Vibrational Rarefaction Waves Excited by Laser-Induced Bubble within Confined Cuvettes and Their Feedback on Cavitation Dynamics: Influence of Wall and Liquid
<p>(<b>a</b>) Experimental arrangement for simultaneous high-speed photography and acoustic measurement of laser-induced cavitation dynamics in a confined cuvette; (<b>b</b>) Dimensions of cuvette and transducer, liquid height, and location of bubble. Here, <span class="html-italic">d</span> is the cuvette inner size, and <span class="html-italic">h</span> is the liquid height.</p> "> Figure 2
<p>Cavitation dynamics for the case <span class="html-italic">d</span> = 10 mm and <span class="html-italic">h</span> = 27 mm. (<b>a</b>) Photographic series with a frame interval of 4 μs. The length scale was 5 mm, with the laser pulse incident from the left; temporal evolution of the laser bubble radius and its comparison to the Rayleigh–Plesset simulation (<b>b</b>) and the total area of secondary bubble clouds on the upstream side of the laser bubble (<b>c</b>), determined from images series; (<b>d</b>) far-filed acoustic signal. Shock waves emitted at secondary bubble collapse were detected (blue arrows).</p> "> Figure 3
<p>The ratio of <span class="html-italic">T</span><sub>osc1</sub>/<span class="html-italic">T</span><sub>Ray</sub> as a function of <span class="html-italic">R</span><sub>max</sub> for the case <span class="html-italic">d</span> = 10 mm and <span class="html-italic">h</span> = 27 mm.</p> "> Figure 4
<p>Schematic diagram of the extra pressure wave generation for laser-induced cavitation in the partially confined finite liquid with elastic walls, including bubble expansion-induced compression wave, liquid-mass oscillation-induced pressure change, and wall vibration-induced rarefaction waves.</p> "> Figure 5
<p>The temporal evol ution of secondary bubble clouds (<b>a</b>) and the evolution of <span class="html-italic">R</span><sub>max2</sub> concerning <span class="html-italic">T</span><sub>osc1</sub> (<b>b</b>) for 10 mm inner-sized cuvette with different liquid heights (I: 27 mm; II: 32 mm; III: 37 mm).</p> "> Figure 6
<p>The temporal evolution of secondary bubble clouds (<b>a</b>) and the evolution of <span class="html-italic">R</span><sub>max2</sub> concerning <span class="html-italic">T</span><sub>osc1</sub> (<b>b</b>) for cuvettes with different inner sizes. <span class="html-italic">h</span> = 27 mm. I for <span class="html-italic">d</span> = 10 mm, II for <span class="html-italic">d</span> =11 mm, and III for <span class="html-italic">d</span> = 12 mm. Here, the <span class="html-italic">T</span><sub>lm</sub> and <span class="html-italic">T</span><sub>wall</sub> in the case of <span class="html-italic">h</span> = 27 mm/<span class="html-italic">d</span> = 12 mm were mentioned in [<a href="#B25-applsci-14-04954" class="html-bibr">25</a>].</p> ">
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, X.F.; Fu, L.; Wang, Z.Q.; Zhang, Z.X.; Jiang, S.D.; Wang, J.; Yao, C.P. Monitoring optoporated process on mammalian cells by real-time measurement of membrane resealing time. J. Biomed. Opt. 2023, 28, 065006. [Google Scholar] [CrossRef]
- Mohammadzadeh, M.; Mercado, J.M.; Ohl, C.-D. Bubble dynamics in laser lithotripsy. J. Phys. Conf. Ser. 2015, 656, 012004. [Google Scholar] [CrossRef]
