Privacy-Friendly Datasets of Synthetic Fingerprints for Evaluation of Biometric Algorithms
<p>A concept of identity-aware synthesis of fingerprints by reconstructing patterns from minutiae.</p> "> Figure 2
<p>Construction of a minutiae map. Minutiae extraction is followed by minutiae encoding either by “directed lines” (DL) or by “pointing minutiae” (PM). Black color is used for endings and white for bifurcations. Minutiae orientation is given by the angle <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>i</mi> </msub> </semantics></math>. The fingerprint is from the Neurotechnology CrossMatch dataset [<a href="#B51-applsci-13-10000" class="html-bibr">51</a>].</p> "> Figure 3
<p>Pix2pix generator architecture.</p> "> Figure 4
<p>Pix2pix PatchGAN discriminator: Every layer includes “Conv 2d” followed by “Batch-Norm” and “Leaky-ReLU”. In the very first layer, “Batch-Norm” is not present.</p> "> Figure 5
<p>An overview of the fingerprint reconstruction concept based on a pix2pix network. The fingerprint is from the Neurotechnology CrossMatch dataset [<a href="#B51-applsci-13-10000" class="html-bibr">51</a>].</p> "> Figure 6
<p>(<b>Top row</b>): fingerprints generated by Anguli; (<b>bottom row</b>): URU fingerprints from the FVC2004 DB2 A+B dataset.</p> "> Figure 7
<p>NFIQ2 score distributions for Anguli (<b>left column</b>) and URU (<b>right column</b>) fingerprints and their reconstructed counterparts with the <b>aug39k_DL_IN</b> (<b>top row</b>) and <b>aug39k_PM_IN</b> (<b>bottom row</b>) models, i.e., their snapshots at 15, 30, and 55 training epochs. DL—“directed line” encoding, PM—“pointing minutiae” encoding.</p> "> Figure 8
<p>Results of fingerprint reconstruction. Minutiae are taken from Anguli (<b>top</b>) and URU (<b>bottom</b>) fingerprints. Note that for Anguli, the reconstruction examples are with <b>aug39k_DL_BN_60+60ep</b> and for URU with <b>aug39k_DL_IN_15ep</b>.</p> "> Figure 9
<p>Distributions of NFIQ2 scores for our synthetic datasets <b>AMSL SynFP P2P v1</b> and <b>AMSL SynFP P2P v2</b> in comparison to the 4000 Anguli generated fingerprints taken as a source of minutiae.</p> "> Figure 10
<p>Distributions of Verifinger matching scores with the <b>AMSL SynFP P2P v1</b> (<b>left</b>) and <b>AMSL SynFP P2P v2</b> (<b>right</b>) datasets for different fingerprint basic patterns considered separately.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Background and Related Work
2.1. Model-Based Fingerprint Generation
2.1.1. Physical Fingerprint Modeling
2.1.2. Statistical Fingerprint Modeling
2.2. Data-Driven Fingerprint Generation
2.2.1. Basics of GAN
2.2.2. Fingerprint Generation via GANs
2.3. Fingerprint Reconstruction from Minutiae
3. Research Methodology
3.1. Training of Generative Models
3.1.1. Problem Statement
3.1.2. Minutiae Map Generation
3.1.3. Pix2pix Architecture
3.1.4. Concept Overview
3.1.5. Technical Aspects of Model Training
- The 408 samples from the Neurotechnology CrossMatch dataset. The images are license free and can be downloaded from:https://www.neurotechnology.com/download.html (accessed on 4 September 2023).
- The 880 samples from the FVC2002 DB1 A+B dataset. This dataset has been created for the Second International Fingerprint Verification Competition (FVC2002) back in 2002:http://bias.csr.unibo.it/fvc2002/databases.asp (accessed on 4 September 2023).Note that in contrast to other two datasets, the fingerprints in FVC2002 DB1 A+B are from Identix TouchView II and not from CrossMatch Verifier 300.
- The 880 samples from the FVC2004 DB1 A+B dataset. This dataset was created for the Third International Fingerprint Verification Competition (FVC2004) back in 2004:http://bias.csr.unibo.it/fvc2004/databases.asp (accessed on 4 September 2023).
3.2. Compilation of Synthetic Datasets
- Random rotation varying from −20 to +20 degrees with a step of 1 degree
- Random shift varying from −20 to 20 pixels regarding x-axis and y-axis
- Random cut of 0% to 15% of minutiae points at one of eight sides: top-left, top, top-right, left, right, bottom-left, bottom, and bottom-right
4. Experimental Studies
4.1. Evaluation of Generative Models
4.1.1. Evaluation Metrics
4.1.2. Evaluation Protocol
4.1.3. Evaluation Results
- The “pointing minutiae” encoding outperforms the “directed line” encoding;
- The best reconstruction performance is achieved with the model snapshots at 15 training epochs;
- For the “pointing minutiae” encoding, there is almost no difference between snapshots at 15 epochs and 30 epochs, while there is a notable performance loss with the snapshot at 55 epochs;
- For “directed line” encoding, the additional training epochs worsen the reconstruction performance, i.e., the snapshot at 15 epochs is better than at 30 epochs, which is better than at 55 epochs.
