DNA Methylation and Demethylation in Triple-Negative Breast Cancer: Associations with Clinicopathological Characteristics and the Chemotherapy Response
<p>Correlations between markers of DNA methylation (5-mC) and markers of DNA demethylation (5-hmC) in the collected tumor samples, including samples from all patients (<b>a</b>), biopsies collected from patients before neoadjuvant chemotherapy (<b>b</b>) and surgical samples from patients not treated with chemotherapy (<b>c</b>).</p> "> Figure 2
<p>Correlation between Ki-67 and markers of DNA methylation/demethylation (5-mC/5-hmC) in the collected tumor samples, including samples from all patients (<b>a</b>,<b>d</b>), biopsies collected from patients before neoadjuvant chemotherapy (<b>b</b>,<b>e</b>) and surgical samples from patients not treated with chemotherapy (<b>c</b>,<b>f</b>).</p> "> Figure 3
<p>Levels of markers of DNA methylation (5-mC) and DNA demethylation (h-mC) in the collected tissue samples according to tumor grade, including samples from all TNBC patients (<b>a</b>,<b>d</b>), biopsies collected from TNBC patients before neoadjuvant chemotherapy (<b>b</b>,<b>e</b>) and surgical samples from TNBC patients not treated with neoadjuvant chemotherapy (<b>c</b>,<b>f</b>). Group differences were analyzed with the Mann–Whitney U test. Data are shown as raw values, with medians and interquartile ranges.</p> "> Figure 4
<p>Pretreatment levels of markers of (<b>a</b>) DNA methylation (5-mC) and (<b>b</b>) DNA demethylation (h-mC) measured in biopsies collected from TNBC patients undergoing neoadjuvant chemotherapy, stratified by disease progression. The group without progression (“No”) included patients with a complete pathological response, partial response or stable disease. Group differences were analyzed with the Mann–Whitney U test. Data are shown as raw values, with medians and interquartile ranges.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group and Material
2.2. DNA Isolation
2.3. Ki-67 Staining
2.4. Global DNA Methylation and Demethylation Analysis
- Preparation of DNA samples and standards. An accurately quantified 50 ng amount of double-stranded (ds) DNA was denatured by incubating at 98 °C for 10 min, followed by immediate cooling on ice for another 10 min. The DNA was mixed with coating buffer and ultrasensitive green fluorescent single-stranded (ss) DNA dye Quant-iT OliGreen ssDNA Reagent (Invitrogen, Waltham, MA, USA) in concentration, according to the manufacturer’s instructions. This, along with a 200 ng of DNA loading standard Lambda DNA (Thermo Scientific, Waltham, MA, USA), allows for monitoring loading precision and mathematical correction of estimated 5-mC and 5-hmC levels during the analysis step. For the 5-mC and 5-hmC standard curves, 2-fold serial dilutions of the CpGenome 5-mC and 5-hmC Human DNA Standards (Sigma–Aldrich, Burlington, MA, USA) were used, starting with 100 ng of DNA. Each DNA sample, in two replicate wells per sample, including blank wells (only coating buffer) and controls, was read fluorometrically in a Plate Reader Victor™ X3 (PerkinElmer, Waltham, MA, USA) (excitation filter 485 nm/emission filter 530 nm).
- Passive adsorption of DNA samples and standards. The DNA was passively adsorbed onto a polystyrene black plate surface (Greiner Bio-One GmbH, Kremsmünster, Austria) for 1 h at 37 °C. The plate was then washed three times with wash buffer.
- Blocking. To prevent nonspecific antibody binding, the plate was blocked with 100 µL of 2% BSA for 1 h at 37 °C. After blocking washing plate once with wash buffer.
- Incubation with primary antibody. The DNA was incubated for 1 h at 37 °C with a highly specific primary antibody at a concentration of 1:1500. To analyze global 5-methylcytosine, we used the OptimAb Anti-5-Methylcytosine antibody (BI-MECY-0100, clone 33D3, Eurogentec, Seraing, Liège, Belgium). For 5-hmC, we used a 5-hydroxymethylcytosine antibody (mAb) (#39999, Active Motif, Carlsbad, CA, USA). After incubation, the plate was washed three times with wash buffer.
