Mesenchymal Stem Cell Secretome: Potential Applications in Human Infertility Caused by Hormonal Imbalance, External Damage, or Immune Factors
Abstract
:1. Introduction
2. Stem Cells
3. Mesenchymal Stem Cells
4. Molecular Mechanisms Behind the Effect of MSC-Derived Secretome
4.1. Immunomodulatory Effect
4.2. Tissue Regeneration and Antioxidant Activity
4.3. Stress Response and Anti-Apoptotic Activity
5. Mesenchymal Stem Cell Secretome for Treatment of Infertility
5.1. MSC Secretome for Treatment of Female Reproductive Disorders
5.1.1. Endometrial Damage and Receptivity
5.1.2. Asherman’s Syndrome
5.1.3. Premature Ovarian Failure (POF)/Premature Ovarian Insufficiency (POI)
5.1.4. Polycystic Ovary Syndrome (PCOS)
5.2. MSC Secretome for Treatment of Male Reproductive Disorders
5.2.1. Testicular MSCs and the Potential of MSCs to Restore Spermatogenesis
5.2.2. Improving the Reproductive Potential of Cancer Survivors
5.2.3. Improving the Outcome of Testicular Trauma
5.2.4. Treatment of Varicocele
5.2.5. Improvement of Spermatogenesis in the Aging Testis
5.2.6. Ameliorating the Impact of Autoimmunity on Fertility
5.2.7. Improving the Outcome After Infection
5.2.8. Possible Mechanisms of MSC Influence on Male Fertility
6. Challenges and Future Directions
6.1. Variability of MSCs
6.2. Ethical and Regulatory Aspects of Treatments Involving MSCs and Their Secretomes
6.3. Lack of Standardization
6.4. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MSC | Mesenchymal stem cell |
DNA | Deoxyribonucleic acid |
RNA | Ribonucleic acid |
ESC | Embryonic stem cell |
EGC | Embryonic germ cell |
HSC | Hematopoietic stem cell |
ISCT | International Society for Cellular Therapy |
CD | Cluster of differentiation |
HLA | Human leukocyte antigen |
NK | Natural killer |
TNFα | Tumor necrosis factor alpha |
IL | Interleukin |
IFNγ | Interferon gamma |
DMSO | Dimethyl sulfoxide |
FBS | Fetal bovine serum |
PGE2 | Prostaglandin E2 |
iNOS | Inducible nitric oxide synthase |
TGFβ | Transforming growth factor-beta |
HGF | Hepatocyte growth factor |
CCL2 | C-C motif chemokine ligand 2 |
TSG6 | Tumor necrosis factor-stimulated gene 6 |
IL1RA | Interleukin-1 receptor antagonist |
IDO | Indoleamine 2,3-dioxygenase |
PD-L | Programmed death-ligand |
HO-1 | Heme-oxygenase 1 |
FGF | Fibroblast growth factor |
bFGF | Basic fibroblast growth factor |
VEGF | Vascular endothelial growth factor |
PDGF | Platelet-derived growth factor |
ANG-1 | Angiopoietin 1 |
PIGF | Placental growth factor |
MCP-1 | Monocyte chemoattractant protein 1 |
ROS | Reactive oxygen species |
ATPase | Adenosine triphosphatase |
RIF | Recurrent implantation failure |
PCOS | Polycystic ovary syndrome |
POF/POI | Premature ovarian failure/insufficiency |
EpSC | Epithelial stem cell |
EPC | Endothelial progenitor cell |
EnSC | Endometrial stem cell |
EGF | Epidermal growth factor |
IGF-1 | Insulin-like growth factor-1 |
SDF-1 | Stromal cell-derived factor-1 |
NF-κB | Nuclear factor kappa B |
BM- | Bone marrow-derived |
EV | Extracellular vesicles |
α-SMA | Alpha-smooth muscle actin |
HUVEC | Human umbilical vein endothelial cell |
ERK | Extracellular signal-regulated kinase |
UC | Umbilical cord-derived |
Exos | Exosomes |
hEnSC | Human endometrial stromal cell |
COL1A1 | Collagen type I alpha 1 |
EMT | Epithelial–mesenchymal transition |
GFP | Green fluorescent protein |
CTF1 | Cardiotrophin-1 |
AS | Asherman’s syndrome |
IUA | Intrauterine adhesions |
BMP | Bone morphogenetic protein |
GC | Granulosa cell |
NOA | Natural ovarian aging |
FSH | Follicle-stimulating hormone |
E2 | Estradiol |
AMH | Anti-Müllerian hormone |
TSP1 | Thrombospondin-1 |
ART | Assisted reproductive technology |
DFI | DNA fragmentation index |
T/D | Torsion/detorsion |
hAMSC | Human amniotic mesenchymal stem cell |
Apaf-1 | Apoptotic protease activating factor-1 |
References
- Odorico, J.S.; Kaufman, D.S.; Thomson, J.A. Multilineage Differentiation from Human Embryonic Stem Cell Lines. Stem Cells 2001, 19, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Le Blanc, K.; Ringdén, O. Immunobiology of Human Mesenchymal Stem Cells and Future Use in Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2005, 11, 321–334. [Google Scholar] [CrossRef]
- Knoblich, J.A. Mechanisms of Asymmetric Stem Cell Division. Cell 2008, 132, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Reubinoff, B.; Pera, M.; Fong, C.-Y.; Trounson, A.; Bongso, A. Embryonic Stem Cell Lines from Human Blastocysts: Somatic Differentiation in Vitro. Nat. Biotechnol. 2000, 18, 399–404, Erratum in Nat. Biotechnol. 2000, 18, 559. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, T. Stem Cell Niche: Structure and Function. Annu. Rev. Cell Dev. Biol. 2005, 21, 605–631. [Google Scholar] [CrossRef]
- Gnecchi, M.; Melo, L. Bone Marrow-Derived Mesenchymal Stem Cells: Isolation, Expansion, Characterization, Viral Transduction, and Production of Conditioned Medium. Methods Mol. Biol. 2009, 482, 281–294. [Google Scholar] [CrossRef]
- Weiss, S.; Dunne, C.; Hewson, J.; Wohl, C.; Wheatley, M.; Peterson, A.C.; Reynolds, B.A. Multipotent CNS Stem Cells Are Present in the Adult Mammalian Spinal Cord and Ventricular Neuroaxis. J. Neurosci. 1996, 16, 7599–7609. [Google Scholar] [CrossRef]