4.2. Utility Evaluation of the Proposed Synthetic Datasets
4.2.1. Realistic Appearance
4.2.2. Estimation of the Verification Performance
5. Results and Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlini, N.; Chien, S.; Nasr, M.; Song, S.; Terzis, A.; Tramer, F. Membership Inference Attacks From First Principles. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022. [Google Scholar]
- Seidlitz, S.; Jürgens, K.; Makrushin, A.; Kraetzer, C.; Dittmann, J. Generation of Privacy-friendly Datasets of Latent Fingerprint Images using generative adversarial networks. In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP’21), Virtual, 8–10 February 2021; VISAPP. Farinella, G.M., Radeva, P., Braz, J., Bouatouch, K., Eds.; 2021; Volume 4, pp. 345–352. [Google Scholar] [CrossRef]
- Bahmani, K.; Plesh, R.; Johnson, P.; Schuckers, S.; Swyka, T. High Fidelity Fingerprint Generation: Quality, Uniqueness, And Privacy. In Proceedings of the IEEE International Conference on Image Processing (ICIP’21), Anchorage, AK, USA, 19–22 September 2021; pp. 3018–3022. [Google Scholar] [CrossRef]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In Proceedings of the 6th International Conference on Learning Representations (ICLR’18), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 43, 4217–4228. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. arXiv 2019, arXiv:1912.04958. [Google Scholar]
- Makrushin, A.; Mannam, V.S.; Dittmann, J. Data-Driven Fingerprint Reconstruction from Minutiae Based on Real and Synthetic Training Data. In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications—Volume 4: VISAPP, SCITEPRESS, Lisbon, Portugal, 19–21 February 2023; pp. 229–237. [Google Scholar]
- Makrushin, A.; Kauba, C.; Kirchgasser, S.; Seidlitz, S.; Kraetzer, C.; Uhl, A.; Dittmann, J. General Requirements on Synthetic Fingerprint Images for Biometric Authentication and Forensic Investigations. In Proceedings of the ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec’21), Virtual, 22–25 June 2021; pp. 93–104. [Google Scholar]
- Kücken, M. Models for fingerprint pattern formation. Forensic Sci. Int. 2007, 171, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Ram, S.; Bischof, H.; Birchbauer, J. Modelling fingerprint ridge orientation using Legendre polynomials. Pattern Recognit. 2010, 43, 342–357. [Google Scholar] [CrossRef]
- Zinoun, F. Can a Fingerprint be Modelled by a Differential Equation? arXiv 2018, arXiv:1802.05671. [Google Scholar]
- Zhao, Q.; Jain, A.K.; Paulter, N.G.; Taylor, M. Fingerprint image synthesis based on statistical feature models. In Proceedings of the 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA, USA, 23–27 September 2012; pp. 23–30. [Google Scholar] [CrossRef]
- Cappelli, R.; Maio, D.; Maltoni, D. Synthetic fingerprint-database generation. In Proceedings of the 2002 International Conference on Pattern Recognition (ICPR), Quebec, QC, Canada, 11–15 August 2002; Volume 3, pp. 744–747. [Google Scholar] [CrossRef]
- Johnson, P.; Hua, F.; Schuckers, S. Texture Modeling for Synthetic Fingerprint Generation. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 23–28 June 2013; pp. 154–159. [Google Scholar] [CrossRef]
- Cappelli, R. SFinGe. In Encyclopedia of Biometrics; Li, S.Z., Jain, A., Eds.; Springer: Boston, MA, USA, 2009; pp. 1169–1176. [Google Scholar] [CrossRef]
- Ansari, A.H. Generation and Storage of Large Synthetic Fingerprint Database. Master’s Thesis, Indian Institute of Science Bangalore, Karnataka, Indian, 2011. [Google Scholar]
- Engelsma, J.J.; Grosz, S.; Jain, A.K. PrintsGAN: Synthetic Fingerprint Generator. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 6111–6124. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran Associates, Inc.: New York, NY, USA, 2014; Volume 27. [Google Scholar]
- Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier GANs. In Proceedings of the International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 2642–2651. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Karras, T.; Aittala, M.; Laine, S.; Härkönen, E.; Hellsten, J.; Lehtinen, J.; Aila, T. Alias-Free generative adversarial networks. In Proceedings of the NIPS, Online, 6–14 December 2021. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Bouzaglo, R.; Keller, Y. Synthesis and Reconstruction of Fingerprints using Generative Adversarial Networks. arXiv 2022, arXiv:2201.06164. [Google Scholar]