- Fried, N.M. Recent advances in infrared laser lithotripsy. Biomed. Opt. Express 2018, 9, 4552–4568. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, T.G.; Meertens, J.H.; Velema, E.; Post, M.J.; Borst, C. Intraluminal vapor bubble induced by excimer laser-pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit. Circulation 1993, 87, 1258–1263. [Google Scholar] [CrossRef]
- Vogel, A.; Engehardt, R.; Behnle, U.; Parlitz, U. Minimization of cavitation effects in pulsed laser ablation illustrated on laser angioplasty. Appl. Phys. B Lasers Opt. 1996, 62, 173–182. [Google Scholar] [CrossRef]
- Dell’Aglio, M.; De Giacomo, A. Optical Diagnostics during Pulsed Laser Ablation in Liquid (PLAL) for the Production of Metallic Nanoparticles. Appl. Sci. 2021, 11, 10344. [Google Scholar] [CrossRef]
- Soyama, H.; Iga, Y. Laser Cavitation Peening: A Review. Appl. Sci. 2023, 13, 6702. [Google Scholar] [CrossRef]
- Li, J.; Shang, C.; Rong, Y.; Sun, J.X.; Cheng, Y.; He, B.Q.; Wang, Z.H.; Li, M.; Ma, J.G.; Fu, B.; et al. Review on Laser Technology in Intravascular Imaging and Treatment. Aging Dis. 2022, 13, 246–266. [Google Scholar] [CrossRef]
- Li, M.; Yao, Y.; Lu, Z.; Hu, Y.; Zhang, A. Experiment and research on 355 nm ultraviolet laser ablation of coronary artery thrombosis. In Proceedings of the Sixteenth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2023), Haikou, China, 29 March–1 April 2023; pp. 93–101. [Google Scholar]
- Jo, J.; Forrest, M.L.; Yang, X. Ultrasound-assisted laser thrombolysis with endovascular laser and high-intensity focused ultrasound. Med. Phys. 2021, 48, 579–586. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.; Wang, L.T.; Huang, F.Z.; Lu, Y.; Guo, J.J.; Zheng, R. Laser-induced plasma in water at high pressures up to 40 MPa: A time-resolved study. Opt. Express 2020, 28, 18122–18130. [Google Scholar] [CrossRef]
- Li, D.; Jia, Z.W.; Tian, Y.; Li, Y.; Lu, Y.; Ye, W.Q.; Guo, J.J.; Zheng, R.E. Investigation of laser-induced bubble dynamics in water at high hydrostatic pressures. Opt. Express 2021, 29, 44105–44117. [Google Scholar] [CrossRef]
- Xue, B.Y.; Tian, Y.; Lu, Y.; Li, Y.; Zheng, R.E. Characteristics of the secondary breakdown of DP-LIBS in bulk water with different axial focusing arrangements and laser energies. Spectrochim. Acta B 2019, 151, 20–25. [Google Scholar] [CrossRef]
- Orimi, H.E.; Arreaza, L.; Narayanswamy, S.; Boutopoulos, C. Self-limited nanosecond laser-induced bubble growth in sealed containers. Appl. Phys. Lett. 2021, 119, 064101. [Google Scholar] [CrossRef]
- Fourest, T.; Deletombe, E.; Faucher, V.; Arrigoni, M.; Dupas, J.; Laurens, J.M. Comparison of Keller-Miksis model and finite element bubble dynamics simulations in a confined medium. Application to the Hydrodynamic Ram. Eur. J. Mech. B-Fluid 2018, 68, 66–75. [Google Scholar] [CrossRef]
- Bourguille, J.; Bergamasco, L.; Tahan, G.; Fuster, D.; Arrigoni, M. Shock propagation effects in multilayer assembly including a liquid phase. Key Eng. Mater. 2017, 755, 181–189. [Google Scholar] [CrossRef]
- Fourest, T.; Laurens, J.M.; Deletombe, E.; Dupas, J.; Arrigoni, M. Analysis of bubbles dynamics created by Hydrodynamic Ram in confined geometries using the Rayleigh-Plesset equation. Int. J. Impact Eng. 2014, 73, 66–74. [Google Scholar] [CrossRef]
- Deletombe, E.; Fabis, J.; Dupas, J.; Mortier, J. Experimental analysis of 7.62 mm hydrodynamic ram in containers. J. Fluids Struct. 2013, 37, 1–21. [Google Scholar] [CrossRef]