- Toma, J.G.; Akhavan, M.; Fernandes, K.J.L.; Barnabé-Heider, F.; Sadikot, A.; Kaplan, D.R.; Miller, F.D. Isolation of Multipotent Adult Stem Cells from the Dermis of Mammalian Skin. Nat. Cell Biol. 2001, 3, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Fukada, S.; Ma, Y.; Ohtani, T.; Watanabe, Y.; Murakami, S.; Yamaguchi, M. Isolation, Characterization, and Molecular Regulation of Muscle Stem Cells. Front. Physiol. 2013, 4, 317. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, Y.; Nakajima, H.; Sugiyama, D.; Hirose, I.; Kitamura, T.; Tsuji, K. Human Placenta-Derived Cells Have Mesenchymal Stem/Progenitor Cell Potential. Stem Cells 2004, 22, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.J.; Liu, Y.; Marles, L.; Yang, Z.; Trempus, C.; Li, S.; Lin, J.S.; Sawicki, J.A.; Cotsarelis, G. Capturing and Profiling Adult Hair Follicle Stem Cells. Nat. Biotechnol. 2004, 22, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Martin, I.; De Boer, J.; Sensebe, L. A Relativity Concept in Mesenchymal Stromal Cell Manufacturing. Cytotherapy 2016, 18, 613–620. [Google Scholar] [CrossRef]
- Yagi, H.; Soto-Gutierrez, A.; Parekkadan, B.; Kitagawa, Y.; Tompkins, R.G.; Kobayashi, N.; Yarmush, M.L. Mesenchymal Stem Cells: Mechanisms of Immunomodulation and Homing. Cell Transplant. 2010, 19, 667–679. [Google Scholar] [CrossRef]
- Horwitz, E.; Dominici, M. How Do Mesenchymal Stromal Cells Exert Their Therapeutic Benefit? Cytotherapy 2008, 10, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Sagaradze, G.; Monakova, A.; Efimenko, A. Potency Assays for Mesenchymal Stromal Cell Secretome-Based Products for Tissue Regeneration. Int. J. Mol. Sci. 2023, 24, 9379. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Xu, C.; Cheng, W.; Zhao, Y.; Sui, L.; Zhao, Y. Pretreated Mesenchymal Stem Cells and Their Secretome: Enhanced Immunotherapeutic Strategies. Int. J. Mol. Sci. 2023, 24, 1277. [Google Scholar] [CrossRef] [PubMed]
- Gwam, C.; Mohammed, N.; Ma, X. Stem Cell Secretome, Regeneration, and Clinical Translation: A Narrative Review. Ann. Transl. Med. 2021, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Harrell, C.; Fellabaum, C.; Jovicic, N.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells 2019, 8, 467. [Google Scholar] [CrossRef]
- Bernardo, M.E.; Fibbe, W.E. Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation. Cell Stem Cell 2013, 13, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gao, J.; Liang, Z.; Gao, C.; Niu, Q.; Wu, F.; Zhang, L. Mesenchymal Stem Cells and Their Microenvironment. Stem Cell Res. Ther. 2022, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Xu, J. Immune Modulation by Mesenchymal Stem Cells. Cell Prolif. 2020, 53, e12712. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Lao, P.; Tang, L.; Chen, J.; Chen, Y.; Sun, L.; Tan, W.; Fan, X. Mechanisms of Potential Therapeutic Utilization of Mesenchymal Stem Cells in COVID-19 Treatment. Cell Transplant. 2023, 32, 09636897231184611. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; An, N.; Ren, Y.; Yang, C.; Zhang, X.; Li, L. Immunosuppressive Effects of Mesenchymal Stem Cells-Derived Exosomes. Stem Cell Rev. Rep. 2021, 17, 411–427. [Google Scholar] [CrossRef]
- Shen, Z.; Huang, W.; Liu, J.; Tian, J.; Wang, S.; Rui, K. Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Front. Immunol. 2021, 12, 749192. [Google Scholar] [CrossRef]
- Kharazi, U.; Badalzadeh, R. A Review on the Stem Cell Therapy and an Introduction to Exosomes as a New Tool in Reproductive Medicine. Reprod. Biol. 2020, 20, 447–459. [Google Scholar] [CrossRef]
- Esfehani, R.; Khadivi, F.; Valipour, J.; Shabani, M.; Ramesh, M.; Javanbakht, P.; Zarini, D.; Mojaverrostami, S.; Hoseini, M. Secretome of Human Amniotic Membrane Stem Cells Promote Recovery and Testicular Functions through Modulating SIRT1/NRF2/TNF-α Pathway in Mice Testicular Torsion: An Experimental Study. Int. J. Res. Mark. 2024, 22, 821–836. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Tunger, A.; Wobus, M.; von Bonin, M.; Towers, R.; Bornhäuser, M.; Dazzi, F.; Wehner, R.; Schmitz, M. Immunomodulatory Properties of Mesenchymal Stromal Cells: An Update. Front. Cell Dev. Biol. 2021, 9, 637725. [Google Scholar] [CrossRef]
- Maacha, S.; Sidahmed, H.; Jacob, S.; Gentilcore, G.; Calzone, R.; Grivel, J.-C.; Cugno, C. Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int. 2020, 2020, 4356359. [Google Scholar] [CrossRef]
- Kim, W.-S.; Park, B.-S.; Sung, J.-H. The Wound-Healing and Antioxidant Effects of Adipose-Derived Stem Cells. Expert Opin. Biol. Ther. 2009, 9, 879–887. [Google Scholar] [CrossRef]
- Rahimi, B.; Panahi, M.; Saraygord-Afshari, N.; Taheri, N.; Bilici, M.; Jafari, D.; Alizadeh, E. The Secretome of Mesenchymal Stem Cells and Oxidative Stress: Challenges and Opportunities in Cell-Free Regenerative Medicine. Mol. Biol. Rep. 2021, 48, 5607–5619. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Zhang, L.; Ren, G.; Shi, Y. The Role of IL-6 in Inhibition of Lymphocyte Apoptosis by Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2007, 361, 745–750. [Google Scholar] [CrossRef]
- Purwanto, N.; Susilaningsih, N.; Budiono, B.; Maharani, N.; Riwanto, I. Human Mesenchymal Stem Cell Secretome Lowers Caspase-3 Levels and Apoptosis in Hepatocytes of Cholestatic Rats. J. Adv. Biotechnol. Exp. Ther. 2024, 7, 44. [Google Scholar] [CrossRef]
- Al-Azzawi, B.; McGuigan, D.H.; Koivula, F.N.M.; Elttayef, A.; Dale, T.P.; Yang, Y.; Kelly, C.; Forsyth, N.R. The Secretome of Mesenchymal Stem Cells Prevents Islet Beta Cell Apoptosis via an IL-10-Dependent Mechanism. Open Stem Cell J. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Baharvand, H.; Fathi, A.; Van Hoof, D.; Salekdeh, G.H. Concise Review: Trends in Stem Cell Proteomics. Stem Cells 2007, 25, 1888–1903. [Google Scholar] [CrossRef] [PubMed]
