Advancements in Nanostructured Functional Constituent Materials for Gas Sensing Applications: A Comprehensive Review
<p>Schematic diagram of the sensing mechanism of n-type semiconducting metal oxide nanostructures for reducing gas (reproduced from [<a href="#B36-applsci-15-02522" class="html-bibr">36</a>], MDPI, 2020).</p> "> Figure 2
<p>The mechanism of free charge flow and changes in the resistance of MOS gas sensors depending on the type of sensor material and analyte (reproduced from [<a href="#B38-applsci-15-02522" class="html-bibr">38</a>] MDPI, 2023).</p> "> Figure 3
<p>Schematic representation of the surface of n-type MOS with ionosorbed oxygen species (<b>b</b>) and after its interaction with reducing gas CO (<b>c</b>) and oxidizing gas NO<sub>2</sub> (<b>a</b>) within the chemisorption model of sensor response (<b>top</b>). The corresponding modulation of band energy levels (<b>bottom</b>) (reproduced from [<a href="#B40-applsci-15-02522" class="html-bibr">40</a>] MDPI, 2021).</p> "> Figure 4
<p>The effect of different (nano) structuring approaches on the active surface of a thin film solid-state gas sensor layer.</p> "> Figure 5
<p>Synthesis of hierarchical nanostructured ZnO nanorods decorated with Pd, and the proposed ethanol sensing mechanism (reproduced from [<a href="#B50-applsci-15-02522" class="html-bibr">50</a>], MDPI, 2023).</p> "> Figure 6
<p>(<b>A</b>) FE-SEM images of the gas sensors are shown. (<b>a</b>,<b>b</b>) are the results of the hydrothermal synthesis. (<b>c</b>,<b>d</b>) are TiO<sub>2</sub> NRs and Pt NPs of Sensor A. (<b>e</b>,<b>f</b>) are TiO<sub>2</sub> NRs and Pt NPs of Sensor B. (<b>g</b>,<b>h</b>) are TiO<sub>2</sub> NRs and Pt NPs of Sensor C. The inset in (<b>f</b>) shows an enlarged image to clearly display the Pt NPs on the TiO<sub>2</sub> NRs. The red arrows indicate Pt NPs. The green arrows in (<b>c</b>) indicate chunks of Pt agglomerated together on the top surface of TiO<sub>2</sub> NRs. (<b>B</b>) Proposed sensing mechanisms are depicted. Photoelectrochemical activities for sensing NO<sub>2</sub> with respect to time of annealing TiO<sub>2</sub> are shown. (<b>a</b>) is the schematic of Sensor A, which did not have an annealing process to TiO<sub>2</sub>. (<b>b</b>,<b>c</b>) suggest the working mechanisms of Sensor B and Sensor C, of which TiO<sub>2</sub> NRs were annealed for 1 h and 2 h, respectively. e<sup>−</sup> and h<sup>+</sup> indicate electron and hole, respectively (reproduced from [<a href="#B57-applsci-15-02522" class="html-bibr">57</a>], MDPI, 2021).</p> "> Figure 7
<p>(<b>a</b>) SEM and (<b>b</b>) HR-SEM images of the as-obtained samples. HR-SEM images of the samples annealed at (<b>c</b>) 205 °C and (<b>d</b>) 450 °C (reproduced from [<a href="#B66-applsci-15-02522" class="html-bibr">66</a>], MDPI, 2022).</p> "> Figure 8
<p>Visual representation of charge transfers in carrageenan film generated by applied force. (<b>a</b>) Visual representation of carrageenan film with iron (III) oxide particles; (<b>b</b>) charge generation in prepared film and the release of charge-carrying particles due to force; (<b>c</b>) visual representation of experiment scheme of film under short-term mechanical load (reproduced from [<a href="#B73-applsci-15-02522" class="html-bibr">73</a>], MDPI, 2024).</p> "> Figure 9
<p>(<b>top</b>): SEM images of tin oxide nanofibers and nanoribbons doped with PG after calcination at 450 °C. (<b>a</b>) Low and (<b>b</b>) high magnifications. (<b>bottom</b>): Sensor responses to 2 ppm ethanol, 4 ppm acetone, 5 ppm CO, and 100 ppb NO at different operating temperatures (25, 100, 200, and 300 °C) (reproduced from [<a href="#B82-applsci-15-02522" class="html-bibr">82</a>], MDPI, 2020).</p> "> Figure 10
<p>(<b>top</b>): (<b>a</b>) TEM images of the In<sub>2</sub>O<sub>3</sub> thin film deposited at 500 °C. (<b>b</b>) SAED of the In<sub>2</sub>O<sub>3</sub> thin film deposited at 500 °C. (<b>bottom</b>): Repeatability of indium oxide thin films sprayed at 500 °C toward 50 ppm toluene (reproduced from [<a href="#B92-applsci-15-02522" class="html-bibr">92</a>], ACS, 2021).</p> "> Figure 11
<p>SEM images of (<b>a</b>) as-grown α-MoO<sub>3</sub> nanoribbon network on SiO<sub>2</sub>/Si interdigitated substrate and (<b>b</b>) sulfurized α-MoO<sub>3</sub> nanoribbons. Insets in (<b>a</b>,<b>b</b>) show corresponding optical micrographs. High-resolution SEM images of (<b>c</b>) as-grown α-MoO<sub>3</sub> and (<b>d</b>) sulfurized α-MoO<sub>3</sub>. The inset in (<b>d</b>) is a magnified view of an individual sulfurized MoO<sub>3</sub> nanoribbon (reproduced from [<a href="#B102-applsci-15-02522" class="html-bibr">102</a>], MDPI, 2022).</p> ">
