots. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 665–676. (In English) [Google Scholar] [CrossRef]
- Comba, L.; Zaman, S.; Biglia, A.; Aimonino, D.R.; Dabbene, F.; Gay, P. Semantic interpretation and complexity reduction of 3D point clouds of vineyards. Biosyst. Eng. 2020, 197, 216–230. (In English) [Google Scholar] [CrossRef]
- Airlangga, G.; Liu, A. Online Path Planning Framework for UAV in Rural Areas. IEEE Access 2022, 10, 37572–37585. (In English) [Google Scholar] [CrossRef]
- Cheng, Z.K.; Zhao, L.Y.; Shi, Z.J. Decentralized Multi-UAV Path Planning Based on Two-Layer Coordinative Framework for Formation Rendezvous. IEEE Access 2022, 10, 45695–45708. (In English) [Google Scholar] [CrossRef]
- Sun, Y.F.; Ma, O. Automating Aircraft Scanning for Inspection or 3D Model Creation with a UAV and Optimal Path Planning. Drones 2022, 6, 15. (In English) [Google Scholar] [CrossRef]
- Li, D.C.; Yin, W.P.; Wong, W.E.; Jian, M.Y.; Chau, M. Quality-Oriented Hybrid Path Planning Based on A* and Q-Learning for Unmanned Aerial Vehicle. IEEE Access 2022, 10, 7664–7674. (In English) [Google Scholar] [CrossRef]
- Alajami, A.A.; Moreno, G.; Pous, R. Design of a UAV for Autonomous RFID-Based Dynamic Inventories Using Stigmergy for Mapless Indoor Environments. Drones 2022, 6, 21. (In English) [Google Scholar] [CrossRef]
- Shao, S.K.; Shi, W.L.; Zhao, Y.J.; Du, Y. A New Method of Solving UAV Trajectory Planning Under Obstacles and Multi-Constraint. IEEE Access 2021, 9, 161161–161180. (In English) [Google Scholar] [CrossRef]
- Vanegas, G.; Armesto, L.; Girbes-Juan, V.; Perez, J. Smooth Three-Dimensional Route Planning for Fixed-Wing Unmanned Aerial Vehicles With Double Continuous Curvature. IEEE Access 2022, 10, 94262–94272. (In English) [Google Scholar] [CrossRef]
- Alharbi, H.A.; Yosuf, B.A.; Aldossary, M.; Almutairi, J.; Elmirghani, J.M.H. Energy Efficient UAV-Based Service Offloading Over Cloud-Fog Architectures. IEEE Access 2022, 10, 89598–89613. (In English) [Google Scholar] [CrossRef]
- Lee, S.; Lee, H. Trajectory Generation of a Quadrotor Transporting a Bulky Payload in the Cluttered Environments. IEEE Access 2022, 10, 31586–31594. (In English) [Google Scholar] [CrossRef]
- Miccinesi, L.; Bigazzi, L.; Consumi, T.; Pieraccini, M.; Beni, A.; Boni, E.; Basso, M. Geo-Referenced Mapping through an Anti-Collision Radar Aboard an Unmanned Aerial System. Drones 2022, 6, 17. (In English) [Google Scholar] [CrossRef]
- Mathisen, S.G.; Leira, F.S.; Helgesen, H.H.; Gryte, K.; Johansen, T.A. Autonomous ballistic airdrop of objects from a small fixed-wing unmanned aerial vehicle. Auton. Robot. 2020, 44, 859–875. (In English) [Google Scholar] [CrossRef]
- Yu, X.; Chen, W.N.; Gu, T.L.; Yuan, H.Q.; Zhang, H.X.; Zhang, J. ACO-A*: Ant Colony Optimization Plus A* for 3-D Traveling in Environments With Dense Obstacles. IEEE Trans. Evol. Comput. 2019, 23, 617–631. (In English) [Google Scholar] [CrossRef]
- Chen, S.Y.; Chen, H.; Chang, C.W.; Wen, C.Y. Multilayer Mapping Kit for Autonomous UAV Navigation. IEEE Access 2021, 9, 31493–31503. (In English) [Google Scholar] [CrossRef]
- Nguyen, H.V.; Chesser, M.; Koh, L.P.; Rezatofighi, S.H.; Ranasinghe, D.C. TrackerBots: Autonomous unmanned aerial vehicle for real-time localization and tracking of multiple radio-tagged animals. J. Field Robot. 2019, 36, 617–635. (In English) [Google Scholar] [CrossRef]