- Kavaldzhieva, K.; Buteva-Hristova, I.; Marinova, D.; Pencheva-Demireva, M.; Mladenov, N.; Lazarov, V.; Markova, T.; Trifonova, N.; Dimitrova-Dikanarova, D. Expression of Hsp27 and Phosphorylated Hsp27 in 8 Weeks Old Human Embryo. Acta Morphol. Anthropol. 2019, 26, 26–33. [Google Scholar]
- Fan, G.-C. Role of Heat Shock Proteins in Stem Cell Behavior. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2012; Volume 111, pp. 305–322. ISBN 978-0-12-398459-3. [Google Scholar]
- DeLany, J.P.; Floyd, Z.E.; Zvonic, S.; Smith, A.; Gravois, A.; Reiners, E.; Wu, X.; Kilroy, G.; Lefevre, M.; Gimble, J.M. Proteomic Analysis of Primary Cultures of Human Adipose-Derived Stem Cells. Mol. Cell. Proteom. 2005, 4, 731–740. [Google Scholar] [CrossRef] [PubMed]
- An, S.S.; Fabry, B.; Mellema, M.; Bursac, P.; Gerthoffer, W.T.; Kayyali, U.S.; Gaestel, M.; Shore, S.A.; Fredberg, J.J. Role of Heat Shock Protein 27 in Cytoskeletal Remodeling of the Airway Smooth Muscle Cell. J. Appl. Physiol. 2004, 96, 1701–1713. [Google Scholar] [CrossRef] [PubMed]
- Hyväri, L.; Vanhatupa, S.; Ojansivu, M.; Kelloniemi, M.; Pakarinen, T.-K.; Hupa, L.; Miettinen, S. Heat Shock Protein 27 Is Involved in the Bioactive Glass Induced Osteogenic Response of Human Mesenchymal Stem Cells. Cells 2023, 12, 224. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, S.; Yan, Z.; Li, C.; Zheng, Y.; Cui, L. Heat Shock Protein 27 Regulates the Inflammatory Response of Intestinal Epithelial Cells by the Nuclear Factor-κB Pathway. Dig. Dis. Sci. 2020, 65, 3514–3520. [Google Scholar] [CrossRef]
- Wei, L.; Liu, T.-T.; Wang, H.-H.; Hong, H.-M.; Yu, A.L.; Feng, H.-P.; Chang, W.-W. Hsp27 Participates in the Maintenance of Breast Cancer Stem Cells through Regulation of Epithelial-Mesenchymal Transition and Nuclear Factor-κB. Breast Cancer Res. 2011, 13, R101. [Google Scholar] [CrossRef]
- Singh, M.K.; Sharma, B.; Tiwari, P.K. The Small Heat Shock Protein Hsp27: Present Understanding and Future Prospects. J. Therm. Biol. 2017, 69, 149–154. [Google Scholar] [CrossRef]
- Kim, W.K.; Kim, W.H.; Kweon, O.-K.; Kang, B.-J. Heat-Shock Proteins Can Potentiate the Therapeutic Ability of Cryopreserved Mesenchymal Stem Cells for the Treatment of Acute Spinal Cord Injury in Dogs. Stem Cell Rev. Rep. 2022, 18, 1461–1477. [Google Scholar] [CrossRef]
- Seo, I.; Kim, S.; Hyun, J.; Kim, Y.; Park, H.S.; Yoon, J.; Bhang, S.H. Enhancing Viability and Angiogenic Efficacy of Mesenchymal Stem Cells via HSP90α and HSP27 Regulation Based on ROS Stimulation for Wound Healing. Bioeng. Transl. Med. 2023, 8, e10560. [Google Scholar] [CrossRef] [PubMed]
- Suryawan, I.G.R.; Pikir, B.S.; Rantam, F.A.; Ratri, A.K.; Nugraha, R.A. Hypoxic Preconditioning Promotes Survival of Human Adipose Derived Mesenchymal Stem Cell via Expression of Prosurvival and Proangiogenic Biomarkers. F1000Research 2024, 10, 843. [Google Scholar] [CrossRef]
- Ribarski-Chorev, I.; Schudy, G.; Strauss, C.; Schlesinger, S. Short Heat Shock Has a Long-Term Effect on Mesenchymal Stem Cells’ Transcriptome. iScience 2023, 26, 107305. [Google Scholar] [CrossRef]
- McGinley, L.M.; McMahon, J.; Stocca, A.; Duffy, A.; Flynn, A.; O’Toole, D.; O’Brien, T. Mesenchymal Stem Cell Survival in the Infarcted Heart Is Enhanced by Lentivirus Vector-Mediated Heat Shock Protein 27 Expression. Hum. Gene Ther. 2013, 24, 840–851. [Google Scholar] [CrossRef]
- World Health Organization. WHO Fact Sheet on Infertility. Glob. Reprod. Health 2021, 6, e52. [Google Scholar] [CrossRef]
- Carson, S.A.; Kallen, A.N. Diagnosis and Management of Infertility: A Review. JAMA 2021, 326, 65. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.; Xie, B.; Li, C.; Yan, Y.; Zhang, Y.; Liu, W.; Huang, J.; Chen, D. The Clinical Applications of Endometrial Mesenchymal Stem Cells. Biopreservation Biobanking 2018, 16, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Dimitriadis, E. Endometrial Receptivity–Lessons from “Omics”. Biomolecules 2025, 15, 106. [Google Scholar] [CrossRef] [PubMed]
- Governini, L.; Luongo, F.P.; Haxhiu, A.; Piomboni, P.; Luddi, A. Main Actors behind the Endometrial Receptivity and Successful Implantation. Tissue Cell 2021, 73, 101656. [Google Scholar] [CrossRef] [PubMed]
- Hong, I.-S. Endometrial Stem/Progenitor Cells: Properties, Origins, and Functions. Genes Dis. 2023, 10, 931–947. [Google Scholar] [CrossRef]
- Skliutė, G.; Baušytė, R.; Borutinskaitė, V.; Valiulienė, G.; Kaupinis, A.; Valius, M.; Ramašauskaitė, D.; Navakauskienė, R. Menstrual Blood-Derived Endometrial Stem Cells’ Impact for the Treatment Perspective of Female Infertility. Int. J. Mol. Sci. 2021, 22, 6774. [Google Scholar] [CrossRef] [PubMed]
- Cousins, F.L.; Filby, C.E.; Gargett, C.E. Endometrial Stem/Progenitor Cells–Their Role in Endometrial Repair and Regeneration. Front. Reprod. Health 2022, 3, 811537. [Google Scholar] [CrossRef]
- Hong, I.-S. Endometrial Stem Cells: Orchestrating Dynamic Regeneration of Endometrium and Their Implications in Diverse Endometrial Disorders. Int. J. Biol. Sci. 2024, 20, 864–879. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Su, J.; Roberts, A.I.; Shou, P.; Rabson, A.B.; Ren, G. How Mesenchymal Stem Cells Interact with Tissue Immune Responses. Trends Immunol. 2012, 33, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, A.R.K.; Kishore, U.; Madan, T. Mesenchymal Stem Cells: A Promising Tool for Targeted Gene Therapy of Endometriosis. Regen. Med. 2017, 12, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Zhu, Y.; Huang, J.; Wang, T.; Wang, F.; Sun, S. Exosomal Transfer of Bone Marrow Mesenchymal Stem Cells-Derived miR340 Attenuates Endometrial Fibrosis. Biol. Open 2019, 8, bio039958. [Google Scholar] [CrossRef]
