Novel Method for Monitoring Mining Subsidence Featuring Co-Registration of UAV LiDAR Data and Photogrammetry
<p>Schematic for relationship between the working face, observation stations, and study area.</p> "> Figure 2
<p>The flow chart for subsidence monitoring via UAV.</p> "> Figure 3
<p>Selection of the stable region: (<b>a</b>) stable zone for collaborative registration; and (<b>b</b>) number of overlapping images computed for each pixel of the DOM.</p> "> Figure 4
<p>Histogram of the M3C2 distance: (<b>a</b>) LiDAR01.16−UAV06.14; (<b>b</b>) LiDAR01.16−UAV07.20; (<b>c</b>) LiDAR01.16−UAV09.07; (<b>d</b>) LiDAR01.16−UAV11.15; and (<b>e</b>) LiDAR01.16−UAV07.31.</p> "> Figure 5
<p>Development process for the dynamic subsidence basin at the working face: (<b>a</b>) 1−06.14; (<b>b</b>) 2−07.20; (<b>c</b>) 3−09.07; (<b>d</b>) 4−11.15; (<b>e</b>) 5−07.31; (<b>f</b>) 1−2; (<b>g</b>) 2−3; (<b>h</b>) 3−4; (<b>i</b>) 4−5; (<b>j</b>) 1−2; (<b>k</b>) 1−3; (<b>l</b>) 1−4; and (<b>m</b>) 1−5.</p> "> Figure 6
<p>Comparison of subsidence values about the monitoring points: (<b>a</b>) line A 07.20−06.14; (<b>b</b>) line A 09.07−06.14; (<b>c</b>) line A 11.15−06.14; (<b>d</b>) line A 07.31−06.14; (<b>e</b>) line B 07.20−06.14; (<b>f</b>) line B 09.07−06.14; (<b>g</b>) line B 11.15−06.14; and (<b>h</b>) line B 07.31−06.14.</p> "> Figure 7
<p>Curve fitting of subsidence and scattered points on the profile line: (<b>a</b>) strike 07.20−06.14; (<b>b</b>) strike 09.07−06.14; (<b>c</b>) strike 11.15−06.14; (<b>d</b>) strike 07.31−06.14; (<b>e</b>) dip 07.20−06.14; (<b>f</b>) dip 09.07−06.14; (<b>g</b>) dip 11.15−06.14; and (<b>h</b>) dip 07.31−06.14.</p> "> Figure 8
<p>Time series subsidence curve for the main section: (<b>a</b>) strike subsidence curve fitting; and (<b>b</b>) dip subsidence curve fitting.</p> "> Figure 9
<p>MinLoD threshold assessment of the significance for the variability in the DoD elevation: (<b>a</b>) minlod = 0.00 m; (<b>b</b>) minlod = 0.10 m; and (<b>c</b>) minlod = 0.20 m.</p> ">
Abstract
:1. Introduction
2. Overview of the Study Area
3. Data and Methodology
3.1. Data
3.2. Methodology
4. Results and Analysis
4.1. Co-Registration and Performance Evaluation
4.2. Construction and Verification of Accuracy for the Dynamic Subsidence Basin
4.3. Analysis of the Subsidence Characteristics of the Main Section
4.4. Quantification of Uncertainty in the DoD
- Propagating the uncertainty in an individual DEM to DoD
- 2.