- Spurny, V.; Baca, T.; Saska, M.; Penicka, R.; Krajnik, T.; Thomas, J.; Thakur, D.; Loianno, G.; Kumar, V. Cooperative autonomous search, grasping, and delivering in a treasure hunt scenario by a team of unmanned aerial vehicles. J. Field Robot. 2019, 36, 125–148. (In English) [Google Scholar] [CrossRef]
- He, R.K.; Wei, R.X.; Zhang, Q.R. UAV autonomous collision avoidance approach. Automatika 2017, 58, 195–204. (In English) [Google Scholar] [CrossRef]
- Iacono, M.; Sgorbissa, A. Path following and obstacle avoidance for an autonomous UAV using a depth camera. Robot. Auton. Syst. 2018, 106, 38–46. (In English) [Google Scholar] [CrossRef]
- Zhou, B.Y.; Zhang, Y.C.; Chen, X.Y.; Shen, S.J. FUEL: Fast UAV Exploration Using Incremental Frontier Structure and Hierarchical Planning. IEEE Robot. Autom. Lett. 2021, 6, 779–786. (In English) [Google Scholar] [CrossRef]
- Xu, Z.F.; Deng, D.; Shimada, K. Autonomous UAV Exploration of Dynamic Environments Via Incremental Sampling and Probabilistic Roadmap. IEEE Robot. Autom. Lett. 2021, 6, 2729–2736. (In English) [Google Scholar] [CrossRef]
- Beck, Z.; Teacy, W.T.L.; Rogers, A.; Jennings, N.R. Collaborative online planning for automated victim search in disaster response. Robot. Auton. Syst. 2018, 100, 251–266. (In English) [Google Scholar] [CrossRef] [Green Version]
- Christie, G.; Shoemaker, A.; Kochersberger, K.; Tokekar, P.; McLean, L.; Leonessa, A. Radiation search operations using scene understanding with autonomous UAV and UGV. J. Field Robot. 2017, 34, 1450–1468. (In English) [Google Scholar] [CrossRef]
- Ramirez-Torres, J.G.; Larranaga-Cepeda, A. LTI-UAV3D: A solution of high quality and low cost for terrain 3D reconstruction using a mu-uav. Dyna 2017, 92, 412–419. (In English) [Google Scholar] [CrossRef]
- Lo, L.Y.; Yiu, C.H.; Tang, Y.; Yang, A.S.; Li, B.Y.; Wen, C.Y. Dynamic Object Tracking on Autonomous UAV System for Surveillance Applications. Sensors 2021, 21, 22. (In English) [Google Scholar] [CrossRef]
- Elmokadem, T.; Savkin, A.V. A Hybrid Approach for Autonomous Collision-Free UAV Navigation in 3D Partially Unknown Dynamic Environments. Drones 2021, 5, 14. (In English) [Google Scholar] [CrossRef]
- Kurdel, P.; Ceskovic, M.; Gecejova, N.; Adamcik, F.; Gamcova, M. Local Control of Unmanned Air Vehicles in the Mountain Area. Drones 2022, 6, 18. (In English) [Google Scholar] [CrossRef]
- Doukhi, O.; Lee, D.J. Deep Reinforcement Learning for Autonomous Map-Less Navigation of a Flying Robot. IEEE Access 2022, 10, 82964–82976. (In English) [Google Scholar] [CrossRef]
- Tordesillas, J.; How, J.P. PANTHER: Perception-Aware Trajectory Planner in Dynamic Environments. IEEE Access 2022, 10, 22662–22677. (In English) [Google Scholar] [CrossRef]
- Shao, S.K.; He, C.L.; Zhao, Y.J.; Wu, X.J. Efficient Trajectory Planning for UAVs Using Hierarchical Optimization. IEEE Access 2021, 9, 60668–60681. (In English) [Google Scholar] [CrossRef]
- Lopez, B.; Munoz, J.; Quevedo, F.; Monje, C.A.; Garrido, S.; Moreno, L.E. Path Planning and Collision Risk Management Strategy for Multi-UAV Systems in 3D Environments. Sensors 2021, 21, 21. (In English) [Google Scholar] [CrossRef]
- Li, B.; Yang, Z.P.; Chen, D.Q.; Liang, S.Y.; Ma, H. Maneuvering target tracking of UAV based on MN-DDPG and transfer learning. Def. Technol. 2021, 17, 457–466. (In English) [Google Scholar] [CrossRef]
- Feng, Y.R.; Tse, K.; Chen, S.Y.; Wen, C.Y.; Li, B.Y. Learning-Based Autonomous UAV System for Electrical and Mechanical (E&M) Device Inspection. Sensors 2021, 21, 19. (In English) [Google Scholar] [CrossRef]