- Tan, Q.; Xia, D.; Ying, X. miR-29a in Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Fibrosis during Endometrial Repair of Intrauterine Adhesion. Int. J. Semant. Comput. 2020, 13, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, X.; Dai, Y.; Hu, X.; Zhu, H.; Jiang, Y.; Zhang, S. Endometrial Stem Cells Repair Injured Endometrium and Induce Angiogenesis via AKT and ERK Pathways. Reproduction 2016, 152, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Dong, Y.-C.; Guan, C.-Y.; Tian, S.; Lv, X.-D.; Li, J.-H.; Su, X.; Xia, H.-F.; Ma, X. Transplantation of Umbilical Cord-Derived Mesenchymal Stem Cells Promotes the Recovery of Thin Endometrium in Rats. Sci. Rep. 2022, 12, 412. [Google Scholar] [CrossRef]
- Wang, S.; Shi, C.; Cai, X.; Wang, Y.; Chen, X.; Han, H.; Shen, H. Human Acellular Amniotic Matrix with Previously Seeded Umbilical Cord Mesenchymal Stem Cells Restores Endometrial Function in a Rat Model of Injury. Mediat. Inflamm. 2021, 2021, 5573594. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, R.; Xing, Q.; Feng, X.; Jiang, X.; Xu, Y.; Wei, Z. Exosomes Derived from Umbilical Cord Mesenchymal Stem Cells Alleviate Mifepristone-Induced Human Endometrial Stromal Cell Injury. Stem Cells Int. 2020, 2020, 6091269. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Wang, L.; Zhou, S.; Li, J.; Meng, L.; Zhang, H.; Cui, C.; Zhang, C. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Repair Injured Endometrial Epithelial Cells. J. Assist. Reprod. Genet. 2020, 37, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Ma, L.; Zhu, Y.; Gao, H.; Hu, R. Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Inhibits Fibrosis in Human Endometrial Stromal Cells via miR-140-3p/FOXP1/Smad Axis. Sci. Rep. 2024, 14, 8321. [Google Scholar] [CrossRef]
- Zhu, Q.; Tang, S.; Zhu, Y.; Chen, D.; Huang, J.; Lin, J. Exosomes Derived From CTF1-Modified Bone Marrow Stem Cells Promote Endometrial Regeneration and Restore Fertility. Front. Bioeng. Biotechnol. 2022, 10, 868734. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qin, W.; Zhong, Y.; Hu, H.; Yang, J.; Huang, H.; Huang, N.; Liu, S.; Li, J.; Zheng, L.; et al. Injectable Collagen Hydrogel Combines Human Umbilical Cord Mesenchymal Stem Cells to Promote Endometrial Regeneration in Rats with Thin Endometrium. Int. J. Biol. Macromol. 2024, 254, 127591. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Dong, S.; Ye, X.; Liu, J.; Li, J.; Zhang, Y.; Tu, M.; Wang, S.; Ying, Y.; Chen, R.; et al. Synergistic Regenerative Therapy of Thin Endometrium by Human Placenta-Derived Mesenchymal Stem Cells Encapsulated within Hyaluronic Acid Hydrogels. Stem Cell Res. Ther. 2022, 13, 66. [Google Scholar] [CrossRef]
- Chatzianagnosti, S.; Dermitzakis, I.; Theotokis, P.; Kousta, E.; Mastorakos, G.; Manthou, M.E. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life 2024, 14, 1161. [Google Scholar] [CrossRef]
- Vakili, S.; Jafarinia, M. Advances in Mesenchymal Stem Cell Research Applications for Female Infertility—Mechanisms, Efficacy Parameters, Challenges and Future Roadmap: Mesenchymal Stem Cells and Female Infertility. Galen Med. J. 2024, 13, e3632. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z. Etiology, Risk Factors, and Management of Asherman Syndrome. Obstet. Gynecol. 2023, 142, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Xie, J.; Liao, Y.; Lai, B.; Zhou, G.; Lian, W.; Xiong, J. Human Umbilical Cord-Derived Mesenchymal Stem Cells and Auto-Crosslinked Hyaluronic Acid Gel Complex for Treatment of Intrauterine Adhesion. Aging 2024, 16, 6273–6289. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Hu, S.; Yang, H.; Li, Z.; Huang, K.; Su, T.; Wang, S.; Cheng, K. Hyaluronic Acid Hydrogel Integrated with Mesenchymal Stem Cell-Secretome to Treat Endometrial Injury in a Rat Model of Asherman’s Syndrome. Adv. Healthc. Mater. 2019, 8, 1900411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Du, Q.; Li, C.; Ding, C.; Chen, J.; He, Y.; Duan, T.; Feng, Q.; Yu, Y.; Zhou, Q. Functionalized Human Umbilical Cord Mesenchymal Stem Cells and Injectable HA/Gel Hydrogel Synergy in Endometrial Repair and Fertility Recovery. Acta Biomater. 2023, 167, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Dai, Y.; Xin, L.; Zheng, X.; Ye, Z.; Zhang, S.; Ma, L. Minimally Invasive Delivery of Human Umbilical Cord-Derived Mesenchymal Stem Cells by an Injectable Hydrogel via Diels–Alder Click Reaction for the Treatment of Intrauterine Adhesions. Acta Biomater. 2024, 177, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Lin, X.; Zhou, F.; Li, C.; Wang, X.; Yu, H.; Pan, Y.; Fei, H.; Ma, L.; Zhang, S. A Scaffold Laden with Mesenchymal Stem Cell-Derived Exosomes for Promoting Endometrium Regeneration and Fertility Restoration through Macrophage Immunomodulation. Acta Biomater. 2020, 113, 252–266. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Z.; Huang, J.; Tang, S.; Saiding, Q.; Zhu, Q.; Cui, W. Microenvironment-Protected Exosome-Hydrogel for Facilitating Endometrial Regeneration, Fertility Restoration, and Live Birth of Offspring. Small 2021, 17, 2007235. [Google Scholar] [CrossRef] [PubMed]