- Assessment of the significance of the propagated uncertainty
5. Conclusions
- Taking the standard deviation of M3C2 distance as the index, the repeatability of the SfM-UAV time-series data was evaluated via airborne LiDAR data. The results showed that the standard deviation of the M3C2 distance was between 0.14 and 0.19, which shows that the repeatability of the multi-temporal photogrammetric data of the UAV was good;
- The dynamic subsidence basin constructed by DoD analysis can reveal clearly the development process of surface movement in the basin. As the working face advances, the range of influence of the surface will expand correspondingly, and the maximum subsidence value will gradually increase;
- The RMSE of the difference in elevation between the measured monitoring points and that from the subsidence DEM extraction is mostly between 0.2 m and 0.3 m, with the highest accuracy being up to 0.17 m. The relative error between the maximum subsidence value fitted by the profile line of the main section and the measured value was less than 20%, and the minimum value was 0.7%. The accuracy of UAV subsidence DEM monitoring the maximum subsidence value is high;
- The DEM derived from the dense matching point cloud of the UAV has the potential to estimate the uncertainty and detect changes in elevation. The DoD with a minLoD threshold is helpful for detecting small changes in elevation that may be related to experimental errors, thus permitting us to quantify reliably topographic changes caused by subsidence.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, M.G.; Xu, J.L.; Wang, J.C. Further on the sustainable mining of coal. J. China Coal Soc. 2018, 43, 1–13. [Google Scholar]
- Kim, D.W.; Yun, H.S.; Jeong, S.J.; Kwon, Y.S.; Kim, S.G.; Lee, W.S.; Kim, H.J. Modeling and testing of growth status for Chinese cabbage and white radish with UAV-based RGB imagery. Remote Sens. 2018, 10, 563. [Google Scholar] [CrossRef]
- Godone, D.; Allasia, P.; Borrelli, L.; Gullà, G. UAV and structure from motion approach to monitor the Maierato landslide evolution. Remote Sens. 2020, 12, 1039. [Google Scholar] [CrossRef]
- Yang, X.T.; Yao, W.Q.; Zheng, J.L.; Ma, B.L.; Ma, X.H. UAV terrain following technology application in the mining subsidence monitoring research. Bull. Surv. Mapp. 2021, 67, 111–115. [Google Scholar]
- Gao, G.J.; Hou, E.K.; Xie, X.S.; Xu, Y.N.; Wei, Q.M.; Liu, J.B. The monitoring of ground surface subsidence related to coal seams mining in Yangchangwan coal mine by means of unmanned aerial vehicle with quad-rotors. Geol. Bull. China 2018, 37, 2264–2269. [Google Scholar]
- Tang, F.Q.; Lu, J.X.; Wei, S.P.; Li, X.T.; He, K.L.; Yang, Q. Improvement of mining subsidence modeling method based on UAV L-DAR in Yushen mining area. J. China Coal Soc. 2020, 45, 2655–2666. [Google Scholar]
- Ćwiąkała, P.; Gruszczyński, W.; Stoch, T.; Puniach, E.; Mrocheń, D.; Matwij, W.; Matwij, K.; Nędzka, M.; Sopata, P.; Wójcik, A. UAV applications for determination of land deformations caused by underground mining. Remote Sens. 2020, 12, 1733. [Google Scholar] [CrossRef]
- Zheng, J.; Yao, W.; Lin, X.; Ma, B.; Bai, L. An accurate digital subsidence model for deformation detection of coal mining areas using a UAV-based LiDAR. Remote Sens. 2022, 14, 421. [Google Scholar] [CrossRef]