- Incubation with HRP-conjugated secondary antibody. The 5-mC/5-hmC–antibody complexes were further recognized by an enzyme-conjugated secondary Goat Anti-Mouse IgG H&L (HRP) (ab205719, Abcam, Cambridge, UK) antibody at a concentration of 1:8000 to amplify the initial detection. The plate was incubated for 1 h at 37 °C.
- Enzymatic reaction and data acquisition. A chemiluminescent substrate SuperSignal™ ELISA Femto Substrate (Thermo Scientific, Waltham, MA, USA) was finally applied to yield a measurable signal on a Multimode Plate Reader Victor™ X3 (PerkinElmer, Waltham, MA, USA), which is proportional to the amount of immobilized 5-mC/5-hmC.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-hmC | 5-hydroxymethylcytosine |
5-mC | 5-methylcytosine |
ALDH1 | Aldehyde dehydrogenase 1 family |
AUC | area under the curve |
BC | breast cancer |
Bcl2 | BCL2 apoptosis regulator |
BRMS1 | breast cancer metastasis suppressor gene 1 |
BSA | bovine serum albumin |
c | clinical stage |
CD4 | CD4 T lymphocytes |
CD8+ | cytotoxic T cells |
DCIS | ductal carcinoma in situ |
DNMT | DNA methyltransferases |
DSBs | DNA double-strand breaks |
EMT | epithelial–mesenchymal transition |
ER | estrogen receptor |
FFPE | formalin-fixed, paraffin-embedded |
FGFR4 | fibroblast growth factor receptor 4 |
HAGE | helicase antigen gene |
HER2 | human epidermal growth factor receptor 2 |
HRP | horseradish peroxidase |
Ki-67 | antigen kiel 67 |
MMP7 | matrix metallopeptidase 7 |
NACT | neoadjuvant chemotherapy |
NST | no special type |
NUP98 | nucleoporin 98 |
p | pathological stage |
pCR | pathological complete response |
PD-L1 | programmed cell death ligand 1 |
PR | progesterone receptors |
RCB | residual cancer burden |
TET | ten-eleven translocation |
TILs | tumor-infiltrating lymphocytes |
TNBC | triple-negative breast cancer |
TNM | tumor, nodes, metastasis |
TOPK | T-LAK cell-originated protein kinase |
VEGFR2 | vascular endothelial growth factor receptor 2 |
YAP1 | Yes1 associated transcriptional regulator |
yp | post-treatment pathological stage |
References
- Cancer Observatory: Cancer Today. Available online: https://gco.iarc.who.int/today/en (accessed on 10 February 2025).
- Didkowska, J.; Urszula, W.; Klaudia, B.; Marta, M.; Irmina, M.; Paweł, O. Nowotwory Złośliwe w Polsce w 2021 Roku; Polish National Cancer Registry: Warsaw, Poland, 2023. [Google Scholar]
- Smolarz, B.; Nowak, A.Z.; Romanowicz, H. Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature). Cancers 2022, 14, 2569. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, U. Epigenetic Therapies in Triple-Negative Breast Cancer: Concepts, Visions, and Challenges. Cancers 2024, 16, 2164. [Google Scholar] [CrossRef] [PubMed]
- Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science 2009, 324, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Zolota, V.; Tzelepi, V.; Piperigkou, Z.; Kourea, H.; Papakonstantinou, E.; Argentou, M.-I.; Karamanos, N.K. Epigenetic Alterations in Triple-Negative Breast Cancer—The Critical Role of Extracellular Matrix. Cancers 2021, 13, 713. [Google Scholar] [CrossRef]