- Chon, S.J.; Umair, Z.; Yoon, M.-S. Premature Ovarian Insufficiency: Past, Present, and Future. Front. Cell Dev. Biol. 2021, 9, 672890. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; He, J.; Yao, Q.; Wu, L.; Xue, L.; Wu, M.; Wu, D.; Li, C.; Li, Y. Human Umbilical Cord Mesenchymal Stem Cells Improve Ovarian Function in Chemotherapy-Induced Premature Ovarian Failure Mice Through Inhibiting Apoptosis and Inflammation via a Paracrine Mechanism. Reprod. Sci. 2021, 28, 1718–1732. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, J.; Ning, J.; Sun, Y.; Chai, Y.; Xiao, F.; Huang, B.; Li, G.; Tian, F.; Hao, J.; et al. Stem Cell-Derived Extracellular Vesicles in Premature Ovarian Failure: An up-to-Date Meta-Analysis of Animal Studies. J. Ovarian Res. 2024, 17, 182. [Google Scholar] [CrossRef] [PubMed]
- Abd-Allah, S.H.; Shalaby, S.M.; Pasha, H.F.; El-Shal, A.S.; Raafat, N.; Shabrawy, S.M.; Awad, H.A.; Amer, M.G.; Gharib, M.A.; El Gendy, E.A.; et al. Mechanistic Action of Mesenchymal Stem Cell Injection in the Treatment of Chemically Induced Ovarian Failure in Rabbits. Cytotherapy 2013, 15, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mao, Q.; He, J.; She, H.; Zhang, Z.; Yin, C. Human Umbilical Cord Mesenchymal Stem Cells Improve the Reserve Function of Perimenopausal Ovary via a Paracrine Mechanism. Stem Cell Res. Ther. 2017, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Yang, T.; Li, J.; Yang, X. Study of the Reparative Effects of Menstrual-Derived Stem Cells on Premature Ovarian Failure in Mice. Stem Cell Res. Ther. 2017, 8, 11. [Google Scholar] [CrossRef]
- Ding, C.; Zou, Q.; Wang, F.; Wu, H.; Chen, R.; Lv, J.; Ling, M.; Sun, J.; Wang, W.; Li, H.; et al. Human Amniotic Mesenchymal Stem Cells Improve Ovarian Function in Natural Aging through Secreting Hepatocyte Growth Factor and Epidermal Growth Factor. Stem Cell Res. Ther. 2018, 9, 55. [Google Scholar] [CrossRef]
- Qu, Q.; Liu, L.; Cui, Y.; Liu, H.; Yi, J.; Bing, W.; Liu, C.; Jiang, D.; Bi, Y. miR-126-3p Containing Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Promote Angiogenesis and Attenuate Ovarian Granulosa Cell Apoptosis in a Preclinical Rat Model of Premature Ovarian Failure. Stem Cell Res. Ther. 2022, 13, 352. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, M.; Zheng, J.; Tian, Y.; Zhang, H.; Tan, Y.; Li, Q.; Zhang, J.; Huang, X. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Improve Ovarian Function and Proliferation of Premature Ovarian Insufficiency by Regulating the Hippo Signaling Pathway. Front. Endocrinol. 2021, 12, 711902. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Zhang, L.; Zhang, P.; Xu, Y.; Wang, J.; Zhao, X.; Dai, Z.; Zhou, H.; Zhao, S.; Fan, A. Human UC-MSC-Derived Exosomes Facilitate Ovarian Renovation in Rats with Chemotherapy-Induced Premature Ovarian Insufficiency. Front. Endocrinol. 2023, 14, 1205901. [Google Scholar] [CrossRef]
- Dai, W.; Xu, B.; Ding, L.; Zhang, Z.; Yang, H.; He, T.; Liu, L.; Pei, X.; Fu, X. Human Umbilical Cord Mesenchymal Stem Cells Alleviate Chemotherapy-Induced Premature Ovarian Insufficiency Mouse Model by Suppressing Ferritinophagy-Mediated Ferroptosis in Granulosa Cells. Free Radic. Biol. Med. 2024, 220, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, J.; Zeng, L.; Yang, Q.; Bai, F.; Mai, Q.; Deng, K. Human Mesenchymal Stem Cells Derived Exosomes Improve Ovarian Function in Chemotherapy-Induced Premature Ovarian Insufficiency Mice by Inhibiting Ferroptosis through Nrf2/GPX4 Pathway. J. Ovarian Res. 2024, 17, 80. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Lu, J.; Ding, C.; Zou, Q.; Wang, W.; Li, H. Exosomes Derived from Human Adipose Mesenchymal Stem Cells Improve Ovary Function of Premature Ovarian Insufficiency by Targeting SMAD. Stem Cell Res. Ther. 2018, 9, 216. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Xue, X.; Shen, C.; Shi, C.; Dong, J.; Zhang, H.; Liang, R.; Li, S.; Xu, J. Effects of Smad3 on the Proliferation and Steroidogenesis in Human Ovarian Luteinized Granulosa Cells: Role of Smad3 in Human Granulosa Cells. IUBMB Life 2014, 66, 424–437. [Google Scholar] [CrossRef] [PubMed]
- Robalo Cordeiro, M.; Roque, R.; Laranjeiro, B.; Carvalhos, C.; Figueiredo-Dias, M. Menstrual Blood Stem Cells-Derived Exosomes as Promising Therapeutic Tools in Premature Ovarian Insufficiency Induced by Gonadotoxic Systemic Anticancer Treatment. Int. J. Mol. Sci. 2024, 25, 8468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yahaya, B.H.; Pan, Y.; Liu, Y.; Lin, J. Menstrual Blood-Derived Endometrial Stem Cell, a Unique and Promising Alternative in the Stem Cell-Based Therapy for Chemotherapy-Induced Premature Ovarian Insufficiency. Stem Cell Res. Ther. 2023, 14, 327. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Zhang, S.; Zhao, X.; Wu, S.; Qi, X.; Gao, S.; Qi, J.; Li, P.; Tan, J. Exosomes Derived from Menstrual Blood Stromal Cells Ameliorated Premature Ovarian Insufficiency and Granulosa Cell Apoptosis by Regulating SMAD3/AKT/MDM2/P53 Pathway via Delivery of Thrombospondin-1. Biomed. Pharmacother. 2023, 166, 115319. [Google Scholar] [CrossRef]
- Park, H.; Seok, J.; Cetin, E.; Ghasroldasht, M.M.; Liakath Ali, F.; Mohammed, H.; Alkelani, H.; Al-Hendy, A. Fertility Protection: A Novel Approach Using Pretreatment with Mesenchymal Stem Cell Exosomes to Prevent Chemotherapy–Induced Ovarian Damage in a Mouse Model. Am. J. Obstet. Gynecol. 2024, 231, e1–e111. [Google Scholar] [CrossRef]
- Park, H.-S.; Chugh, R.M.; Pergande, M.R.; Cetin, E.; Siblini, H.; Esfandyari, S.; Cologna, S.M.; Al-Hendy, A. Non-Cytokine Protein Profile of the Mesenchymal Stem Cell Secretome That Regulates the Androgen Production Pathway. Int. J. Mol. Sci. 2022, 23, 4633. [Google Scholar] [CrossRef] [PubMed]