- Vincent, O.; Marmottant, P.; Gonzalez-Avila, S.R.; Ando, K.; Ohl, C.D. The fast dynamics of cavitation bubbles within water confined in elastic solids. Soft Matter 2014, 10, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Fourest, T.; Laurens, J.M.; Deletombe, E.; Dupas, J.; Arrigoni, M. Confined Rayleigh-Plesset equation for Hydrodynamic Ram analysis in thin-walled containers under ballistic impacts. Thin Wall Struct. 2015, 86, 67–72. [Google Scholar] [CrossRef]
- Vincent, O.; Marmottant, P. On the statics and dynamics of fully confined bubbles. J. Fluid Mech. 2017, 827, 194–224. [Google Scholar] [CrossRef]
- Wang, Q.X. Oscillation of a bubble in a liquid confined in an elastic solid. Phys. Fluids 2017, 29, 072101. [Google Scholar] [CrossRef]
- Fu, L.; Liang, X.-X.; Wang, S.; Wang, S.; Wang, P.; Zhang, Z.; Wang, J.; Vogel, A.; Yao, C. Laser induced spherical bubble dynamics in partially confined geometry with acoustic feedback from container walls. Ultrason. Sonochemistry 2023, 101, 106664. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-P.; Wang, Q.; Zhang, A.-M.; Stride, E. Experimental observations of the behaviour of a bubble inside a circular rigid tube. Int. J. Multiph. Flow 2019, 121, 103096. [Google Scholar] [CrossRef]
- Fu, L.; Wang, J.; Wang, S.; Zhang, Z.; Vogel, A.; Liang, X.-x.; Yao, C. Secondary cavitation bubble dynamics during laser-induced bubble formation in a small container. Opt. Express 2024, 32, 9747–9766. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wang, S.; Xin, J.; Wang, S.; Yao, C.; Zhang, Z.; Wang, J. Experimental investigation on multiple breakdown in water induced by focused nanosecond laser. Opt. Express 2018, 26, 28560–28575. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.-X.; Linz, N.; Freidank, S.; Paltauf, G.; Vogel, A. Comprehensive analysis of spherical bubble oscillations and shock wave emission in laser-induced cavitation. J. Fluid Mech. 2022, 940, A5. [Google Scholar] [CrossRef]
- Nahen, K.; Vogel, A. Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. II. Transmission, scattering, and reflection. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 861–871. [Google Scholar] [CrossRef]
- Hammer, D.X.; Jansen, E.D.; Frenz, M.; Noojin, G.D.; Thomas, R.J.; Noack, J.; Vogel, A.; Rockwell, B.A.; Welch, A.J. Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs. Appl. Opt. 1997, 36, 5630–5640. [Google Scholar] [CrossRef]
- Tian, Y.; Xue, B.Y.; Song, J.J.; Lu, Y.; Zheng, R. Stabilization of laser-induced plasma in bulk water using large focusing angle. Appl. Phys. Lett. 2016, 109, 061104. [Google Scholar] [CrossRef]
- Han, Z.F.; Mauger, C.; Chaise, T.; Elguedj, T.; Arrigoni, M.; El Hajem, M.; Boisson, N. Experimental and Analytical Study of under Water Pressure Wave Induced by the Implosion of a Bubble Generated by Focused Laser. Sensors 2021, 21, 4800. [Google Scholar] [CrossRef]
- Brujan, E.A.; Vogel, A. Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom. J. Fluid Mech. 2006, 558, 281–308. [Google Scholar] [CrossRef]
- Supponen, O.; Obreschkow, D.; Kobel, P.; Tinguely, M.; Dorsaz, N.; Farhat, M. Shock waves from nonspherical cavitation bubbles. Phys. Rev. Fluids 2017, 2, 093601. [Google Scholar] [CrossRef]
- Ando, K.; Liu, A.Q.; Ohl, C.D. Homogeneous Nucleation in Water in Microfluidic Channels. Phys. Rev. Lett. 2012, 109, 044501. [Google Scholar] [CrossRef] [PubMed]