- Dawei, Z.; Lizhuang, Q.; Demin, Z.; Baohui, Z.; Lianglin, G. Unmanned aerial vehicle (UAV) photogrammetry technology for dynamic mining subsidence monitoring and parameter inversion: A case study in China. IEEE Access 2020, 8, 16372–16386. [Google Scholar] [CrossRef]
- Miao, Y.P.; Li, J.Y.; Chen, X.S.; Chen, Q.J.; Hou, E.K.; Lu, B. Optimization of Treatment Method for LiDAR Point Cloud and Application in Monitoring Subsidence in Mining Area. Coal Technol. 2021, 40, 116–119. [Google Scholar]
- Yu, H.Y.; Yang, L.; Zhang, C.F.; Niu, F.M.; Wu, J.P. Mining Subsidence Information Extraction Based on Uncertainty Analysis of LiDAR DEM. Metal Mine 2017, 10, 1–7. [Google Scholar]
- Lu, Y.; Yu, T.; Lu, X.P.; Meng, Q.Y.; Zang, W.Q.; Zhao, L.M. Subsidence Information Extraction of Mine Surface with Point Cloud Data Based on Elevation Difference Analysis. Bull. Surv. Mapp. 2013, 3, 22–25. [Google Scholar]
- Ignjatović Stupar, D.; Rošer, J.; Vulić, M. Investigation of unmanned aerial vehicles-based photogrammetry for large mine subsidence monitoring. Minerals 2020, 10, 196. [Google Scholar] [CrossRef]
- Pal, A.; Rošer, J.; Vulić, M. Surface subsidence prognosis above an underground longwall excavation and based on 3D point cloud analysis. Minerals 2020, 10, 82. [Google Scholar] [CrossRef]
- Esposito, G.; Mastrorocco, G.; Salvini, R.; Oliveti, M.; Starita, P. Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ. Earth Sci. 2017, 76, 103. [Google Scholar] [CrossRef]
- Puniach, E.; Gruszczyński, W.; Ćwiąkała, P.; Matwij, W. Application of UAV-based orthomosaics for determination of horizontal displacement caused by underground mining. ISPRS J. Photogramm. Remote Sens. 2021, 174, 282–303. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, L.; An, S.; Wang, X.; An, Y. Integration of unmanned aerial vehicle (UAV)-based photogrammetry and InSAR for mining subsidence and parameters inversion: A case study of the Wangjiata Mine, China. Bull. Eng. Geol. Environ. 2022, 81, 343. [Google Scholar] [CrossRef]
- Tong, X.; Liu, X.; Chen, P.; Liu, S.J.; Luan, K.F.; Li, L.Y.; Liu, S.; Liu, X.L.; Xie, H.; Jin, Y.M.; et al. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sens. 2015, 7, 6635–6662. [Google Scholar] [CrossRef]
- Wang, R.; Wu, K.; He, Q.; He, Y.; Gu, Y.; Wu, S. A Novel Method of Monitoring Surface Subsidence Law Based on Probability Integral Model Combined with Active and Passive Remote Sensing Data. Remote Sens. 2022, 14, 299. [Google Scholar] [CrossRef]
- Rauhala, A.; Tuomela, A.; Davids, C.; Rossi, P.M. UAV remote sensing surveillance of a mine tailings impoundment in sub-arctic conditions. Remote Sens. 2017, 9, 1318. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef]
- Lague, D.; Brodt, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef]
- Kim, M.K.; Sohn, H.G.; Kim, S. Incorporating the effect of ALS-derived DEM uncertainty for quantifying changes due to the landslide in 2011, Mt. Umyeon, Seoul. GISci. Remote Sens. 2020, 57, 287–301. [Google Scholar] [CrossRef]
- Brasington, J.; Langham, J.; Rossby, B. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- Cucchiaro, S.; Maset, E.; Cavalli, M.; Crema, S.; Marchi, L.; Beinat, A.; Cazorzi, F. How does co-registration affect geomorphic change estimates in multi-temporal surveys? GISci. Remote Sens. 2020, 57, 611–632. [Google Scholar] [CrossRef]