- Nejabati, H.R.; Nikzad, S.; Roshangar, L. Therapeutic Potential of Mesenchymal Stem Cells in PCOS. Cent. Serous Chorioretinopathy 2024, 19, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Prayitno, G.D.; Lestari, K.; Sartika, C.R.; Djuwantono, T.; Widjaya, A.; Muharam, R.; Hidayat, Y.M.; Wulandari, D.; Haifa, R.; Naura, N.F.; et al. Potential of Mesenchymal Stem Cells and Their Secretomes in Decreasing Inflammation Markers in Polycystic Ovary Syndrome Treatment: A Systematic Review. Medicines 2022, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Xiong, X.; Xiao, N.; He, K.; Chen, M.; Peng, J.; Su, X.; Mei, H.; Dai, Y.; Wei, D.; et al. Mesenchymal Stem Cells Alleviate DHEA-Induced Polycystic Ovary Syndrome (PCOS) by Inhibiting Inflammation in Mice. Stem Cells Int. 2019, 2019, 9782373. [Google Scholar] [CrossRef] [PubMed]
- Chugh, R.M.; Park, H.; El Andaloussi, A.; Elsharoud, A.; Esfandyari, S.; Ulin, M.; Bakir, L.; Aboalsoud, A.; Ali, M.; Ashour, D.; et al. Mesenchymal Stem Cell Therapy Ameliorates Metabolic Dysfunction and Restores Fertility in a PCOS Mouse Model through Interleukin-10. Stem Cell Res. Ther. 2021, 12, 388. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, S.; Wu, X. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Inhibit Ovarian Granulosa Cells Inflammatory Response through Inhibition of NF-κB Signaling in Polycystic Ovary Syndrome. J. Reprod. Immunol. 2022, 152, 103638. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Zhao, Y.; Chen, T.; Zhao, Z.; Zhang, B.; Yuan, C.; Wang, X.; Chen, L.; Wang, N.; Li, C.; et al. Adipose Mesenchymal Stem Cell–Derived Exosomal microRNAs Ameliorate Polycystic Ovary Syndrome by Protecting against Metabolic Disturbances. Biomaterials 2022, 288, 121739. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.-L.; Henkel, R.; Vij, S.; Arafa, M.; Panner Selvam, M.K.; Shah, R. Male Infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Adriansyah, R.F.; Margiana, R.; Supardi, S.; Narulita, P. Current Progress in Stem Cell Therapy for Male Infertility. Stem Cell Rev. Rep. 2023, 19, 2073–2093. [Google Scholar] [CrossRef]
- Chikhovskaya, J.V.; Van Daalen, S.K.M.; Korver, C.M.; Repping, S.; Van Pelt, A.M.M. Mesenchymal Origin of Multipotent Human Testis-Derived Stem Cells in Human Testicular Cell Cultures. MHR Basic Sci. Reprod. Med. 2014, 20, 155–167. [Google Scholar] [CrossRef]
- De Chiara, L.; Famulari, E.S.; Fagoonee, S.; Van Daalen, S.K.M.; Buttiglieri, S.; Revelli, A.; Tolosano, E.; Silengo, L.; Van Pelt, A.M.M.; Altruda, F. Characterization of Human Mesenchymal Stem Cells Isolated from the Testis. Stem Cells Int. 2018, 2018, 4910304. [Google Scholar] [CrossRef] [PubMed]
- Önen, S.; Köse, S.; Yersal, N.; Korkusuz, P. Mesenchymal Stem Cells Promote Spermatogonial Stem/Progenitor Cell Pool and Spermatogenesis in Neonatal Mice in Vitro. Sci. Rep. 2022, 12, 11494. [Google Scholar] [CrossRef]
- Izadi, M.; Dehghan Marvast, L.; Rezvani, M.E.; Zohrabi, M.; Aliabadi, A.; Mousavi, S.A.; Aflatoonian, B. Mesenchymal Stem-Cell Derived Exosome Therapy as a Potential Future Approach for Treatment of Male Infertility Caused by Chlamydia Infection. Front. Microbiol. 2022, 12, 785622. [Google Scholar] [CrossRef]
- Ramesh, M.; Mojaverrostami, S.; Khadivi, F.; Rastegar, T.; Abbasi, Y.; Bashiri, Z. Protective Effects of Human Amniotic Membrane Derived Mesenchymal Stem Cells (hAMSCs) Secreted Factors on Mouse Spermatogenesis and Sperm Chromatin Condensation Following Unilateral Testicular Torsion. Ann. Anat. Anat. Anz. 2023, 249, 152084. [Google Scholar] [CrossRef]
- Fazaeli, H.; Sheykhhasan, M.; Kalhor, N.; Davoodi Asl, F.; Kashani, M.H.; Sheikholeslami, A. Evaluating the Effect of Conditioned Medium from Mesenchymal Stem Cells on Differentiation of Rat Spermatogonial Stem Cells. Anat. Cell Biol. 2023, 56, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Serefoglu, E.C.; Kolbasi, B.; Bulbul, M.V.; Karabulut, S.; Cakici, C.; Gundogdu Ozdemir, R.Z.; Keskin, I. Therapeutic Effects of Mesenchymal Stem Cell Conditioned Medium in Rat Varicocele Model. World J. Men’s Health 2024, 42, e79. [Google Scholar] [CrossRef]
- Qian, C.; Meng, Q.; Lu, J.; Zhang, L.; Li, H.; Huang, B. Human Amnion Mesenchymal Stem Cells Restore Spermatogenesis in Mice with Busulfan-Induced Testis Toxicity by Inhibiting Apoptosis and Oxidative Stress. Stem Cell Res. Ther. 2020, 11, 290. [Google Scholar] [CrossRef] [PubMed]
- Liakath Ali, F.; Park, H.-S.; Beckman, A.; Eddy, A.C.; Alkhrait, S.; Ghasroldasht, M.M.; Al-Hendy, A.; Raheem, O. Fertility Protection, A Novel Concept: Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Protect against Chemotherapy-Induced Testicular Cytotoxicity. Int. J. Mol. Sci. 2023, 25, 60. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Xiong, C.; Shen, S.; Rao, J.; Liu, T.; Qiu, F. Mesenchymal Stem Cell-secreted Factors Delayed Spermatogenesis Injuries Induced by Busulfan Involving Intercellular Adhesion Molecule Regulation. Andrologia 2019, 51, e13285. [Google Scholar] [CrossRef]
- Lu, J.; Liu, Z.; Shu, M.; Zhang, L.; Xia, W.; Tang, L.; Li, J.; Huang, B.; Li, H. Human Placental Mesenchymal Stem Cells Ameliorate Chemotherapy-Induced Damage in the Testis by Reducing Apoptosis/Oxidative Stress and Promoting Autophagy. Stem Cell Res. Ther. 2021, 12, 199. [Google Scholar] [CrossRef] [PubMed]