Abstract
:1. Background of Nanostructured Materials for Gas Sensors
1.1. Nanostructured Metal Oxides
1.2. Fabrication Techniques for 1D Nanostructures
1.3. Configuration of Gas Sensors and Performance Indicators
2. Mechanisms Suitable for Gas Sensing of Nanostructured Materials
3. Segmentation of Nanostructured Materials for Gas Sensing
3.1. Zinc Oxide (ZnO)
3.2. Titanium Oxide (TiO2)
3.3. Copper Oxide (CuO)
3.4. Iron Oxides (Fe2O3 and Fe3O4)
3.5. Tin Oxide (SnO2)
3.6. Indium Oxide (In2O3)
3.7. Molybdenum Oxide (MoO3)
3.8. Mixed Metal Oxides and Other Systems
Metal Oxides | Sensitive Gases | Sensitivity Characteristics | Limit of Detection (LOD) | Operating Temperature Range | Light Use During Test |
---|---|---|---|---|---|
ZnO | CO, H2, NO2, NH3 | High sensitivity to NO2 and NH3, enhanced by nanostructures (nanowires, nanoparticles) and doping with Al, Ga, and In. | ~7 ppb for NO2 [43] Specific LOD varies | 200–400 °C | Not typically used |
TiO2 | VOCs, NOx, H2S | Strong sensitivity to VOCs and NO2, improved by UV activation; doping with Pt or N enhances recovery time. | ~15 ppb for NO2 [53] Specific LOD varies | RT-300 °C; UV activation can enable lower T | UV light enhances sensitivity |
CuO | CO, CH4, H2, NH3 | Effective for reducing gases like H2 and CO; p-type behavior enables selective detection with Zn or Sn doping. | ~8 ppb for CO [61] Specific LOD varies | 200–400 °C | Not typically used |
Fe2O3, Fe3O4 | H2, CO, NOx | Chemically stable; high sensitivity to CO and NO2 when Sn- or Ni-doped; nanostructuring enhances response rate. | ~1 ppm for H2S [69] Specific LOD varies | 200–400 °C | Not typically used |
SnO2 | H2, CO, VOCs | Highly sensitive to reducing gases like CO and H2; doping with Pt or Pd improves selectivity and response time. | ~10 ppb for H2 [74] Specific LOD varies | 200–400 °C | Not typically used |
In2O3 | NO2, O3, CO2 | Sensitive to oxidizing gases like NO2 and O3; Sn and Zn doping improves response to low-concentration gases. | ~10 ppb for NO2 [83] Specific LOD varies | 145 °C | Not typically used |
MoO3 | NH3, H2, NOx | Versatile for oxidizing and reducing gases; V and Cr doping enhances selectivity; nanostructuring yields faster response. | ~20 ppb for H2 [90] Specific LOD varies | 200–400 °C | Not typically used |
ZnO-CuO | H2, CO, NH3 | High sensitivity to reducing gases; the p-n junction formed enhances charge separation and improves response time. | 15 ppb for H2 [109] Specific LOD varies | 200–400 °C | Not typically used |
SnO2-TiO2 | NO2, VOCs | Enhanced sensitivity due to improved charge transfer; effective for detecting low concentrations of NO2. | ~50 ppm for VOCs [110] Specific LOD varies | 200–400 °C | Not typically used |
Fe2O3-SnO2 | CO, H2, NOx | High stability and sensitivity to CO; doping with Sn enhances selectivity and reduces response times in fluctuating environments. | ~20 ppm for acetone [107] Specific LOD varies | 200–400 °C | Not typically used |
ZnO-SnO2 | H2, CO, VOCs | Synergistic effects improve sensitivity to various gases; effective under low-temperature conditions. | ~1 ppm for CO [111] Specific LOD varies | 200–400 °C | Not typically used |
In2O3-TiO2 | NO2, CO, O3 | High sensitivity to oxidizing gases; doping with Sn improves selectivity and lowers detection limits for environmental monitoring. | ~10 ppm for NO2 [112] Specific LOD varies | 200–400 °C | Not typically used |
CuO-Fe2O3 | H2, CO, CH4 | Good response to reducing gases; the combination offers improved selectivity/stability due to the electronic properties of both oxides. | ~2 ppm for H2 [106] Specific LOD varies | 200–400 °C | Not typically used |
TiO2-MoO3 | NH3, NOx, VOCs | Enhanced sensitivity and response times, particularly in detecting NH3; doping further optimizes selectivity. | ~100 ppm for NH3 [113] Specific LOD varies | 200–400 °C | Not typically used |
SnO2-CuO | CO, H2, CH4 | High sensitivity to reducing gases; synergistic effect improves response time and stability under varying conditions. | ~70 ppb for H2 [114] Specific LOD varies | 200–400 °C | Not typically used |