- Minaee, S.; Abdolrashidi, A. Finger-GAN: Generating Realistic Fingerprint Images Using Connectivity Imposed GAN. arXiv 2018, arXiv:1812.10482. [Google Scholar]
- Cappelli, R.; Ferrara, M.; Franco, A.; Maltoni, D. Fingerprint Verification Competition 2006. Biom. Technol. Today 2007, 15, 7–9. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, D.; Zhang, L.; Luo, N. High resolution partial fingerprint alignment using pore–valley descriptors. Pattern Recognit. 2010, 43, 1050–1061. [Google Scholar] [CrossRef]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Fahim, M.A.N.I.; Jung, H.Y. A Lightweight GAN Network for Large Scale Fingerprint Generation. IEEE Access 2020, 8, 92918–92928. [Google Scholar] [CrossRef]
- Cao, K.; Jain, A. Fingerprint Synthesis: Evaluating Fingerprint Search at Scale. In Proceedings of the 2018 International Conference on Biometrics (ICB), Gold Coast, Australia, 20–23 February 2018; pp. 31–38. [Google Scholar] [CrossRef]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved Training of Wasserstein GANs. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5767–5777. [Google Scholar]
- Mistry, V.; Engelsma, J.J.; Jain, A.K. Fingerprint Synthesis: Search with 100 Million Prints. In Proceedings of the 2020 IEEE International Joint Conference on Biometrics (IJCB), Houston, TX, USA, 28 September–1 October 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Wyzykowski, A.B.V.; Segundo, M.P.; de Paula Lemes, R. Level Three Synthetic Fingerprint Generation. arXiv 2020, arXiv:2002.03809. [Google Scholar]
- Hill, C.J. Risk of Masquerade Arising from the Storage of Biometrics. Bachelor’s Thesis, Australian National University, Canberra, Australia, 2001. [Google Scholar]
- Cappelli, R.; Maio, D.; Lumini, A.; Maltoni, D. Fingerprint Image Reconstruction from Standard Templates. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1489–1503. [Google Scholar] [CrossRef]
- Ross, A.; Shah, J.; Jain, A.K. From Template to Image: Reconstructing Fingerprints from Minutiae Points. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 544–560. [Google Scholar] [CrossRef]
- Vizcaya, P.R.; Gerhardt, L.A. A nonlinear orientation model for global description of fingerprints. Pattern Recognit. 1996, 29, 1221–1231. [Google Scholar] [CrossRef]
- Feng, J.; Jain, A.K. Fingerprint Reconstruction: From Minutiae to Phase. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 209–223. [Google Scholar] [CrossRef]
- Cao, K.; Jain, A.K. Learning Fingerprint Reconstruction: From Minutiae to Image. IEEE Trans. Inf. Forensics Secur. 2015, 10, 104–117. [Google Scholar] [CrossRef]
- Watson, C.I. NIST Special Database 14. NIST Mated Fingerprint Card Pairs 2 (MFCP2); NIST: Gaithersburg, MD, USA, 2008. [Google Scholar]
- Wijewardena, K.P.; Grosz, S.A.; Cao, K.; Jain, A.K. Fingerprint Template Invertibility: Minutiae vs. Deep Templates. arXiv 2022, arXiv:2205.03809. [Google Scholar] [CrossRef]
- Kim, H.; Cui, X.; Kim, M.G.; Nguyen, T.H.B. Reconstruction of Fingerprints from Minutiae Using Conditional Adversarial Networks. In Proceedings of the IWDW’18, Chengdu, China, 2–4 November 2019; pp. 353–362. [Google Scholar]
- Makrushin, A.; Mannam, V.S.; Rao, B.N.M.; Dittmann, J. Data-driven Reconstruction of Fingerprints from Minutiae Maps. In Proceedings of the IEEE 24th Int. Workshop on Multimedia Signal Processing (MMSP’22), Shanghai, China, 26–28 September 2022. [Google Scholar]
- Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- FVC2000. The First Fingerprint Verification Competition. Available online: http://bias.csr.unibo.it/fvc2000/databases.asp (accessed on 4 September 2023).
- FVC2002. The Second Fingerprint Verification Competition. Available online: http://bias.csr.unibo.it/fvc2002/databases.asp (accessed on 4 September 2023).
- FVC2004. The Third Fingerprint Verification Competition. Available online: http://bias.csr.unibo.it/fvc2004/databases.asp (accessed on 4 September 2023).
- NIST. NIST Fingerprint Image Quality (NFIQ) 2. Available online: https://www.nist.gov/services-resources/software/nfiq-2 (accessed on 4 September 2023).