- Bahmyari, S.; Alaee, S.; Khodabandeh, Z.; Talaei-Khozani, T.; Dara, M.; Mehdinejadiani, S.; Solati, A. The Effects of Wharton’s Jelly MSCs Secretomes for Restoring Busulfan-Induced Reproductive Toxicity in Male Mice. Hum. Exp. Toxicol. 2024, 43, 09603271241269019. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.-H.; Ji, A.T.-Q.; Chang, C.-C.; Chien, M.-H.; Lee, L.-M.; Ho, J.H.-C. Mesenchymal Stem Cells Restore the Sperm Motility from Testicular Torsion-Detorsion Injury by Regulation of Glucose Metabolism in Sperm. Stem Cell Res. Ther. 2019, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shi, M.; Li, X.; Lu, W.; Zhang, M.; Zhang, T.; Wu, Y.; Zhang, Z.; Cui, Q.; Yang, S.; et al. Adipose Mesenchymal Stromal Cell-Derived Exosomes Prevent Testicular Torsion Injury via Activating PI3K/AKT and MAPK/ERK1/2 Pathways. Oxidative Med. Cell. Longev. 2022, 2022, 8065771. [Google Scholar] [CrossRef] [PubMed]
- Şimşek, F.B.; Şencan, A.; Vatansever, H.S. Exosomes Obtained from Adipose Mesenchymal Stem Cells Prevent Ischemia–Reperfusion Injury after Torsion–Detorsion in Rat Testes. Pediatr. Surg. Int. 2023, 39, 204. [Google Scholar] [CrossRef]
- Luo, P.; Chen, X.; Gao, F.; Xiang, A.P.; Deng, C.; Xia, K.; Gao, Y. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Rescue Testicular Aging. Biomedicines 2024, 12, 98. [Google Scholar] [CrossRef]
- Silva, A.F.; Ramalho-Santos, J.; Amaral, S. The Impact of Antisperm Antibodies on Human Male Reproductive Function: An Update. Reproduction 2021, 162, R55–R71. [Google Scholar] [CrossRef] [PubMed]
- Aghamir, S.M.K.; Salavati, A.; Yousefie, R.; Tootian, Z.; Ghazaleh, N.; Jamali, M.; Azimi, P. Does Bone Marrow–Derived Mesenchymal Stem Cell Transfusion Prevent Antisperm Antibody Production After Traumatic Testis Rupture? Urology 2014, 84, 82–86. [Google Scholar] [CrossRef]
- Wu, H.; Wang, F.; Tang, D.; Han, D. Mumps Orchitis: Clinical Aspects and Mechanisms. Front. Immunol. 2021, 12, 582946. [Google Scholar] [CrossRef] [PubMed]
- Honarpour, N.; Du, C.; Richardson, J.A.; Hammer, R.E.; Wang, X.; Herz, J. Adult Apaf-1-Deficient Mice Exhibit Male Infertility. Dev. Biol. 2000, 218, 248–258. [Google Scholar] [CrossRef]
- Zhu, S.; Li, H.; Lv, C.; Liang, J.; Liu, L.; Zhang, X.; Xu, K.; Zeng, L. Combination of Mesenchymal Stem Cell and Endothelial Progenitor Cell Infusion Accelerates Injured Intestinal Repair by Regulating Gut Microbiota after Hematopoietic Cell Transplantation. Transplant. Cell. Ther. 2021, 27, e1–e152. [Google Scholar] [CrossRef]
- Adly, M.A.; Assaf, H.A.; Hussein, M.R.A. Heat Shock Protein 27 Expression in the Human Testis Showing Normal and Abnormal Spermatogenesis. Cell Biol. Int. 2008, 32, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Purandhar, K.; Jena, P.K.; Prajapati, B.; Rajput, P.; Seshadri, S. Understanding the Role of Heat Shock Protein Isoforms in Male Fertility, Aging and Apoptosis. World J. Men’s Health 2014, 32, 123. [Google Scholar] [CrossRef]
- Wang, B.; Moon, S.P.; Cutolo, G.; Javed, A.; Ahn, B.S.; Ryu, A.H.; Pratt, M.R. HSP27 Inhibitory Activity against Caspase-3 Cleavage and Activation by Caspase-9 Is Enhanced by Chaperone O-GlcNAc Modification in Vitro. ACS Chem. Biol. 2023, 18, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-C.; Xie, Y.; Deng, C.-H.; Liu, G.-H. Stem Cell-Based Therapies for Fertility Preservation in Males: Current Status and Future Prospects. World J. Stem Cells 2020, 12, 1097–1112. [Google Scholar] [CrossRef]
- Chouaib, B.; Haack-Sørensen, M.; Chaubron, F.; Cuisinier, F.; Collart-Dutilleul, P.-Y. Towards the Standardization of Mesenchymal Stem Cell Secretome-Derived Product Manufacturing for Tissue Regeneration. Int. J. Mol. Sci. 2023, 24, 12594. [Google Scholar] [CrossRef] [PubMed]
- Maličev, E.; Jazbec, K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals 2024, 17, 350. [Google Scholar] [CrossRef] [PubMed]
- Rogulska, O.; Vackova, I.; Prazak, S.; Turnovcova, K.; Kubinova, S.; Bacakova, L.; Jendelova, P.; Petrenko, Y. Storage Conditions Affect the Composition of the Lyophilized Secretome of Multipotent Mesenchymal Stromal Cells. Sci. Rep. 2024, 14, 10243. [Google Scholar] [CrossRef]
- Markov, V.; Kusumi, K.; Tadesse, M.G.; William, D.A.; Hall, D.M.; Lounev, V.; Carlton, A.; Leonard, J.; Cohen, R.I.; Rappaport, E.F.; et al. Identification of Cord Blood-Derived Mesenchymal Stem/Stromal Cell Populations with Distinct Growth Kinetics, Differentiation Potentials, and Gene Expression Profiles. Stem Cells Dev. 2007, 16, 53–74. [Google Scholar] [CrossRef] [PubMed]
- Dunn, C.M.; Kameishi, S.; Grainger, D.W.; Okano, T. Strategies to Address Mesenchymal Stem/Stromal Cell Heterogeneity in Immunomodulatory Profiles to Improve Cell-Based Therapies. Acta Biomater. 2021, 133, 114–125. [Google Scholar] [CrossRef]
- Siegel, G.; Kluba, T.; Hermanutz-Klein, U.; Bieback, K.; Northoff, H.; Schäfer, R. Phenotype, Donor Age and Gender Affect Function of Human Bone Marrow-Derived Mesenchymal Stromal Cells. BMC Med. 2013, 11, 146. [Google Scholar] [CrossRef] [PubMed]
- Turlo, A.J.; Hammond, D.E.; Ramsbottom, K.A.; Soul, J.; Gillen, A.; McDonald, K.; Peffers, M.J. Mesenchymal Stromal Cell Secretome Is Affected by Tissue Source and Donor Age. Stem Cells 2023, 41, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- Česnik, A.B.; Švajger, U. The Issue of Heterogeneity of MSC-Based Advanced Therapy Medicinal Products–a Review. Front. Cell Dev. Biol. 2024, 12, 1400347. [Google Scholar] [CrossRef]
- Han, Z.C.; Du, W.J.; Han, Z.B.; Liang, L. New Insights into the Heterogeneity and Functional Diversity of Human Mesenchymal Stem Cells. Biomed. Mater. Eng. 2017, 28, S29–S45. [Google Scholar] [CrossRef]