4. Future Directions and Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Santhanaraj, G.; Alagarasym, M.; Vedhi, C. Microwave-assisted Synthesis and Characterization of Metal Oxide Nanoparticles for Biological and Electrochemical Applications. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Lenar, N.; Piech, R.; Wardak, C.; Paczosa-Bator, B. Application of Metal Oxide Nanoparticles in the Field of Potentiometric Sensors: A Review. Membranes 2023, 13, 876. [Google Scholar] [CrossRef]
- Rao, S.K.; Kumar Rajagopal, R.; Chandrasekaran, G. Fiber Optic Sensors for Gas Detection: An Overview on Spin Frustrated Multiferroics in Metal-Oxide Gas. In Gas Sensors; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- He, X.; Chai, H.; Luo, Y.; Min, L.; Zhang, C. Metal oxide semiconductor gas sensing materials for early lung cancer diagnosis. J. Adv. Ceram. 2023, 12, 207–227. [Google Scholar] [CrossRef]
- Chakraborty, N.; Mondal, S. Dopant-mediated surface charge imbalance for enhancing the performance of metal oxide chemiresistive gas sensors. J. Mater. Chem. C 2022, 10, 1968–1976. [Google Scholar] [CrossRef]
- Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I. Nanostructured Metal Oxide-Based Acetone Gas Sensors: A Review. Sensors 2020, 20, 2096. [Google Scholar] [CrossRef] [PubMed]
- Masikini, M.; Chowdhury, M.; Nemraoui, O. Metal oxides: Application in exhaled breath acetone chemiresistive sensors. J. Electrochem. Soc. 2020, 167, 037537. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [PubMed]
- Krishna, K.G.; Parne, S.; Pothukanuri, N.; Kathirvelu, V.; Gandi, S.; Joshi, D. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sens. Actuators A Phys. 2022, 341, 113578. [Google Scholar] [CrossRef]
- Shanmugasundaram, A.; Basak, P.; Satyanarayana, L.; Manorama, S.V. Hierarchical SnO/SnO2 nanocomposites: Formation of in situ p-n junctions and enhanced H2 sensing. Sens. Actuators B Chem. 2013, 185, 265–273. [Google Scholar] [CrossRef]
- Zappa, D.; Galstyan, V.; Kaur, N.; Munasinghe Arachchige, H.M.M.; Sisman, O.; Comini, E. Metal oxide -based heterostructures for gas sensors—A review. Anal. Chim. Acta 2018, 1039, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Stolz, R.M.; Mendecki, L.; Mirica, K.A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598. [Google Scholar] [CrossRef]
- Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: Definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar] [CrossRef]
- Electrochemical Sensor Market-Growth, Trends, COVID-19 Impact, and Forecasts (2021–2026). Available online: https://www.mordorintelligence.com/industry-reports/global-electrochemical-sensors-market-industry (accessed on 15 October 2024).
- Wong, M.S. Nanostructured Supported Metal Oxides. In Metal Oxides: Chemistry and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 31–54. [Google Scholar]
- Grilli, M.L. Metal Oxides. Metals 2020, 10, 820. [Google Scholar] [CrossRef]
- Fazio, E.; Mezzasalma, A.M.; Mondio, G.; Serafino, T.; Barreca, F.; Caridi, F. Optical and structural properties of pulsed laser ablation deposited ZnO thin film. Appl. Surf. Sci. 2011, 257, 2298–2302. [Google Scholar] [CrossRef]
- Silipigni, L.; Barreca, F.; Fazio, E.; Neri, F.; Spanò, T.; Piazza, S.; Sunseri, C.; Inguanta, R. Template Electrochemical Growth and Properties of Mo Oxide Nanostructures. J. Phys. Chem. C 2014, 118, 22299–22308. [Google Scholar] [CrossRef]
- Huang, A.; He, Y.; Zhou, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Luo, L.; Mao, Q.; Hou, D.; Yang, J. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J. Mater. Sci. 2019, 54, 949–973. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Ruiz, A.; Arbiol, J.; Cirera, A.; Cornet, A.; Morante, J.R. Surface activation by Pt-nanoclusters on titania for gas sensing applications. Mater. Sci. Eng. C 2002, 19, 105–109. [Google Scholar] [CrossRef]
- Ding, J.; Chen, S.; Xie, M.; Li, F.; Li, J.; Zhen, L.; Wang, Y. Defective WO3 Nanosheets with (002)-Exposed Facet for Highly Sensitive Acetone Detection. ACS Appl. Nano Mat. 2023, 6, 12211–12218. [Google Scholar] [CrossRef]
- Hoa, N.D.; Duy, N.V.; El-Safty, S.A.; Hieu, N.V. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications. J. Nanomater. 2015, 2015, 972025. [Google Scholar] [CrossRef]
- Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A new detector for gaseous components using semiconductive thin films. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Mirzaei, A.; Ansari, H.R.; Shabaz, M.; Kim, J.Y.; Kim, H.W.; Kim, S.S. Metal oxide semiconductor gas sensors with different morphologies. Chemosensors 2022, 17, 289. [Google Scholar] [CrossRef]
