Selective Laser Sintering Fabricated Thermoplastic Polyurethane/Graphene Cellular Structures with Tailorable Properties and High Strain Sensitivity
"> Figure 1
<p>Correlation between percentage of porosity and C value for Diamond, Gyroid and Schwarz-based unit cells architectures.</p> "> Figure 2
<p>Visualization of the three designed porous structures. CAD-designs of the unit cells (left column); CAD-designs of 3 × 3 × 3 assembled structures (center column); photos of the TPU/GE SLS fabricated structures (right column).</p> "> Figure 3
<p>(<b>a</b>) Schematics of the microstructure of the fabricated porous TPU/GE composites (GE content 1.0 wt%), highlighting the percolated GE network at the interparticle boundary (red dashed line). SEM images of the (<b>b</b>) wall structure of the composite, and the (<b>c</b>) GE-wrapped TPU particle surface. (<b>d</b>,<b>e</b>) TEM images of the percolated GE network in the SLS-processed composites.</p> "> Figure 4
<p>Raman spectra of GE powder (black line), and TPU (green line) and GE (red line) in the TPU/GE G40 composite after SLS processing.</p> "> Figure 5
<p>(<b>a</b>) DSC and (<b>b</b>) TGA curves of SLS fabricated TPU and TPU/GE nanocomposite.</p> "> Figure 6
<p>(<b>a</b>) Compression stress-strain curves, and (<b>b</b>) compression elastic modulus of the SLS fabricated TPU/GE porous structures.</p> "> Figure 7
<p>Piezoresistive behavior of (<b>a</b>) TPU/GE D40, (<b>b</b>) TPU/GE G40, and (<b>c</b>) TPU/GE S40 under cyclic compression. (<b>d</b>) Resistance ratio and gauge factor of TPU/GE porous structures at 8% compression strain.</p> "> Figure 8
<p>Variation of gauge factor as a function of compression strain for the TPU/GE porous structures with: (<b>a</b>) Diamond, (<b>b</b>) Gyroid, and (<b>c</b>) Schwarz unit cells.</p> "> Figure 9
<p>(<b>a</b>) Piezoresistive behavior of TPU/GE S40 over 50-cycle compression test, and (<b>b</b>) resistance values at 8% strain as a function of time for all TPU/GE composite structures.</p> "> Figure 10
<p>Effect of porosity and geometry on the effective thermal conductivity of TPU/GE porous structures.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Thermoplastic Polyurethane/Graphene (TPU/GE) Nanocomposites Powder
2.2. Porous Structures Design by Triply Periodic Minimal Surfaces (TPMS)
2.3. Nanocomposite Porous Structure Realization by Selective Laser Sintering (SLS)
2.4. Scanning Electron Microscopy (SEM)
2.5. Transmission Electron Microscopy (TEM)
2.6. Thermal Properties
2.7. Raman Spectra Analysis
2.8. Mechanical and Piezoresistive Measurements
2.9. Thermal Conductivity Measurement
3. Results and Discussion
3.1. Design and Realization of the TPU/GE Porous Structures
3.2. Chemical-Physical and Morphological Characterization of the SLS Manufactured Foams
Thermal Properties
3.3. Mechanical and Piezoresistive Characterization
3.4. Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Wang, Z.; Gan, X.; Fu, D.; Fei, G.; Xia, H. Selective Laser Sintering 3D Printing: A Way to Construct 3D Electrically Conductive Segregated Network in Polymer Matrix. Macromol. Mater. Eng. 2017, 302, 1700211. [Google Scholar] [CrossRef]
- Lee, J.Y.; An, J.; Chua, C.K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Manapat, J.; Chen, Q.; Ye, P.; Advincula, R. 3D printing of polymer nanocomposites via stereolithography. Macromol. Mater. Eng. 2017, 302, 1600553. [Google Scholar] [CrossRef]
- Chen, J.; Mangadlao, J.; Wallat, A.; de Leon, J.; Pokorski, J.K.; Advincula, R. 3D printing biocompatible polyurethane/poly (lactic acid)/graphene oxide nanocomposites: Anisotropic properties. ACS Appl. Mater. Interfaces 2017, 9, 4015–4023. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.; Mo, X.; Teoh, S.; Hutcmacher, D. Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C 2002, 20, 49–56. [Google Scholar] [CrossRef]
- Palm, W. Rapid Prototyping Primer, Pennsylvania State University; The Learning Factory: University Park, PA, USA, 30 July 2002; Available online: https://www.me.psu.edu/lamancusa/rapidpro/primer/chapter2.htm (accessed on 28 February 2019).