- Paladino, F.V.; Peixoto-Cruz, J.S.; Santacruz-Perez, C.; Goldberg, A.C. Comparison between Isolation Protocols Highlights Intrinsic Variability of Human Umbilical Cord Mesenchymal Cells. Cell Tissue Bank. 2016, 17, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Brozovich, A.; Sinicrope, B.J.; Bauza, G.; Niclot, F.B.; Lintner, D.; Taraballi, F.; McCulloch, P.C. High Variability of Mesenchymal Stem Cells Obtained via Bone Marrow Aspirate Concentrate Compared With Traditional Bone Marrow Aspiration Technique. Orthop. J. Sports Med. 2021, 9, 23259671211058459. [Google Scholar] [CrossRef]
- Calcat-i-Cervera, S.; Rendra, E.; Scaccia, E.; Amadeo, F.; Hanson, V.; Wilm, B.; Murray, P.; O’Brien, T.; Taylor, A.; Bieback, K. Harmonised Culture Procedures Minimise but Do Not Eliminate Mesenchymal Stromal Cell Donor and Tissue Variability in a Decentralised Multicentre Manufacturing Approach. Stem Cell Res. Ther. 2023, 14, 120. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yang, J.; Fang, J.; Zhou, Y.; Candi, E.; Wang, J.; Hua, D.; Shao, C.; Shi, Y. The Secretion Profile of Mesenchymal Stem Cells and Potential Applications in Treating Human Diseases. Signal Transduct. Target. Ther. 2022, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.O.; Mendes-Pinheiro, B.; Teixeira, F.G.; Anjo, S.I.; Ribeiro-Samy, S.; Gomes, E.D.; Serra, S.C.; Silva, N.A.; Manadas, B.; Sousa, N.; et al. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cells Dev. 2016, 25, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Lee, J.; Kwon, Y.; Park, K.-S.; Jeong, J.-H.; Choi, S.-J.; Bang, S.I.; Chang, J.W.; Lee, C. Comparative Proteomic Analysis of the Mesenchymal Stem Cells Secretome from Adipose, Bone Marrow, Placenta and Wharton’s Jelly. Int. J. Mol. Sci. 2021, 22, 845. [Google Scholar] [CrossRef] [PubMed]
- Volarevic, V.; Markovic, B.S.; Gazdic, M.; Volarevic, A.; Jovicic, N.; Arsenijevic, N.; Armstrong, L.; Djonov, V.; Lako, M.; Stojkovic, M. Ethical and Safety Issues of Stem Cell-Based Therapy. Int. J. Med. Sci. 2018, 15, 36–45. [Google Scholar] [CrossRef]
- Sipos, F.; Műzes, G. Disagreements in the Therapeutic Use of Mesenchymal Stem Cell-Derived Secretome. World J. Stem Cells 2022, 14, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.; Bongale, A.M.; Tefera, M.A.; Dixit, P.; Bhanap, P. Fresh Umbilical Cord Blood—A Source of Multipotent Stem Cells, Collection, Banking, Cryopreservation, and Ethical Concerns. Life 2023, 13, 1794. [Google Scholar] [CrossRef] [PubMed]
- Deszcz, I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int. 2023, 2023, 2729377. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.; Arthaud-Day, M.L.; Weiss, M.L. Therapeutic Use of Mesenchymal Stromal Cells: The Need for Inclusive Characterization Guidelines to Accommodate All Tissue Sources and Species. Front. Cell Dev. Biol. 2021, 9, 632717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Suo, M.; Wang, J.; Liu, X.; Huang, H.; Wang, K.; Liu, X.; Sun, T.; Li, Z.; Liu, J. Standardisation Is the Key to the Sustained, Rapid and Healthy Development of Stem Cell-based Therapy. Clin. Transl. Med. 2024, 14, e1646. [Google Scholar] [CrossRef]
- Wilson, A.J.; Brown, N.; Rand, E.; Genever, P.G. Attitudes Towards Standardization of Mesenchymal Stromal Cells—A Qualitative Exploration of Expert Views. Stem Cells Transl. Med. 2023, 12, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.R.; Teixeira, G.Q.; Santos, S.G.; Barbosa, M.A.; Almeida-Porada, G.; Gonçalves, R.M. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-Conditioning. Front. Immunol. 2018, 9, 2837. [Google Scholar] [CrossRef]
- Kusuma, G.D.; Li, A.; Zhu, D.; McDonald, H.; Inocencio, I.M.; Chambers, D.C.; Sinclair, K.; Fang, H.; Greening, D.W.; Frith, J.E.; et al. Effect of 2D and 3D Culture Microenvironments on Mesenchymal Stem Cell-Derived Extracellular Vesicles Potencies. Front. Cell Dev. Biol. 2022, 10, 819726. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaibani, M.B.H. Three-Dimensional Cell Culture (3DCC) Improves Secretion of Signaling Molecules of Mesenchymal Stem Cells (MSCs). Biotechnol. Lett. 2022, 44, 143–155. [Google Scholar] [CrossRef]
- Vizoso, F.J.; Costa, L.A.; Eiro, N. New Era of Mesenchymal Stem Cell-Based Medicine: Basis, Challenges and Prospects. Rev. Clínica Española Engl. Ed. 2023, 223, 619–628. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavaldzhieva, K.; Mladenov, N.; Markova, M.; Belemezova, K. Mesenchymal Stem Cell Secretome: Potential Applications in Human Infertility Caused by Hormonal Imbalance, External Damage, or Immune Factors. Biomedicines 2025, 13, 586. https://doi.org/10.3390/biomedicines13030586
Kavaldzhieva K, Mladenov N, Markova M, Belemezova K. Mesenchymal Stem Cell Secretome: Potential Applications in Human Infertility Caused by Hormonal Imbalance, External Damage, or Immune Factors. Biomedicines. 2025; 13(3):586. https://doi.org/10.3390/biomedicines13030586
Chicago/Turabian StyleKavaldzhieva, Katerina, Nikola Mladenov, Maya Markova, and Kalina Belemezova. 2025. "Mesenchymal Stem Cell Secretome: Potential Applications in Human Infertility Caused by Hormonal Imbalance, External Damage, or Immune Factors" Biomedicines 13, no. 3: 586. https://doi.org/10.3390/biomedicines13030586
APA StyleKavaldzhieva, K., Mladenov, N., Markova, M., & Belemezova, K. (2025). Mesenchymal Stem Cell Secretome: Potential Applications in Human Infertility Caused by Hormonal Imbalance, External Damage, or Immune Factors. Biomedicines, 13(3), 586. https://doi.org/10.3390/biomedicines13030586