- Balic, M.; Thomssen, C.; Gnant, M.; Harbeck, N. St. Gallen/Vienna 2023: Optimization of Treatment for Patients with Primary Breast Cancer—A Brief Summary of the Consensus Discussion. Breast Care 2023, 18, 213–222. [Google Scholar] [CrossRef]
- Li, J.; Shen, G.; Wang, M.; Huo, X.; Zhao, F.; Ren, D.; Zhao, Y.; Zhao, J. Comparative efficacy and safety of first-line neoadjuvant treatments in triple-negative breast cancer: Systematic review and network meta-analysis. Clin. Exp. Med. 2023, 23, 1489–1499. [Google Scholar] [CrossRef]
- van den Ende, N.S.; Nguyen, A.H.; Jager, A.; Kok, M.; Debets, R.; van Deurzen, C.H.M. Triple-Negative Breast Cancer and Predictive Markers of Response to Neoadjuvant Chemotherapy: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 2969. [Google Scholar] [CrossRef]
- Kim, T.; Han, W.; Kim, M.K.; Lee, J.W.; Kim, J.; Ahn, S.K.; Lee, H.-B.; Moon, H.-G.; Lee, K.-H.; Kim, T.-Y.; et al. Predictive Significance of p53, Ki-67, and Bcl-2 Expression for Pathologic Complete Response after Neoadjuvant Chemotherapy for Triple-Negative Breast Cancer. J. Breast Cancer 2015, 18, 16. [Google Scholar] [CrossRef]
- Guestini, F.; Ono, K.; Miyashita, M.; Ishida, T.; Ohuchi, N.; Nakagawa, S.; Hirakawa, H.; Tamaki, K.; Ohi, Y.; Rai, Y.; et al. Impact of Topoisomerase IIα, PTEN, ABCC1/MRP1, and KI67 on triple-negative breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2019, 173, 275–288. [Google Scholar] [CrossRef]
- Kawate, T.; Iwaya, K.; Kikuchi, R.; Kaise, H.; Oda, M.; Sato, E.; Hiroi, S.; Matsubara, O.; Kohno, N. DJ-1 protein expression as a predictor of pathological complete remission after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res. Treat. 2013, 139, 51–59. [Google Scholar] [CrossRef]
- Babyshkina, N.; Zavyalova, M.; Tarabanovskaya, N.; Dronova, T.; Krakhmal, N.; Slonimskaya, E.; Kzhyshkowska, J.; Choynzonov, E.; Cherdyntseva, N. Predictive value of vascular endothelial growth factor receptor type 2 in triple-negative breast cancer patients treated with neoadjuvant chemotherapy. Mol. Cell. Biochem. 2018, 444, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fatah, T.M.A.; Mcardle, S.E.B.; Agarwal, D.; Moseley, P.M.; Green, A.R.; Ball, G.R.; Pockley, A.G.; Ellis, I.O.; Rees, R.C.; Chan, S.Y.T. HAGE in Triple-Negative Breast Cancer Is a Novel Prognostic, Predictive, and Actionable Biomarker: A Transcriptomic and Protein Expression Analysis. Clin. Cancer Res. 2016, 22, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Mullan, P.B.; Bingham, V.; Haddock, P.; Irwin, G.W.; Kay, E.; Mcquaid, S.; Buckley, N.E. NUP98—A novel predictor of response to anthracycline-based chemotherapy in triple negative breast cancer. BMC Cancer 2019, 19, 236. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fatah, T.M.A.; Perry, C.; Dickinson, P.; Ball, G.; Moseley, P.; Madhusudan, S.; Ellis, I.O.; Chan, S.Y.T. Bcl2 is an independent prognostic marker of triple negative breast cancer (TNBC) and predicts response to anthracycline combination (ATC) chemotherapy (CT) in adjuvant and neoadjuvant settings. Ann. Oncol. 2013, 24, 2801–2807. [Google Scholar] [CrossRef] [PubMed]