- Jelencic, M.; Orthaber, U.; Mur, J.; Petelin, J.; Petkovsek, R. Evidence of laser-induced nanobubble formation mechanism in water. Ultrason. Sonochem. 2023, 99, 106537. [Google Scholar] [CrossRef] [PubMed]
- Jalaal, M.; Li, S.; Schaarsberg, M.K.; Qin, Y.G.; Lohse, D. Destructive mechanisms in laser induced forward transfer. Appl. Phys. Lett. 2019, 114, 213703. [Google Scholar] [CrossRef]
- Rosselló, J.M.; Ohl, C.D. On-demand bulk nanobubble generation through pulsed laser illumination. Phys. Rev. Lett. 2021, 127, 044502. [Google Scholar] [CrossRef] [PubMed]
- Rossello, J.M.; Reese, H.; Raman, K.A.; Ohl, C.D. Bubble nucleation and jetting inside a millimetric droplet. J. Fluid Mech. 2023, 968, A19. [Google Scholar] [CrossRef]
- Quinto-Su, P.A.; Ando, K. Nucleating bubble clouds with a pair of laser-induced shocks and bubbles. J. Fluid Mech. 2013, 733, R3. [Google Scholar] [CrossRef]
- Frenz, M.; Paltauf, G.; SchmidtKloiber, H. Laser-generated cavitation in absorbing liquid induced by acoustic diffraction. Phys. Rev. Lett. 1996, 76, 3546–3549. [Google Scholar] [CrossRef]
- Pozar, T.; Agrez, V.; Petkovsek, R. Laser-induced cavitation bubbles and shock waves in water near a concave surface. Ultrason. Sonochemistry 2021, 73, 105456. [Google Scholar] [CrossRef]
- Horvat, D.; Agrez, V.; Pozar, T.; Starman, B.; Halilovic, M.; Petkovsek, R. Laser-induced shock-wave-expanded nanobubbles in spherical geometry. Ultrason. Sonochemistry 2022, 89, 106160. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Lauterborn, W. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 1988, 84, 719–731. [Google Scholar] [CrossRef]
- Plesset, M.S.; Prosperetti, A. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 1977, 9, 145–185. [Google Scholar] [CrossRef]
- Wikipedia. Vibration. Available online: https://en.wikipedia.org/wiki/Vibration (accessed on 20 November 2023).
Cuvette Inner Size d (mm) | Liquid Height h (mm) | Liquid Volume V (mm3) | Vibrational Rarefaction Wave Parameters | ||
---|---|---|---|---|---|
t0 (μs) | Twall (μs) | Tlm (μs) | |||
10 | 27 | 2700 | 63 | 80 | 124 |
10 | 32 | 3200 | 68 | 80 | 139 |
10 | 37 | 3700 | 83 | 86 | 167 |
11 | 27 | 3267 | 66 | 100 | 144 |
12 | 27 | 3888 | 78 | 116 | 162 [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Peng, Z.; Du, X.; Zhang, Z.; Wang, J.; Yao, C. Vibrational Rarefaction Waves Excited by Laser-Induced Bubble within Confined Cuvettes and Their Feedback on Cavitation Dynamics: Influence of Wall and Liquid. Appl. Sci. 2024, 14, 4954. https://doi.org/10.3390/app14114954
Fu L, Peng Z, Du X, Zhang Z, Wang J, Yao C. Vibrational Rarefaction Waves Excited by Laser-Induced Bubble within Confined Cuvettes and Their Feedback on Cavitation Dynamics: Influence of Wall and Liquid. Applied Sciences. 2024; 14(11):4954. https://doi.org/10.3390/app14114954
Chicago/Turabian StyleFu, Lei, Ziyao Peng, Xiaofan Du, Zhenxi Zhang, Jing Wang, and Cuiping Yao. 2024. "Vibrational Rarefaction Waves Excited by Laser-Induced Bubble within Confined Cuvettes and Their Feedback on Cavitation Dynamics: Influence of Wall and Liquid" Applied Sciences 14, no. 11: 4954. https://doi.org/10.3390/app14114954
APA StyleFu, L., Peng, Z., Du, X., Zhang, Z., Wang, J., & Yao, C. (2024). Vibrational Rarefaction Waves Excited by Laser-Induced Bubble within Confined Cuvettes and Their Feedback on Cavitation Dynamics: Influence of Wall and Liquid. Applied Sciences, 14(11), 4954. https://doi.org/10.3390/app14114954