- Vuong, N.M.; Kim, D.; Kim, H. Surface gas sensing kinetics of a WO3 nanowire sensor: Part 2—Reducing gases. Sens. Actuators B Chem. 2016, 224, 425–433. [Google Scholar] [CrossRef]
- Vuong, N.M.; Kim, D.; Kim, H. Surface gas sensing kinetics of a WO3 nanowire sensor: Part 1—Oxidizing gases. Sens. Actuators B Chem. 2015, 220, 932–941. [Google Scholar] [CrossRef]
- Cao, P.-J.; Li, M.; Rao, C.N.; Han, S.; Xu, W.-Y.; Fang, M.; Liu, X.-K.; Zeng, Y.-X.; Liu, W.-J.; Zhu, D.-L.; et al. High sensitivity NO2 gas sensor based on 3D WO3 microflowers assembled by numerous nanoplates. J. Nanosci. Nanotechnol. 2020, 20, 1790–1798. [Google Scholar] [CrossRef]
- Eranna, G.; Joshi, B.C.; Runthala, D.P.; Gupta, R.P. Oxide Materials for Development of Integrated Gas Sensors. Crit. Rev. Solid State Mater. Sci. 2004, 29, 111–188. [Google Scholar] [CrossRef]
- Xu, K.; Fu, C.; Gao, Z.; Wei, F.; Ying, Y.; Xu, C.; Fu, G. Nanomaterial-based gas sensors: A review. Instrum. Sci. Technol. 2018, 46, 115–145. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Y.; Wang, W.; Zhang, X.; Wang, B.; Tian, H.; Wang, Y.; Guan, J.; Gu, H. Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature. Int. J. Hydrogen Energy 2012, 37, 4526–4532. [Google Scholar] [CrossRef]
- Qu, F.; Zhou, X.; Zhang, B.; Zhang, S.; Jiang, C.; Ruan, S.; Yang, M. Fe2O3 nanoparticles-decorated MoO3 nanobelts for enhanced chemiresistive gas sensing. J. Alloys Compd. 2019, 782, 672–678. [Google Scholar] [CrossRef]
- Mirzaei, A.; Sun, G.-J.; Lee, J.K.; Lee, C.; Choi, S.; Kim, H.W. Hydrogen sensing properties and mechanism of NiO-Nb2O5 composite nanoparticle-based electrical gas sensors. Ceram. Int. 2017, 43, 5247–5254. [Google Scholar] [CrossRef]
- Park, S.; Sun, G.-J.; Kheel, H.; Hyun, S.K.; Jin, C.; Lee, C. Hydrogen gas sensing of Co3O4-Decorated WO3 nanowires. Met. Mater. Int. 2016, 22, 156–162. [Google Scholar] [CrossRef]
- Liang, X.; Kim, T.-H.; Yoon, J.-W.; Kwak, C.-H.; Lee, J.-H. Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating. Sens. Actuators B Chem. 2015, 209, 934–942. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor gas sensors: Materials, technology, design, and application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef]
- Mei, H.; Peng, J.; Wang, T.; Zhou, T.; Zhao, H.; Zhang, T.; Yang, Z. Overcoming the limits of cross-sensitivity: Pattern recognition methods for chemiresistive gas sensor array. Nano Micro Lett. 2024, 16, 269. [Google Scholar] [CrossRef]
- Wawrzyniak, J. Advancements in Improving Selectivity of Metal Oxide Semiconductor Gas Sensors Opening New Perspectives for Their Application in Food Industry. Sensors 2023, 23, 9548. [Google Scholar] [CrossRef]
- Lee, G.; Yang, G.; Cho, A.; Han, J.W.; Kim, J. Defect-engineered graphene chemical sensors with ultrahigh sensitivity. J. Phys. Chem. Chem. Phys. 2016, 18, 14198. [Google Scholar] [CrossRef] [PubMed]
- Marikutsa, A.; Rumyantseva, M.; Konstantinova, E.A.; Gaskov, A. The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials. Sensors 2021, 21, 2554. [Google Scholar] [CrossRef]
- Katoch, A.; Sun, G.J.; Choi, S.W.; Byun, J.H.; Kim, S.S. Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens. Actuators B Chem. 2013, 185, 411–416. [Google Scholar] [CrossRef]
- Liu, S.; Yang, W.; Liu, L.; Chen, H.R.; Liu, Y. Enhanced H2S Gas-Sensing Performance of Ni-Doped ZnO Nanowire Arrays. ACS Omega 2023, 8, 7595–7601. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Luo, Y.; Zheng, Z.; Liu, K.; He, X.; Wu, K.; Debliquy, M.; Zhang, C. Urchin-like Na-doped zinc oxide nanoneedles for low-concentration and exclusive VOC detections. J. Adv. Ceram. 2024, 13, 507–517. [Google Scholar] [CrossRef]
- Wang, L.; Choi, J. Improved recovery of NO2 sensors using heterojunctions between transition metal dichalcogenides and ZnO nanoparticles. Micro Nano Syst. Lett. 2023, 11, 5. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Wang, J.; Hu, C.; Xia, Y.; Zhang, B. Mesoporous ZnO nanosheets with rich surface oxygen vacancies for UV-activated methane gas sensing at room temperature. Sens. Actuators B Chem. 2021, 333, 129547. [Google Scholar] [CrossRef]
- Bhati, V.S.; Hojamberdiev, M.; Kumar, M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 2020, 6, 46–62. [Google Scholar] [CrossRef]
- Tamvakos, A.; Calestani, D.; Tamvakos, D.; Mosca, R.; Pullini, D.; Pruna, A. Effect of grain-size on the ethanol vapor sensing properties of room-temperature sputtered ZnO thin films. Microchim. Acta 2015, 182, 1991–1999. [Google Scholar] [CrossRef]