- Neurotechnology. VeriFinger SDK. Available online: https://www.neurotechnology.com/verifinger.html (accessed on 4 September 2023).
- Neurotechnology. Neurotechnology CrossMatch dataset. Available online: https://www.neurotechnology.com/download.html (accessed on 4 September 2023).
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. arXiv 2014, arXiv:1411.4038. [Google Scholar]
- Zhou, Y.; Berg, T.L. Learning Temporal Transformations From Time-Lapse Videos. arXiv 2016, arXiv:1608.07724. [Google Scholar]
- Wang, X.; Gupta, A. Generative Image Modeling using Style and Structure Adversarial Networks. arXiv 2016, arXiv:1603.05631. [Google Scholar]
- Neurotechnology. Cross Match Verifier 300 Classic. Available online: https://www.neurotechnology.com/fingerprint-scanner-cross-match-verifier-300-classic.html (accessed on 4 September 2023).
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance Normalization: The Missing Ingredient for Fast Stylization. arXiv 2016, arXiv:1607.08022. [Google Scholar]
Num. of | Left Hand | Right Hand | ||||||
---|---|---|---|---|---|---|---|---|
Subjects | Index | Middle | Ring | Pinky | Index | Middle | Ring | Pinky |
50 | UL | UL | UL | UL | UL | UL | UL | UL |
50 | RL | UL | UL | UL | RL | UL | UL | UL |
50 | WH | UL | UL | UL | WH | UL | UL | UL |
50 | WH | WH | WH | WH | WH | WH | WH | WH |
50 | UL | UL | WH | UL | UL | UL | WH | UL |
50 | AR | UL | UL | UL | AR | UL | UL | UL |
50 | WH | WH | UL | UL | WH | WH | UL | UL |
50 | AR | AR | UL | UL | AR | AR | UL | UL |
50 | AR | TA | TA | TA | AR | TA | TA | TA |
50 | RL | TA | UL | UL | RL | TA | UL | UL |
Basic Pattern | Ulnar Loop | Radial Loop | Whorl | Arch | Tented Arch |
---|---|---|---|---|---|
(UL) | (RL) | (WH) | (AR) | (TA) | |
Absolute # | 44 × 50 = 2200 | 4 × 50 = 200 | 16 × 50 = 800 | 8 × 50 = 400 | 8 × 50 = 400 |
Relative # | 55% | 5% | 20% | 10% | 10% |
Model Snapshot | Anguli Fingerprints | URU Fingerprints | |||||||
---|---|---|---|---|---|---|---|---|---|
Type1 TAR @ FAR of | |||||||||
TrainDB | Enc | Norm | Epochs | 0.1% | 0.01% | 0.001% | 0.1% | 0.01% | 0.001% |
aug39k | DL | IN | 15 | 100.00 | 100.00 | 99.77 | 87.84 | 82.61 | 76.47 |
30 | 100.00 | 99.77 | 99.20 | 83.29 | 75.11 | 65.90 | |||
55 | 99.43 | 98.52 | 97.50 | 79.09 | 71.81 | 59.31 | |||
aug39k | PM | IN | 15 | 100.00 | 100.00 | 100.00 | 95.45 | 95.00 | 93.52 |
30 | 100.00 | 100.00 | 100.00 | 95.11 | 94.31 | 93.29 | |||
55 | 99.88 | 99.43 | 98.86 | 93.52 | 91.36 | 88.86 | |||
aug39k | DL | BN | 60+60 | 97.95 | 94.09 | 85.34 | 60.34 | 44.66 | 26.48 |
Basic Pattern | Ulnar Loop | Radial Loop | Whorl | Arch | Tented Arch |
---|---|---|---|---|---|
(UL) | (RL) | (WH) | (AR) | (TA) | |
Relative number | 55% | 5% | 20% | 10% | 10% |
Impostor trials | 99,000 | 9000 | 36,000 | 18,000 | 18,000 |
Genuine trials | 3996 | 3996 | 3995 | 3990 | 3990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makrushin, A.; Mannam, V.S.; Dittmann, J. Privacy-Friendly Datasets of Synthetic Fingerprints for Evaluation of Biometric Algorithms. Appl. Sci. 2023, 13, 10000. https://doi.org/10.3390/app131810000
Makrushin A, Mannam VS, Dittmann J. Privacy-Friendly Datasets of Synthetic Fingerprints for Evaluation of Biometric Algorithms. Applied Sciences. 2023; 13(18):10000. https://doi.org/10.3390/app131810000
Chicago/Turabian StyleMakrushin, Andrey, Venkata Srinath Mannam, and Jana Dittmann. 2023. "Privacy-Friendly Datasets of Synthetic Fingerprints for Evaluation of Biometric Algorithms" Applied Sciences 13, no. 18: 10000. https://doi.org/10.3390/app131810000