- Petzold, R.; Zeilhofer, H.F.; Kalendar, W. Rapid protyping technology in medicine—basics and applications. Comput. Med. Imaging Graph. 1999, 23, 277–284. [Google Scholar] [CrossRef]
- Shuai, C.; Gao, C.; Feng, P.; Peng, S. Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering. RSC Adv. 2014, 4, 12782–12788. [Google Scholar] [CrossRef]
- Kruth, J.P.; Mercelis, P.; Van Vaerenbergh, J.; Froyen, L.; Rombouts, M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2005, 11, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S. Selective laser sintering: A qualitative and objective approach. Jom 2003, 55, 43–47. [Google Scholar] [CrossRef]
- Yuan, S.; Shen, F.; Bai, J.; Chua, C.K.; Wei, J.; Zhou, K. 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. Mater. Des. 2017, 120, 317–327. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Chen, J.; Huang, S. Experimental investigation into the selective laser sintering of high impact polystyrene. J. Appl. Polym. Sci. 2008, 108, 535–540. [Google Scholar] [CrossRef]
- Ho, H.C.H.; Gibson, I.; Cheung, W.L. Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J. Mater. Process. Technol. 1999, 89, 204–210. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Verbelen, L.; Tom, V.; Strobbe, D.; Van Puyvelde, P.; Kruth, J.P. Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer. Phys. Procedia 2016, 83, 971–980. [Google Scholar] [CrossRef]
- Yuan, S.; Zheng, Y.; Chua, C.K.; Yan, Q.; Zhou, K. Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Compos. Part A Appl. Sci. Manuf. 2018, 105, 203–213. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Reza, R.; Naguib, H. Porosity and composition dependence on electrical and piezoresistive properties of thermoplastic polyurethane nanocomposites. J. Mater. Res. 2013, 28, 2415–2425. [Google Scholar]
- Zhang, X.W.; Pan, Y.; Zheng, Q.; Yi, X.S. Time dependence of piezoresistance for the conductor-filled polymer composites. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 2739–2749. [Google Scholar] [CrossRef]
- Wang, L.; Ding, T.; Wang, P. Thin flexible pressure sensor array based on carbon black/silicone rubber nanocomposite. IEEE Sens. J. 2009, 9, 1130–1135. [Google Scholar] [CrossRef]
- Tao, J.; Liu, N.; Ma, W.; Ding, L.; Li, L.; Su, J.; Gao, Y. Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure. Sci. Rep. 2013, 3, 2286. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Vosguerichian, M.; Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727–1752. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Zheng, G.; Dai, K.; Liu, C.; Yan, X.; Shen, C.; Guo, Z. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl. Mater. Interfaces 2016, 8, 14150–14159. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Yadav, S.K.; Agrawal, B.; Goyal, R.N. A novel graphene and conductive polymer modified pyrolytic graphite sensor for determination of propranolol in biological fluids. Sens. Actuators B Chem. 2014, 204, 791–798. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the elastic properties of intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Tadakaluru, S.; Thongsuwan, W.; Singjai, P. Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 2014, 14, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Nelson, J.K.; Hillborg, H.; Zhao, S.; Schadler, L.S. Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv. Mater. 2012, 24, 3134–3137. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Su, S.; Song, N.; Tang, S.; Liu, Y.; Shi, L. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 2014, 66, 576–584. [Google Scholar] [CrossRef]