- Cui, J.; Shi, L.; Xie, T.; Wang, D.; Lin, Y. UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sens. Actuators B Chem. 2016, 227, 220–226. [Google Scholar] [CrossRef]
- Knoepfel, A.; Poudel, B.; Gupta, S. Surface-Catalyzed Zinc Oxide Nanorods and Interconnected Tetrapods as Efficient Methane Gas Sensing Platforms. Chemosensors 2023, 11, 506. [Google Scholar] [CrossRef]
- Phan, D.T.; Chung, G.S. Effects of different morphologies of ZnO films on hydrogen sensing properties. J. Electroceram. 2014, 32, 353–360. [Google Scholar] [CrossRef]
- Garzella, C.; Comini, E.; Tempesti, E.; Frigeri, C.; Sberveglieri, G. TiO2 thin films by a novel sol-gel processing for gas sensor applications. Sens. Actuators B Chem. 2000, 68, 189–196. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, M.; Dong, D.; Pan, X.; Zhou, Y.; Han, S.T.; Xu, Z.; Wang, W.; Yan, Y. TiO2 based sensor with butterfly wing configurations for fast acetone detection at room temperature. J. Mater. Chem. C 2019, 7, 11118–11125. [Google Scholar] [CrossRef]
- Viter, R.; Tereshchenko, A.; Smyntyna, V.; Ogorodniichuk, J.; Starodub, N.; Yakimova, R.; Khranovskyy, V.; Ramanavicius, A. Toward Development of Optical Biosensors Based on Photoluminescence of TiO2 Nanoparticles for the Detection of Salmonella. Sens. Actuators B Chem. 2017, 252, 95–102. [Google Scholar] [CrossRef]
- Haryński, Ł.; Grochowska, K.; Karczewski, J.; Ryl, J.; Siuzdak, K. Scalable Route Toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 3225–3235. [Google Scholar] [CrossRef] [PubMed]
- Gardon, M.; Monereo, O.; Dosta, S.; Vescio, G.; Cirera, A.; Guilemany, J.M. New Procedures for Building-up the Active Layer of Gas Sensors on Flexible Polymers. Surf. Coat. Technol. 2013, 235, 848–852. [Google Scholar] [CrossRef]
- Noh, J.; Kwon, S.H.; Park, S.; Kim, K.K.; Yoon, Y.J. TiO2 Nanorods and Pt Nanoparticles under a UV-LED for an NO2 Gas Sensor at Room Temperature. Sensors 2021, 21, 1286. [Google Scholar] [CrossRef] [PubMed]
- Imawan, C.; Solzbacher, F.; Steffes, H.; Obermeier, E. TiOx-Modified NiO Thin Films for H2 Gas Sensors: Effects of TiOx-Overlayer Sputtering Parameters. Sens. Actuators B Chem. 2000, 68, 184–188. [Google Scholar] [CrossRef]
- Navale, S.T.; Yang, Z.B.; Liu, C.; Cao, P.J.; Patil, V.B.; Ramgir, N.S.; Mane, R.S.; Stadler, F.J. Enhanced Acetone Sensing Properties of Titanium Dioxide Nanoparticles with a Sub-Ppm Detection Limit. Sens. Actuators B Chem. 2018, 255, 1701–1710. [Google Scholar] [CrossRef]
- Gao, X.; Li, Y.; Zeng, W.; Zhang, C.; Wei, Y. Hydrothermal Synthesis of Agglomerating TiO2 Nanoflowers and Its Gas Sensing. J. Mater. Sci. Mater. Electron. 2017, 28, 18781–18786. [Google Scholar] [CrossRef]
- Nunes, D.; Pimentel, A.; Gonçalves, A.; Pereira, S.; Branquinho, R.; Barquinha, P.; Fortunato, E.; Martins, R. Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 2019, 34, 043001. [Google Scholar] [CrossRef]
- Bai, M.; Li, C.; Zhao, X.; Wang, Y.; Pan, Q. Controllable Synthesis of Sheet-Flower ZnO for Low Temperature NO2 Sensor. Nanomaterials 2023, 13, 1413. [Google Scholar] [CrossRef]
- Moseley, P.T. Progress in the development of semiconducting metal oxide gas sensors: A review. Meas. Sci. Technol. 2017, 28, 082001. [Google Scholar] [CrossRef]
- Pakdel, H.; Borsi, M.; Ponzoni, M.; Comini, E. Enhanced Gas Sensing Performance of CuO-ZnO Composite Nanostructures for Low-Concentration NO2 Detection. Chemosensors 2024, 12, 54. [Google Scholar] [CrossRef]
- Xu, J.; Yao, X.; Wei, W.; Wang, Z.; Yu, R. Multi-shelled copper oxide hollow spheres and their gas sensing properties. Mater. Res. Bull. 2017, 87, 214–2180. [Google Scholar] [CrossRef]
- Claros, M.; Gracia, I.; Figueras, E.; Vallejos, S. Hydrothermal Synthesis and Annealing Effect on the Properties of Gas-Sensitive Copper Oxide Nanowires. Chemosensors 2022, 10, 353. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, C.; Li, L.; Du, C.; Li, X.; Kang, X.F.; Chen, W. CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance. Talanta 2018, 188, 41–49. [Google Scholar] [CrossRef]
- Hemalatha, T.; Akilandeswari, S.; Krishnakumar, T.; Leonardi, S.G.; Neri, G.; Donato, N. Comparison of Electrical and Sensing Properties of Pure, Sn- and Zn-Doped CuO Gas Sensors. IEEE Trans. Instrum. Meas. 2019, 68, 903–912. [Google Scholar] [CrossRef]