- Sandino, J.; Vanegas, F.; Maire, F.; Caccetta, P.; Sanderson, C.; Gonzalez, F. UAV Framework for Autonomous Onboard Navigation and People/Object Detection in Cluttered Indoor Environments. Remote Sens. 2020, 12, 31. (In English) [Google Scholar] [CrossRef]
- Xu, C.C.; Liao, X.H.; Ye, H.P.; Yue, H.Y. Iterative construction of low-altitude UAV air route network in urban areas: Case planning and assessment. J. Geogr. Sci. 2020, 30, 1534–1552. (In English) [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.M.; Baldi, S.; Singh, S.; Fari, S. A Software-in-the-Loop Implementation of Adaptive Formation Control for Fixed-Wing UAVs. IEEE-CAA J. Automatica Sin. 2019, 6, 1230–1239. (In English) [Google Scholar] [CrossRef]
- Guerra, A.; Dardari, D.; Djuric, P.M. Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach. IEEE Access 2020, 8, 116454–116469. (In English) [Google Scholar] [CrossRef]
- Albert, A.; Leira, F.S.; Imsland, L. UAV Path Planning using MILP with Experiments. Model. Identif. Control. 2017, 38, 21–32. (In English) [Google Scholar] [CrossRef]
- Challita, U.; Saad, W.; Bettstetter, C. Interference Management for Cellular-Connected UAVs: A Deep Reinforcement Learning Approach. IEEE Trans. Wirel. Commun. 2019, 18, 2125–2140. (In English) [Google Scholar] [CrossRef]
- Guo, T.; Jiang, N.; Li, B.Y.; Zhu, X.; Wang, Y.; Du, W.B. UAV navigation in high dynamic environments: A deep reinforcement learning approach. Chin. J. Aeronaut. 2021, 34, 479–489. (In English) [Google Scholar] [CrossRef]
- Marco Protti, R.B. UAV Autonomy –Which level is desirable?—Which level is acceptable? Alenia Aeronautica Viewpoint. In Platform Innovations and System Integration for Unmanned Air, Land and Sea Vehicles (AVT-SCI Joint Symposium); NATO RTO: Neuilly-sur-Seine, France, 2007. [Google Scholar]
- Turek, D.M. Explainable Artificial Intelligence (XAI). Available online: https://www.darpa.mil/program/explainable-artificial-intelligence (accessed on 15 October 2021).
- Alammar, J. Ecco: An Open Source Library for the Explainability of Transformer Language Models. In Proceedings of the 11th International Joint Conference on Natural Language Processing: System Demonstrations: Association for Computational Linguistics, Online, 1–6 August 2021; pp. 249–257. Available online: https://aclanthology.org/2021.acl-demo.30 (accessed on 15 October 2021).
Parameter | References | %Age |
---|---|---|
Predictable (with prior knowledge) | [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61] | 80% |
Unpredictable | [62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78] | 20% |
Static | [4,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,23,25,28,29,30,31,32,33,34,35,36,37,38,39,40,42,43,44,46,47,48,49,50,51,62,64,68,69,72,73,79,80,81,82,83,84,85] | 77.6% |
Dynamic | [3,10,12,22,26,27,45,63,65,66,67,70,71,86,87] | 22.4% |
Indoor | [8,14,15,16,17,19,20,21,22,24,25,26,28,30,31,33,42,49,50,64,66,68,73,79,82,83] | 40% |
Outdoor or unspecified or Both | [4,5,7,9,10,12,13,14,15,16,18,19,20,21,22,23,24,27,28,29,30,31,32,34,35,36,37,38,39,40,43,44,46,47,62,65,66,69,70,71,72,79,80,81,82,84,85,86,87] | 60% |
Parameter | References | %Age |
---|---|---|
2D | [6,8,9,11,14,15,20,22,31,32,33,34,35,36,38,39,40,42,47,50,62,65,67,72,81,85,86,87,88] | 41.5% |
3D | [3,4,5,7,10,12,13,16,17,18,19,21,23,24,25,26,27,28,29,30,37,43,44,45,46,48,49,51,63,64,66,68,69,70,71,73,79,80,82,83,84] | 58.5% |