- Zhan, Y.; Lavorgna, M.; Buonocore, G.; Xia, H. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J. Mater. Chem. 2012, 22, 10464–10468. [Google Scholar] [CrossRef]
- Koerner, H.; Price, G.; Pearce, N.A.; Alexander, M.; Vaia, R.A. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 2004, 3, 115. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.W.; Kim, J.W.; Jung, Y.C.; Goo, N.S. Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol. Rapid Commun. 2005, 26, 412–416. [Google Scholar] [CrossRef]
- Raasch, J.; Ivey, M.; Aldrich, D.; Nobes, D.S.; Ayranci, C. Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Addit. Manuf. 2015, 8, 132–141. [Google Scholar] [CrossRef]
- Gandy, P.J.; Klinowski, J. Exact computation of the triply periodic G (Gyroid’) minimal surface. Chem. Phys. Lett. 2000, 321, 363–371. [Google Scholar] [CrossRef]
- Gandy, P.J.; Cvijović, D.; Mackay, A.L.; Klinowski, J. Exact computation of the triply periodic D (diamond’) minimal surface. Chem. Phys. Lett. 1999, 314, 543–551. [Google Scholar] [CrossRef]
- Shin, J.; Kim, S.; Jeong, D.; Lee, H.G.; Lee, D.; Lim, J.Y.; Kim, J. Finite element analysis of Schwarz P surface pore geometries for tissue-engineered scaffolds. Math. Probl. Eng. 2012, 2012, 694194. [Google Scholar] [CrossRef]
- Baratha, K.V.; Nourry, A.; Pilard, J.F. Synthesis of NR based Polyurethanes containing phosphorylated polymers as chain extenders. Eur. Polym. J. 2015, 70, 317–330. [Google Scholar] [CrossRef]
- Castaldo, R.; Lama, G.C.; Aprea, P.; Gentile, G.; Lavorgna, M.; Ambrogi, V.; Cerruti, P. Effect of the oxidation degree on self-assembly, adsorption and barrier properties of nano-graphene. Micropor. Mesopor. Mater. 2018, 260, 102–115. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed]
- Aïssa, B.; Memon, N.K.; Ali, A.; Khraisheh, M.K. Recent progress in the growth and applications of graphene as a smart material: A review. Front. Mater. 2015, 2, 58. [Google Scholar] [CrossRef]
- Frick, A.; Rochman, A. Characterization of TPU-elastomers by thermal analysis (DSC). Polym. Test. 2004, 23, 413–417. [Google Scholar] [CrossRef]
- Liu, H.; Dong, M.; Huang, W.; Gao, J.; Dai, K.; Guo, J.; Guo, Z. Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C 2017, 5, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Wei, S.; Li, Y.; Sun, L.; Haldolaarachchige, N.; Young, D.P.; Southwork, C.; Khsanov, A.; Luo, Z.; Guo, Z. Surfactant-free synthesized magnetic polypropylene nanocomposites: Rheological, electrical, magnetic, and thermal properties. Macromolecules 2011, 44, 4382–4391. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, Z. Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 2016, 4, 157–166. [Google Scholar] [CrossRef]
- Liu, H.; Huang, W.; Yang, X.; Dai, K.; Zheng, G.; Liu, C.; Guo, Z. Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene nanocomposites. J. Mater. Chem. C 2016, 4, 4459–4469. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Song, L.; Yang, H.; Xing, W.; Lu, H. In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 2011, 21, 4222–4227. [Google Scholar] [CrossRef]