- Siebert, L.; Lupan, O.; Mirabelli, M.; Ababii, N.; Terasa, M.I.; Kaps, S.; Cretu, V.; Vahl, A.; Faupel, F.; Adelung, R. 3D-Printed Chemiresistive Sensor Array on Nanowire CuO/Cu2O/Cu Heterojunction Nets. ACS Appl. Mater. Interfaces 2019, 11, 25508–25515. [Google Scholar] [CrossRef] [PubMed]
- Haridas, V.; Sukhananazerin, A.; Sneha, J.M.; Pullithadathil, B.; Narayanan, B. α-Fe2O3 loaded less-defective graphene sheets as chemiresistive gas sensor for selective sensing of NH3. Appl. Surf. Sci. 2020, 517, 146158. [Google Scholar] [CrossRef]
- Patekari, M.D.; Pawar, K.K.; Salunkhe, G.B.; Kodam, P.M.; Padvi, M.N.; Waifalkar, P.P.; Sharma, K.K.; Patil, P.S. Synthesis of Maghemite nanoparticles for highly sensitive and selective NO2 sensing. Mater. Sci. Eng. B 2021, 272, 115339. [Google Scholar] [CrossRef]
- Trushkina, Y.; Tai, C.-W.; Salazar-Alvarez, G. Fabrication of Maghemite Nanoparticles with High Surface Area. Nanomaterials 2019, 9, 1004. [Google Scholar] [CrossRef]
- Bučinskas, V.; Udris, D.; Dzedzickis, A.; Petroniene, J.J. Piezoelectric Behaviour in Biodegradable Carrageenan and Iron (III) Oxide Based Sensor. Sensors 2024, 24, 4622. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wu, G.; Wang, L. Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol. 2015, 269, 443–451. [Google Scholar] [CrossRef]
- Kim, W.; Lee, J.S.; Jang, J. Facile synthesis of size-controlled Fe2O3 nanoparticle-decorated carbon nanotubes for highly sensitive H2S detection. RSC Adv. 2018, 8, 31874–31880. [Google Scholar] [CrossRef]
- Shokrollahi, H. A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn. Magn. Mater. 2017, 426, 74–81. [Google Scholar] [CrossRef]
- Abdelghani, R.; Shokry Hassan, H.; Morsi, I.; Kashyout, A.B. Nano-architecture of highly sensitive SnO2–based gas sensors for acetone and ammonia using molecular imprinting technique. Sens. Actuators B Chem. 2019, 297, 126668. [Google Scholar] [CrossRef]
- Gyger, F.; Hübner, M.; Feldmann, C.; Barsan, N.; Weimar, U. Nanoscale SnO2 Hollow Spheres and their Application as a Gas-Sensing Material. Chem. Mater. 2010, 22, 4821–4827. [Google Scholar] [CrossRef]
- Jain, S.K.; Fazil, M.; Pandit, N.A.; Ali, S.A.; Naaz, F.; Khan, H.; Mehtab, A.; Ahmed, J.; Ahmad, T. Modified, Solvo thermally Derived Cr-doped SnO2 Nanostructures for Enhanced Photocatalytic and Electrochemical Water Splitting Applications. ACS Omega 2022, 7, 14138–14147. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, M.; Kar, A. Modulating the Properties of SnO2 Nanocrystals: Morphological Effects on Structural, Photoluminescence, Photocatalytic, Electrochemical and Gas Sensing Properties. J. Mater. Chem. C 2020, 8, 4604–4635. [Google Scholar] [CrossRef]
- Tangirala, V.K.K.; Hernandez Zanbaria, A.G.; Gomezozos, H.; Gonzalez, M.P.; Marappan, G.; Sivalingam, Y.; Khadheer Pasha, S.K.; Rocha-Cuervo, J.J.; Rueda-Castellanos, K. CO2, detection using In and Ti doped SnO2 nanostrcutures: Comparative analysis of gas sensing properties. Ceram. Int. 2024, in press. [Google Scholar] [CrossRef]
- Sanchez-Vincente, C.; Santos, J.P.; Lozano, J.; Sayago, I.; Sqanjurjo, J.L.; Azbala, A.; Ruiz-Valdenoenasa, S. Graphene-Doped Tin Oxide Nanofibers and Nanoribbons as Gas Sensors to Detect Biomarkers of Different Diseases through the Breath. Sensors 2020, 20, 7223. [Google Scholar] [CrossRef]
- Choi, M.S.; Mirzaei, A.; Na, H.G.; Kim, S.; Kim, D.E.; Lee, K.H.; Jin, C.; Choi, S.W. Facile and Fast Decoration of SnO2 Nanowires with Pd Embedded SnO2-x Nanoparticles for Selective NO2 Gas Sensing. Sens. Actuators B Chem. 2021, 340, 129984. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Y.; Liu, J.; Li, H.Y.; Hu, Z.; Luo, X.; Gao, N.; Zhang, B.; Jiang, J.; Zhong, A.; et al. Sensitive H2 Gas Sensors Based on SnO2 Nanowires. Sens. Actuators B Chem. 2021, 345, 130334. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Zhao, L.; Liu, F.; Sun, X.; Hu, X.; Lu, G. Preparation of Ce-Doped SnO2 Cuboids with Enhanced 2-Butanone Sensing Performance. Sens. Actuators B Chem. 2021, 341, 130039. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, X.; Chang, X.; Li, J.; Pan, L.; Jiang, Y.; Gao, W.; Gao, C.; Sun, S. Metal-Organic Framework-Derived Porous SnO2 Nanosheets with Grain Sizes Comparable to Debye Length for Formaldehyde Detection with High Response and Low Detection Limit. Sens. Actuators B Chem. 2021, 347, 130599. [Google Scholar] [CrossRef]
- Nejati-Moghadam, L.; Esmaeili Bafghi-Karimabad, A.; Salavati-Niasari, M.; Safardoust, H. Synthesis and Characterization of SnO2 Nanostructures Prepared by a Facile Precipitation Method. J. Nanostr. 2015, 5, 47–53. [Google Scholar] [CrossRef]