- Kida, K.; Ishikawa, T.; Yamada, A.; Shimada, K.; Narui, K.; Sugae, S.; Shimizu, D.; Tanabe, M.; Sasaki, T.; Ichikawa, Y.; et al. Effect of ALDH1 on prognosis and chemoresistance by breast cancer subtype. Breast Cancer Res. Treat. 2016, 156, 261–269. [Google Scholar] [CrossRef]
- Wang, Y.; Brodsky, A.S.; Xiong, J.; Lopresti, M.L.; Yang, D.; Resnick, M.B. Stromal Clusterin Expression Predicts Therapeutic Response to Neoadjuvant Chemotherapy in Triple Negative Breast Cancer. Clin. Breast Cancer 2018, 18, e373–e379. [Google Scholar] [CrossRef]
- Wang, K.; Chai, J.; Xu, J.; Wei, J.; Li, P.; Liu, Y.; Ma, J.; Xu, T.; Zhao, D.; Yu, K.; et al. TOPK: A new predictor of the therapeutic response to neoadjuvant chemotherapy and prognosis in triple-negative breast cancer. Pathol.-Res. Pract. 2021, 226, 153603. [Google Scholar] [CrossRef]
- Loi, S.; Drubay, D.; Adams, S.; Pruneri, G.; Francis, P.A.; Lacroix-Triki, M.; Joensuu, H.; Dieci, M.V.; Badve, S.; Demaria, S.; et al. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers. J. Clin. Oncol. 2019, 37, 559–569. [Google Scholar] [CrossRef]
- De Jong, V.M.T.; Wang, Y.; Ter Hoeve, N.D.; Opdam, M.; Stathonikos, N.; Jóźwiak, K.; Hauptmann, M.; Cornelissen, S.; Vreuls, W.; Rosenberg, E.H.; et al. Prognostic Value of Stromal Tumor-Infiltrating Lymphocytes in Young, Node-Negative, Triple-Negative Breast Cancer Patients Who Did Not Receive (neo)Adjuvant Systemic Therapy. J. Clin. Oncol. 2022, 40, 2361–2374. [Google Scholar] [CrossRef]
- Denkert, C.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef]
- Ghosh, J.; Chatterjee, M.; Ganguly, S.; Datta, A.; Biswas, B.; Mukherjee, G.; Agarwal, S.; Ahmed, R.; Chatterjee, S.; Dabkara, D. PDL1 expression and its correlation with outcomes in non-metastatic triple-negative breast cancer (TNBC). Ecancermedicalscience 2021, 15, 1217. [Google Scholar] [CrossRef] [PubMed]
- Cerbelli, B.; Pernazza, A.; Botticelli, A.; Fortunato, L.; Monti, M.; Sciattella, P.; Campagna, D.; Mazzuca, F.; Mauri, M.; Naso, G.; et al. PD-L1 Expression in TNBC: A Predictive Biomarker of Response to Neoadjuvant Chemotherapy? BioMed Res. Int. 2017, 2017, 1750925. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Pusztai, L.; Mcarthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Sigin, V.O.; Kalinkin, A.I.; Nikolaeva, A.F.; Ignatova, E.O.; Kuznetsova, E.B.; Chesnokova, G.G.; Litviakov, N.V.; Tsyganov, M.M.; Ibragimova, M.K.; Vinogradov, I.I.; et al. DNA Methylation and Prospects for Predicting the Therapeutic Effect of Neoadjuvant Chemotherapy for Triple-Negative and Luminal B Breast Cancer. Cancers 2023, 15, 1630. [Google Scholar] [CrossRef]
- Brown, L.J.; Achinger-Kawecka, J.; Portman, N.; Clark, S.; Stirzaker, C.; Lim, E. Epigenetic Therapies and Biomarkers in Breast Cancer. Cancers 2022, 14, 474. [Google Scholar] [CrossRef]
- Olova, N.N. ELISA-Based Quantitation of Global 5hmC Levels. Methods Mol. Biol. 2021, 2272, 45–63. [Google Scholar] [CrossRef]
- Kong, D.-D.; Fu, R.-Z.; Li, L.; Wang, W.; Wang, S.-B. Association between the methylation status of PCDH17 and the efficacy of neoadjuvant chemotherapy in triple-negative breast cancer. Oncol. Lett. 2020, 20, 1649–1656. [Google Scholar] [CrossRef]