- Hodlur, R.M.; Rabinal, M.K. Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos. Sci. Technol. 2014, 90, 160–165. [Google Scholar] [CrossRef]
- Yang, L.; Wang, R.; Song, Q.; Liu, Y.; Zhao, Q.; Shen, Y. One-pot preparation of porous piezoresistive sensor with high strain sensitivity via emulsion-templated polymerization. Compos. Part A Appl. Sci. Manuf. 2017, 101, 195–198. [Google Scholar] [CrossRef]
- Wang, M.; Pan, N. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int. J. Heat Mass Transf. 2008, 51, 1325–1331. [Google Scholar] [CrossRef]
Process Parameters | Value |
---|---|
Laser power (W) | 60 |
Laser scan spacing (μm) | 100 |
Laser scan speed (m/s) | 7.6 |
Part bed temperature (°C) | 95 |
Powder feed temperature (°C) | 65 |
Outline laser power (W) | 5 |
Layer thickness (μm) | 150 |
Sample | σ (S/m) | ρ (Ω∙m) | R0/R8 | ||
---|---|---|---|---|---|
0% | 8% | 0% | 8% | ||
D40 | 3.49 × 10−5 ± 8.48 × 10−6 | 1.86 × 10−4 ± 5.59 × 10−6 | 3.03 × 104 ± 7.89 × 103 | 5.38 × 103 ± 1.67 × 102 | 6.12 ± 1.65 |
D60 | 5.01 × 10−6 ± 1.77 × 10−6 | 2.72 × 10−5 ± 1.16 × 10−6 | 2.14 × 105 ± 4.83 × 104 | 3.69 × 104 ± 2.83 × 103 | 6.33 ± 1.41 |
D80 | N.A. | N.A. | N.A. | N.A. | N.A. |
G40 | 3.00 × 10−5 ± 3.42 × 10−6 | 1.80 × 10−4 ± 6.58 × 10−6 | 2.52 × 104 ± 2.32 × 103 | 5.55 × 103 ± 2.02 × 102 | 4.95 ± 0.50 |
G60 | 1.76 × 10−5 ± 9.25 × 10−7 | 7.51 × 10−5 ± 4.80 × 10−6 | 5.70 × 104 ± 3.08 × 103 | 1.34 × 104 ± 9.59 × 102 | 4.66 ± 0.46 |
G80 | 1.32 × 10−5 ± 3.67 × 10−7 | 2.68 × 10−5 ± 2.06 × 10−6 | 7.60 × 104 ± 2.13 × 103 | 3.75 × 104 ± 3.07 × 103 | 2.21 ± 0.20 |
S40 | 1.17 × 10−5 ± 5.67 × 10−7 | 1.15 × 10−3 ± 1.23 × 10−5 | 8.53 × 104 ± 3.99 × 103 | 8.69 × 102 ± 9.25 × 100 | 106.80 ± 5.47 |
S60 | 4.86 × 10−6 ± 9.32 × 10−7 | 5.28 × 10−4 ± 2.25 × 10−5 | 2.12 × 105 ± 3.61 × 104 | 1.90 × 103 ± 8.01 × 101 | 117.29 ± 4.77 |
S80 | 1.50 × 10−6 ± 1.34 × 10−7 | 2.49 × 10−5 ± 1.64 × 10−6 | 6.74 × 105 ± 6.48 × 104 | 4.04 × 104 ± 2.64 × 103 | 18.7 ± 2.82 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronca, A.; Rollo, G.; Cerruti, P.; Fei, G.; Gan, X.; Buonocore, G.G.; Lavorgna, M.; Xia, H.; Silvestre, C.; Ambrosio, L. Selective Laser Sintering Fabricated Thermoplastic Polyurethane/Graphene Cellular Structures with Tailorable Properties and High Strain Sensitivity. Appl. Sci. 2019, 9, 864. https://doi.org/10.3390/app9050864
Ronca A, Rollo G, Cerruti P, Fei G, Gan X, Buonocore GG, Lavorgna M, Xia H, Silvestre C, Ambrosio L. Selective Laser Sintering Fabricated Thermoplastic Polyurethane/Graphene Cellular Structures with Tailorable Properties and High Strain Sensitivity. Applied Sciences. 2019; 9(5):864. https://doi.org/10.3390/app9050864
Chicago/Turabian StyleRonca, Alfredo, Gennaro Rollo, Pierfrancesco Cerruti, Guoxia Fei, Xinpeng Gan, Giovanna G. Buonocore, Marino Lavorgna, Hesheng Xia, Clara Silvestre, and Luigi Ambrosio. 2019. "Selective Laser Sintering Fabricated Thermoplastic Polyurethane/Graphene Cellular Structures with Tailorable Properties and High Strain Sensitivity" Applied Sciences 9, no. 5: 864. https://doi.org/10.3390/app9050864