- Pham, A.T.; Luu, O.A.M.; Nguyen, A.D.; Chu, M.H. Porous In2O3 nanorods fabricated by hydrothermal method for an effective CO gas sensor. Mater. Res. Bull. 2021, 137, 9. [Google Scholar] [CrossRef]
- Son, D.N.; Hung, C.M.; Le, D.T.T.; Xuan, C.T.; Van Duy, N.; Dich, N.Q.; Nguyen, H.; Van Hieu, N.; Hoa, N.D. A novel design and fabrication of self–heated In2O3 nanowire gas sensor on for ethanol detection. Sens. Actuator A-Phys. 2022, 345, 11. [Google Scholar] [CrossRef]
- Cheng, P.F.; Wang, Y.L.; Wang, C.; Ma, J.; Xu, L.P.; Lv, C.; Sun, Y.F. Investigation of doping effects of different noble metals for ethanol gas sensors based on mesoporous In2O3. Nanotechnology 2021, 32, 15. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.B.; An, B.X.; Bai, J.L.; Wang, Y.R.; Cheng, X.; Wang, Q.; Li, J.P.; Yang, Y.F.; Wu, Z.K.; Xie, E.Q. Ultrahigh–response hydrogen sensor based on PdO/NiO co–doped In2O3nanotubes. J. Colloid Interface Sci. 2021, 599, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.G.; Nagaraju, P.; Yelsani, V.; Tirumala, S.; Reddy, R.V.M. Nanostructured Indium Oxide Thin Films as a Room Temperature Toluene Sensor. ACS Omega 2021, 27, 17442–17454. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.Z.; Huang, Q.Y.; Wu, T.M. Facile Synthesis of Polyaniline/Carbon–Coated Hollow Indium Oxide Nanofiber Composite with Highly Sensitive Ammonia Gas Sensor at the Room Temperature. Sensors 2022, 22, 1570. [Google Scholar] [CrossRef]
- Du, N.; Zhang, H.; Chen, B.D.; Ma, X.Y.; Liu, Z.H.; Wu, J.B.; Yang, D.R. Porous indium oxide nanotubes: Layer–by–layer assembly on carbon–nanotube templates and application for room–temperature NH3 gas sensors. Adv. Mater. 2007, 19, 1641–1645. [Google Scholar] [CrossRef]
- de Castro, I.A.; Datta, R.S.; Ou, J.Z.; Castellanos-Gomez, A.; Sriram, S.; Daeneke, T.; Kalantar-Zadeh, K. Molybdenum Oxides—From Fundamentals to Functionality. Adv. Mater. 2017, 29, 1701619–1701649. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Joshi, N.; Tomer, V.K. Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: A holistic review. Mater. Adv. 2021, 2, 4190–4227. [Google Scholar] [CrossRef]
- Bisht, P.; Kumar, A.; Jensen, I.T.; Ahmad, M.; Belle, B.D.; Mehta, B.R. Enhanced gas sensing response for 2D α-MoO3 layers: Thickness-dependent changes in defect concentration, surface oxygen adsorption, and metal-metal oxide contact. Sens. Actuators B Chem. 2021, 341, 129953–129963. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Q.; Peng, S.; Xu, L.; Zeng, W. Volatile Organic Compounds Gas Sensors Based on Molybdenum Oxides: A Mini Review. Front. Chem. 2020, 8, 339–345. [Google Scholar] [CrossRef]
- Bhat, S.; John, A.; Panda, P.K. A review on metal-oxide based p-n and n-n heterostructure nanomaterials for gas sensing applications. Sens. Int. 2021, 2, 100085–100103. [Google Scholar] [CrossRef]
- Boboriko, N.E.; Dzichenka, Y.U. Molecular dynamics simulation as a tool for prediction of the properties of TiO2 and TiO2:MoO3 based chemical gas sensors. J. Alloys Compd. 2021, 855, 157490–157501. [Google Scholar] [CrossRef]
- Mo, Y.; Tan, Z.; Sun, L.; Lu, Y.; Liu, X. Ethanol-sensing properties of α-MoO3 nanobelts synthesized by hydrothermal method. J. Alloys Compd. 2020, 812, 152166–152170. [Google Scholar] [CrossRef]
- Li, W.; Shahbazi, M.; Xing, K.; Tesfamichael, T.; Motta, N.; Qi, D.C. Highly Sensitive NO2 Gas Sensors Based on MoS2@MoO3 Magnetic Heterostructure. Nanomaterials 2022, 12, 1303. [Google Scholar] [CrossRef] [PubMed]
- Farzi-kahkesh, S.; Fattah, A.; Rahmani, M.B. Synthesis and optimum temperature determination of highly sensitive MoO3-based heterojunction Schottky sensor for hydrogen detection. Microelectron. Eng. 2021, 235, 111453–111459. [Google Scholar] [CrossRef]
- Fu, H.; Wu, Z.; Yang, X.; He, P.; An, X.; Xiong, S.; Han, D. Ultra-high sensitivity and selectivity of Au nanoparticles modified MoO3 nanobelts towards 1-butylamine. Appl. Surf. Sci. 2021, 542, 148721–148731. [Google Scholar] [CrossRef]
- Li, W.; He, S.; Feng, L.; Yang, W. Cr-doped α-MoO3 nanorods for the fast detection of triethylamine using a pulse-heating strategy. Mater. Lett. 2019, 250, 143–146. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, S.; Bawankule, P.; Gupta, A.; Kumar, R.; Kumar, P.; Tiware, A. Selectvie wavelength optical filters from mixed polymorph and binary integration of MoO3 multilayer structure. Opt. Mater. 2021, 111, 110709–110718. [Google Scholar] [CrossRef]