- Branham, M.T.; Marzese, D.M.; Laurito, S.R.; Gago, F.E.; Orozco, J.I.; Tello, O.M.; Vargas-Roig, L.M.; Roqué, M. Methylation profile of triple-negative breast carcinomas. Oncogenesis 2012, 1, e17. [Google Scholar] [CrossRef]
- Dookeran, K.A.; Zhang, W.; Stayner, L.; Argos, M. Associations of two-pore domain potassium channels and triple negative breast cancer subtype in The Cancer Genome Atlas: Systematic evaluation of gene expression and methylation. BMC Res. Notes 2017, 10, 475. [Google Scholar] [CrossRef]
- Pineda, B.; Diaz-Lagares, A.; Pérez-Fidalgo, J.A.; Burgués, O.; González-Barrallo, I.; Crujeiras, A.B.; Sandoval, J.; Esteller, M.; Lluch, A.; Eroles, P. A two-gene epigenetic signature for the prediction of response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Clin. Epigenetics 2019, 11, 33. [Google Scholar] [CrossRef]
- Meyer, B.; Clifton, S.; Locke, W.; Luu, P.-L.; Du, Q.; Lam, D.; Armstrong, N.J.; Kumar, B.; Deng, N.; Harvey, K.; et al. Identification of DNA methylation biomarkers with potential to predict response to neoadjuvant chemotherapy in triple-negative breast cancer. Clin. Epigenetics 2021, 13, 1630. [Google Scholar] [CrossRef] [PubMed]
- Fackler, M.J.; Cho, S.; Cope, L.; Gabrielson, E.; Visvanathan, K.; Wilsbach, K.; Meir-Levi, D.; Lynch, C.F.; Marks, J.; Geradts, J.; et al. DNA methylation markers predict recurrence-free interval in triple-negative breast cancer. npj Breast Cancer 2020, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Lips, E.H.; Mulder, L.; Oonk, A.; Van Der Kolk, L.E.; Hogervorst, F.B.L.; Imholz, A.L.T.; Wesseling, J.; Rodenhuis, S.; Nederlof, P.M. Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers. Br. J. Cancer 2013, 108, 2172–2177. [Google Scholar] [CrossRef] [PubMed]
- Stefansson, O.A.; Jonasson, J.G.; Olafsdottir, K.; Hilmarsdottir, H.; Olafsdottir, G.; Esteller, M.; Johannsson, O.T.; Eyfjord, J.E. CpG island hypermethylation of BRCA1 and loss of pRb as co-occurring events in basal/triple-negative breast cancer. Epigenetics 2011, 6, 638–649. [Google Scholar] [CrossRef]
- Yin, J.; Gu, T.; Chaudhry, N.; Davidson, N.E.; Huang, Y. Epigenetic modulation of antitumor immunity and immunotherapy response in breast cancer: Biological mechanisms and clinical implications. Front. Immunol. 2024, 14, 1325615. [Google Scholar] [CrossRef]
- Mirza, S.; Sharma, G.; Pandya, P.; Ralhan, R. Demethylating agent 5-aza-2-deoxycytidine enhances susceptibility of breast cancer cells to anticancer agents. Mol. Cell. Biochem. 2010, 342, 101–109. [Google Scholar] [CrossRef]
- Sandhu, R.; Rivenbark, A.G.; Coleman, W.B. Enhancement of chemotherapeutic efficacy in hypermethylator breast cancer cells through targeted and pharmacologic inhibition of DNMT3b. Breast Cancer Res. Treat. 2012, 131, 385–399. [Google Scholar] [CrossRef]
- Buocikova, V.; Longhin, E.M.; Pilalis, E.; Mastrokalou, C.; Miklikova, S.; Cihova, M.; Poturnayova, A.; Mackova, K.; Babelova, A.; Trnkova, L.; et al. Decitabine potentiates efficacy of doxorubicin in a preclinical trastuzumab-resistant HER2-positive breast cancer models. Biomed. Pharmacother. 2022, 147, 112662. [Google Scholar] [CrossRef]