Offline | [4,5,6,11,15,33,36,42,47,49,50,51,68,69,73,87,88] | 24.3% |
Online | [3,7,8,9,10,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,35,37,38,39,40,43,44,45,46,48,62,63,64,65,66,67,70,71,72,79,80,81,82,83,84,85,86] | 75.7% |
Parameter | References |
---|---|
Deterministic | [4,5,6,8,10,12,13,14,15,16,17,19,20,21,22,24,26,27,28,30,31,32,33,35,36,37,39,40,42,43,44,45,46,47,48,49,50,51,62,64,66,67,68,69,71,72,73,79,80,81,82,83,84,85,86,87,88] |
Stochastic | [4,9,13,18,20,23,25,29,35,37,63,65,70,79] |
Heuristic | [7,8,12,15,16,18,19,20,22,23,25,26,28,29,35,38,44,63,83] |
Hybrid | [3,6,7,13,15,16,17,19,20,21,23,24,25,26,28,29,30,35,37,38,39,41,43,44,45,46,63,64,66,79,81,82,83,86] |
Parameter | References |
---|---|
Complete | [3,5,7,8,9,18,19,25,30,38,45,47,51,84] |
Exact | [3,5,9,10,13,14,18,19,21,28,30,32,33,38,39,41,43,44,45,49,50,66,71,72,82,86,87] |
Approximate | [4,7,12,13,15,16,17,20,23,24,25,27,29,31,35,37,40,46,48,62,63,65,67,68,69,70,73,79,80,81,83,84] |
Optimality | [12,13,16,17,21,24,25,27,28,29,32,33,37,39,43,44,51,63,66,67,69,70,71,79,80,81,82,83,84,88] |
Parameter | References | %Age |
---|---|---|
Simulation Only or Hardware In The Loop (HITL) Simulation | [3,4,5,8,9,10,11,12,13,14,16,17,18,21,24,25,26,27,28,29,30,32,33,63,34,36,38,39,40,41,42,45,47,51,66,67,70,71,79,80,81,85,86,87,88] | 60% |
Simulation with Hardware or real environment Validation | [7,19,20,22,23,31,35,37,43,44,46,48,50,62,64,65,66,68,69,72,73,82,83,84] | 32% |
Parameter | References | %Age |
---|---|---|
Single | [3,4,6,7,8,11,12,13,15,16,17,18,19,21,23,24,25,26,27,28,29,33,35,37,38,40,41,42,43,44,46,48,49,50,62,63,65,67,68,73,79,81,82,83,84,87] | 63% |
Multiple | [5,9,10,14,20,22,30,31,32,34,36,39,45,66,80,85,86,88] | 24% |
Fixed Wing | [5,12,13,16,18,20,23,27,28,29,32,34,38,39,40,62,63,81,84,85,87] | 29% |
Rotary | [3,5,7,8,10,11,12,13,14,15,16,17,18,19,20,21,22,24,25,26,30,31,35,36,37,39,41,42,43,44,45,46,49,50,65,66,67,68,73,79,80,81,82,83,86] | 60% |
Tool/Platform (SW/HW) | References |
---|---|
ROS GAZEBO | [9,17,19,21,26,30,54,56,64,74,83] |
MATLAB/Simulink | [13,14,30,33,50,53,57,58,67,75,79,80,85,87] |
Python (2.×, 3.×, PyCharm etc.) | [55] |
V-REP | [17,24,26] |
Kestrel (ViDAR) | [50] |
Air-Learning | [9] |
AirSim (Unreal Engine) | [9,52] |
Flight Gear Simulator | [58] |
QGroundControl | [30] |
ArduPilot | [32,62] |
PIXHAWK | [21,30,62,64,83] |
HK Pilot 32 | [85] |
RaspberryPie | [35] |
ODroidXU | [43] |
Beaglebone | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ul Husnain, A.; Mokhtar, N.; Mohamed Shah, N.; Dahari, M.; Iwahashi, M. A Systematic Literature Review (SLR) on Autonomous Path Planning of Unmanned Aerial Vehicles. Drones 2023, 7, 118. https://doi.org/10.3390/drones7020118
ul Husnain A, Mokhtar N, Mohamed Shah N, Dahari M, Iwahashi M. A Systematic Literature Review (SLR) on Autonomous Path Planning of Unmanned Aerial Vehicles. Drones. 2023; 7(2):118. https://doi.org/10.3390/drones7020118
Chicago/Turabian Styleul Husnain, Anees, Norrima Mokhtar, Noraisyah Mohamed Shah, Mahidzal Dahari, and Masahiro Iwahashi. 2023. "A Systematic Literature Review (SLR) on Autonomous Path Planning of Unmanned Aerial Vehicles" Drones 7, no. 2: 118. https://doi.org/10.3390/drones7020118
APA Styleul Husnain, A., Mokhtar, N., Mohamed Shah, N., Dahari, M., & Iwahashi, M. (2023). A Systematic Literature Review (SLR) on Autonomous Path Planning of Unmanned Aerial Vehicles. Drones, 7(2), 118. https://doi.org/10.3390/drones7020118