- Sakhuja, N.; Jha, R.; Bhat, N. Facile green synthesis of 2D hexagonal MoO3 for selective detection of ammonia at room temperature. Mater. Sci. Eng. B. 2021, 271, 115249–115259. [Google Scholar] [CrossRef]
- Sun, J.; Sun, L.; Han, N.; Pan, J.; Liu, W.; Bai, S.; Feng, Y.; Luo, R.; Li, D.; Chen, A. Ordered mesoporous WO3/ZnO nanocomposites with isotype heterojunctions for sensitive detection of NO2. Sens. Actuators B Chem. 2019, 285, 68–75. [Google Scholar] [CrossRef]
- Jayababu, N.; Poloju, M.; Shruthi, J.; Reddy, M.V.R. NiO decorated CeO2 nanostructures as room temperature isopropanol gas sensors. RSC Adv. 2019, 9, 13765–13775. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Do, D.T.; Vu, X.H.; Dang, D.V.; Nguyen, D.C. ZnO nanoplates surfaced-decorated by WO3 nanorods for NH3 gas sensing application. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 015004. [Google Scholar] [CrossRef]
- Zhao, X.; Ji, H.; Jia, Q.; Wang, M. A nanoscale Co3O4–WO3 p-n junction sensor with enhanced acetone responsivity. J. Mater. Sci. Mater. Electron. 2015, 26, 8217–8223. [Google Scholar] [CrossRef]
- Park, S.; Kheel, H.; Sun, G.-J.; Ko, T.; Lee, W.I.; Lee, C. Acetone gas sensing properties of a multiple-networked Fe2O3-functionalized CuO nanorod sensor. J. Nanomater. 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- Wang, L.; Lou, Z.; Wang, R.; Fei, T.; Zhang, T. Ring-like PdO-decorated NiO with lamellar structures and their application in gas sensor. Sens. Actuators B Chem. 2012, 171–172, 1180–1185. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Chi, Z.-T.; Liu, J.; Li, D.-H.; Sun, X.-J.; Yan, C.; Wang, Y.-C.; Li, H.; Wang, X.-D.; Xie, W.-F. Enhanced gas sensing performance based on p-NiS/n-In2O3 heterojunction nanocomposites. Sens. Actuators B Chem. 2020, 304, 127305. [Google Scholar] [CrossRef]
- Vuong, N.M.; Chinh, N.D.; Huy, B.T.; Lee, Y.-I. CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors. Sci. Rep. 2016, 6, 26736. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Liu, T.; Wang, Z. Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds. Phys. E Low-Dimens. Syst. Nanostruct. 2010, 43, 633–638. [Google Scholar] [CrossRef]
- Muraya, A.K.; Mahana, D.; Jhaa, G.; Pradhan, B.K.; Tomer, S.; Singh, P.; Kushvaha, S.S.; Muthusamy, S.K. Heterostructure nanoarcithetonics with ZnO/SnO2 for ultrafast and selective detection of CO gas at loe ppm levels. Ceram. Int. 2022, 48, 36556–36569. [Google Scholar] [CrossRef]
- Steffes, H.; Imawan, C.; Solzbacher, F.; Obermeier, E. Enhancement of NO2 sensing properties of In2O3-based thin films using Au or Ti surface modification. Sens. Actuators B Chem 2001, 78, 106–112. [Google Scholar] [CrossRef]
- Ali, S.A.; Ahmad, T. Decorating Thermodynamically Stable (101) Facets of TiO2 with MoO3 for Multifunctional Sustainable Hydrogen Energy and Ammonia Gas Sensing Applications. Inorg. Chem. 2023, 63, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Mamabolo, M.S.; Tshabalala, Z.P.; Swart, H.C.; Mphaphuli, G.E.; Hillie, T.K.; Motaung, D.E. Low Temperature Tunability on CO Selectivity, Low Detection Limit Based on SnO2-Hollowspheres Induced by Various Bases. Surf. Interf. 2022, 31, 101954. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panžić, I.; Bafti, A.; Radovanović-Perić, F.; Gašparić, D.; Shi, Z.; Borenstein, A.; Mandić, V. Advancements in Nanostructured Functional Constituent Materials for Gas Sensing Applications: A Comprehensive Review. Appl. Sci. 2025, 15, 2522. https://doi.org/10.3390/app15052522
Panžić I, Bafti A, Radovanović-Perić F, Gašparić D, Shi Z, Borenstein A, Mandić V. Advancements in Nanostructured Functional Constituent Materials for Gas Sensing Applications: A Comprehensive Review. Applied Sciences. 2025; 15(5):2522. https://doi.org/10.3390/app15052522
Chicago/Turabian StylePanžić, Ivana, Arijeta Bafti, Floren Radovanović-Perić, Davor Gašparić, Zhen Shi, Arie Borenstein, and Vilko Mandić. 2025. "Advancements in Nanostructured Functional Constituent Materials for Gas Sensing Applications: A Comprehensive Review" Applied Sciences 15, no. 5: 2522. https://doi.org/10.3390/app15052522
APA StylePanžić, I., Bafti, A., Radovanović-Perić, F., Gašparić, D., Shi, Z., Borenstein, A., & Mandić, V. (2025). Advancements in Nanostructured Functional Constituent Materials for Gas Sensing Applications: A Comprehensive Review. Applied Sciences, 15(5), 2522. https://doi.org/10.3390/app15052522