- Milan, D.J.; Heritage, G.L.; Large, A.R.G.; Fuller, I.C. Filtering spatial error from DEMs: Implications for morphological change estimation. Geomorphology 2011, 125, 160–171. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Processes Landf. J. Br. Geomorphol. Res. Group 2010, 35, 136–156. [Google Scholar] [CrossRef]
Number | Time | Acquisition | Result Form | Point Cloud Number | Area km2 | Density per m2 |
---|---|---|---|---|---|---|
1 | 14 June 2020 | UAV image | Point cloud, DSM, DOM | 2.3 × 108 | 4.5 | 52 |
2 | 20 July 2020 | UAV image | Point cloud, DSM, DOM | 2.4 × 108 | 4.5 | 53 |
3 | 7 September 2020 | UAV image | Point cloud, DSM, DOM | 2.2 × 108 | 4.2 | 53 |
4 | 15 November 2020 | UAV image | Point cloud, DSM, DOM | 2.4 × 108 | 4.5 | 53 |
5 | 31 July 2021 | UAV image | Point cloud, DSM, DOM | 4.7 × 108 | 4.3 | 110 |
6 | 16 January 2022 | Airborne LiDAR | Point cloud | 2.5 × 108 | 4.0 | 62 |
D-CAM2000 Aerial Module | D-LiDAR2000 LiDAR Module | ||
---|---|---|---|
Camera | SONY a6000 | Ranging | 190 m@10%Reflectivity@100 klx 450 m@80%Reflectivity@0 klx |
Effective pixels | 24.3 million | Scanning frequency | 240 kHz |
Sensor | 23.5 × 15.6 mm (aps-c) | Ranging accuracy | ±2 cm |
Focal length | 25 mm | Horizontal positioning accuracy | 0.02 m |
Dataset | Mean (m) | Standard Deviation (m) | Duration (day) | Platform |
---|---|---|---|---|
01.16/06.14 | 0.24 | 0.13 | 581 | LiDAR/UAV |
01.16/07.20 | 0.34 | 0.15 | 545 | LiDAR/UAV |
01.16/09.07 | 0.30 | 0.19 | 496 | LiDAR/UAV |
01.16/11.15 | 0.32 | 0.14 | 427 | LiDAR/UAV |
01.16/07.31 | 0.35 | 0.15 | 169 | LiDAR/UAV |
Data Set | Average Error (m) | Average Absolute Error (m) | Root Mean Square Error (m) | |||
---|---|---|---|---|---|---|
Line A | Line B | Line A | Line B | Line A | Line B | |
07.20−06.14 | −0.16 | −0.11 | −0.20 | 0.14 | 0.24 | 0.17 |
09.07−06.14 | −0.06 | −0.14 | 0.25 | 0.20 | 0.27 | 0.23 |
11.15−06.14 | 0.13 | −0.10 | 0.26 | 0.22 | 0.30 | 0.27 |
07.31−06.14 | 0.06 | −0.28 | 0.31 | 0.29 | 0.34 | 0.32 |
Data Set | Measured Value (m) | Fitting Value (m) | Relative Error (%) |
---|---|---|---|
Line A 07.20-06.14 | −1.43 | −1.44 | 0.70 |
Line A 09.07-06.14 | −2.17 | −2.43 | 11.98 |
Line A 11.15-06.14 | −3.30 | −3.50 | 6.06 |
Line A 07.31-06.14 | −3.60 | −3.66 | 1.67 |
Line B 07.20-06.14 | −1.53 | −1.46 | 4.58 |
Line B 09.07-06.14 | −1.86 | −2.19 | 17.74 |
Line B 11.15-06.14 | −2.33 | −2.78 | 19.31 |
Line B 07.31-06.14 | −2.86 | −2.90 | 1.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, X.; Lv, X.; Wang, B.; Lian, X. Novel Method for Monitoring Mining Subsidence Featuring Co-Registration of UAV LiDAR Data and Photogrammetry. Appl. Sci. 2022, 12, 9374. https://doi.org/10.3390/app12189374
Liu J, Liu X, Lv X, Wang B, Lian X. Novel Method for Monitoring Mining Subsidence Featuring Co-Registration of UAV LiDAR Data and Photogrammetry. Applied Sciences. 2022; 12(18):9374. https://doi.org/10.3390/app12189374
Chicago/Turabian StyleLiu, Jibo, Xiaoyu Liu, Xieyu Lv, Bo Wang, and Xugang Lian. 2022. "Novel Method for Monitoring Mining Subsidence Featuring Co-Registration of UAV LiDAR Data and Photogrammetry" Applied Sciences 12, no. 18: 9374. https://doi.org/10.3390/app12189374