- Arafah, M.A.; Ouban, A.; Ameer, O.Z.; Quek, K.J. KI-67 LI Expression in Triple-Negative Breast Cancer Patients and Its Significance. Breast Cancer Basic Clin. Res. 2021, 15, 117822342110169. [Google Scholar] [CrossRef]
- Jin, S.-G.; Jiang, Y.; Qiu, R.; Rauch, T.A.; Wang, Y.; Schackert, G.; Krex, D.; Lu, Q.; Pfeifer, G.P. 5-Hydroxymethylcytosine Is Strongly Depleted in Human Cancers but Its Levels Do Not Correlate with IDH1 Mutations. Cancer Res. 2011, 71, 7360–7365. [Google Scholar] [CrossRef]
- Cha, J.Y.; Jung, H.W.; Koo, S.J. Expression of DNA methylation-related proteins in metastatic breast cancer. Neoplasma 2017, 64, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.; Lee, Y.; Koo, J.S. Differential expression of the epigenetic methylation-related protein DNMT1 by breast cancer molecular subtype and stromal histology. J. Transl. Med. 2016, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.K.; Mellor, P.; Smith, S.E.; Kendall, S.; Just, N.A.; Vizeacoumar, F.S.; Sarker, S.; Phillips, Z.; Alvi, R.; Saxena, A.; et al. Epigenetic silencing of CREB3L1 by DNA methylation is associated with high-grade metastatic breast cancers with poor prognosis and is prevalent in triple negative breast cancers. Breast Cancer Res. 2016, 18, 12. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.; Lv, Z.D.; Wang, Y.; Jin, L.Y.; Ding, L.; Yang, Z.C. Down-regulation of BRMS1 by DNA hypermethylation and its association with metastatic progression in triple-negative breast cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 11076–11083. [Google Scholar]
- Esteller, M. Epigenetics in Cancer. N. Engl. J. Med. 2008, 358, 1148–1159. [Google Scholar] [CrossRef]
- Haffner, M.C.; Chaux, A.; Meeker, A.K.; Esopi, D.M.; Gerber, J.; Pellakuru, L.G.; Toubaji, A.; Argani, P.; Iacobuzio-Donahue, C.; Nelson, W.G.; et al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2011, 2, 627–637. [Google Scholar] [CrossRef]
Group Characteristics | All n (%) Median (Min–Max) | NACT n (%) Median (Min–Max) | Without NACT n (%) Median (Min–Max) |
---|---|---|---|
Age [years] | 53 (100%) | 19 (100%) | 34 (100%) |
57.2 (30–88) | 49.0 (30–75) | 60.4 (37–88) | |
Hormonal status | |||
ER-/PR/HER2- | 53 (100%) | 19 (100%) | 34 (100%) |
Ki-67 | 52 (98.1%) | 18 (94.7%) | 34 (100%) |
60 (8–90) | 60 (25–90) | 60 (8–90) | |
Tumor location | |||
Right | 24 (45.3%) | 11 (57.9%) | 13 (38.2%) |
Left | 29 (54.7%) | 8 (42.1%) | 21 (61.8%) |
DCIS | |||
Yes | 18 (34.0%) | 4 (21.1%) | 14 (41.2%) |
No | 35 (66.0%) | 15 (78.9%) | 20 (58.8%) |
G | |||
G1 | 1 (1.9%) | 0 (0.0%) | 1 (2.9%) |
G2 | 24 (45.3%) | 11 (57.9%) | 13 (38.2%) |
G3 | 28 (52.8%) | 8 (42.1%) | 20 (58.8%) |
T | |||
cT1 | 1 (5.3%) | ||
cT2 | 11 (57.9%) | ||
cT3 | 5 (26.3%) | ||
cT4 | 2 (10.5%) | ||
ypT0 | 4 (21.1%) | ||
ypT1 | 7 (36.8%) | ||
ypT2 | 5 (26.3%) | ||
ypT3 | 2 (10.5%) | ||
ypT4 | 1 (5.3%) | ||
pT1 | 11 (32.3%) | ||
pT2 | 19 (55.9%) | ||
pT3 | 2 (5.9%) | ||
pT4 | 2 (5.9%) | ||
N | |||
cN0 | 7 (36.8%) | ||
cN1 | 7 (36.8%) | ||
cN2 | 3 (15.8%) | ||
cN3 | 2 (10.5%) | ||
ypN0 | 10 (52.6%) | ||
ypN1 | 6 (31.6%) | ||
ypN2 | 2 (10.5%) | ||
ypN3 | 1 (5.3%) | ||
pN0 | 21 (61.8%) | ||
pN1 | 10 (29.4%) | ||
pN2 | 2 (5.9%) | ||
pN3 | 1 (2.9%) | ||
M | |||
0 | 51 (96.2%) | 18 (94.7%) | 33 (97.1%) |
1 | 2 (3.8%) | 1 (5.3%) | 1 (2.9%) |
Stage | |||
IA | 8 (15.1%) | 0 (0.0%) | 8 (23.5%) |
IIA | 21 (39.6%) | 5 (26.3%) | 16 (47.1%) |
IIB | 6 (11.3%) | 4 (21.1%) | 2 (5.9%) |
IIIA | 11 (20.8%) | 6 (31.6%) | 5 (14.7%) |
IIIB | 4 (7.5%) | 2 (10.5%) | 2 (5.9%) |
IIIC | 3 (5.7%) | 2 (10.5%) | 1 (2.9%) |
Stage after NACT | |||
0 | 4 (21.1%) | ||
IA | 4 (21.1%) | ||
IB | 1 (5.3%) | ||
IIA | 4 (21.1%) | ||
IIB | 2 (10.5%) | ||
IIIA | 1 (5.3%) | ||
IIIB | 1 (5.3%) | ||
IIIC | 1 (5.3%) | ||
IV | 1 (5.3%) | ||
Surgery | |||
Mastectomy | 29 (54.7%) | 11 (57.9%) | 18 (52.9%) |
BCT | 24 (45.3%) | 8 (42.1%) | 16 (47.1%) |
Chemotherapy response | |||
pCR | 4 (21.1%) | ||
partial response | 7 (36.8%) | ||
stable disease | 6 (31.6%) | ||
progression | 2 (10.5%) |
Marker | All Samples (n = 53) | Biopsies from Patients with NACT (n = 19) | Surgical Samples from Patients Without NACT (n = 34) | p * |
---|---|---|---|---|
5-mC [%] | 2.129 ± 2.005 1.467 (0.009–7.937) | 0.570 ± 0.826 0.176 (0.008–3.237) | 3.000 ± 1.944 2.859 (0.010–7.937) | <0.0001 |
5-hmC [%] | 0.166 ± 0.175 0.106 (0.010–0.849) | 0.060 ± 0.072 0.026 (0.010–0.263) | 0.225 ± 0.189 0.239 (0.012–0.849) | <0.001 |
Marker | Response to NACT | ||||
---|---|---|---|---|---|
pCR (n = 4) | Partial Response (n = 7) | Stable Disease (n = 6) | Progression (n = 2) | p * | |
5-mC [%] | 0.095 (0.008–0.293) | 0.011 (0.010–1.441) | 0.582 (0.012–0.893) | 2.290 (1.343–3.237) | 0.129 |
5-hmC [%] | 0.019 (0.010–0.078) | 0.034 (0.010–0.127) | 0.013 (0.010–0.077) | 0.232 (0.200–0.263) | 0.080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarhonska, K.; Wichtowski, M.; Wow, T.; Kołacińska-Wow, A.; Płoszka, K.; Fendler, W.; Zawlik, I.; Paszek, S.; Zuchowska, A.; Jabłońska, E. DNA Methylation and Demethylation in Triple-Negative Breast Cancer: Associations with Clinicopathological Characteristics and the Chemotherapy Response. Biomedicines 2025, 13, 585. https://doi.org/10.3390/biomedicines13030585
Tarhonska K, Wichtowski M, Wow T, Kołacińska-Wow A, Płoszka K, Fendler W, Zawlik I, Paszek S, Zuchowska A, Jabłońska E. DNA Methylation and Demethylation in Triple-Negative Breast Cancer: Associations with Clinicopathological Characteristics and the Chemotherapy Response. Biomedicines. 2025; 13(3):585. https://doi.org/10.3390/biomedicines13030585
Chicago/Turabian StyleTarhonska, Kateryna, Mateusz Wichtowski, Thomas Wow, Agnieszka Kołacińska-Wow, Katarzyna Płoszka, Wojciech Fendler, Izabela Zawlik, Sylwia Paszek, Alina Zuchowska, and Ewa Jabłońska. 2025. "DNA Methylation and Demethylation in Triple-Negative Breast Cancer: Associations with Clinicopathological Characteristics and the Chemotherapy Response" Biomedicines 13, no. 3: 585. https://doi.org/10.3390/biomedicines13030585
APA StyleTarhonska, K., Wichtowski, M., Wow, T., Kołacińska-Wow, A., Płoszka, K., Fendler, W., Zawlik, I., Paszek, S., Zuchowska, A., & Jabłońska, E. (2025). DNA Methylation and Demethylation in Triple-Negative Breast Cancer: Associations with Clinicopathological Characteristics and the Chemotherapy Response. Biomedicines, 13(3), 585. https://doi.org/10.3390/biomedicines13030585