UAV Applications for Determination of Land Deformations Caused by Underground Mining
<p>Piekary site: sketch of the observation network against the background of an unmanned aerial vehicle (UAV)-derived orthomosaic.</p> "> Figure 2
<p>Jaworzno site: sketch of the observation network used for two measurement series against the background of a UAV-derived orthomosaic and locations of mining walls in the study area.</p> "> Figure 3
<p>Displacements determined using UAV photogrammetry at the Piekary site during: (<b>a</b>) 03.2016–09.2016, (<b>b</b>) 03.2016–11.2016, and (<b>c</b>) 03.2016–04.2017.</p> "> Figure 4
<p>Jaworzno site displacements determined using UAV photogrammetry for 04.2016–02.2020.</p> "> Figure 5
<p>A profile of Piekary site subsidence along the P profile (marked by blue line in <a href="#remotesensing-12-01733-f001" class="html-fig">Figure 1</a>) based on UAV photogrammetric data is compared to reference measurements.</p> "> Figure 6
<p>A profile of Jaworzno site subsidence along the W profile (marked by blue line in <a href="#remotesensing-12-01733-f002" class="html-fig">Figure 2</a>) based on UAV photogrammetric data is compared to reference measurements.</p> "> Figure 7
<p>Development of an A–B discontinuous deformation (Piekary site).</p> "> Figure 8
<p>Subsidence profiles along an A–B discontinuous deformation based on results obtained using UAV photogrammetry (Piekary site).</p> "> Figure 9
<p>Development of a C–D discontinuous deformation (Piekary site).</p> "> Figure 10
<p>Subsidence profiles along a C–D discontinuous deformation based on results obtained using UAV photogrammetry (Piekary site).</p> "> Figure 11
<p>A discontinuous deformation identified at the Jaworzno site using 02.2020 series data collected via UAV.</p> "> Figure 12
<p>Morphology of the discontinuous deformation and its cross-sectional change (E–F profiles) between 04.2016 and 02.2020 (Jaworzno site).</p> "> Figure 13
<p>Forecasted subsidence and horizontal displacement at the Jaworzno site.</p> "> Figure 14
<p>Differences between forecasted and observed subsidences (color map) and horizontal displacements (differential vectors).</p> "> Figure A1
<p>Horizontal displacements determined via the UAV photogrammetric method (ORTO method) and reference measurements at the Piekary site.</p> "> Figure A2
<p>Discrepancies between vertical displacements determined via the UAV photogrammetric method (ORTO method) and reference measurements at the Piekary site.</p> "> Figure A3
<p>Horizontal displacements determined via the UAV photogrammetric method (ORTO method) and reference measurements at the Jaworzno site.</p> "> Figure A4
<p>Discrepancies between vertical displacements determined via the UAV photogrammetric method (ORTO method) and reference measurements at the Jaworzno site.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Measurements and Unmanned Aerial Vehicle (UAV) Data Processing
2.2. Reference Measurements
2.2.1. Piekary Site
2.2.2. The Jaworzno Site
2.3. Determining and Estimating the Accuracies of Coordinates Obtained Using Unmanned Aerial Vehicles (UAVs)
2.4. Determining and Estimating the Accuracies of Displacements Obtained Using UAVs
2.5. Identifying Discontinuous Deformations
3. Results
3.1. Assessment of Point Coordinate Determination Accuracy
3.2. Determination and Assessment of Point Displacement Accuracy
3.3. Detection of Discontinuous Deformations and Analysis of Their Development over Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Kratzsch, H. Mining Subsidence Engineering; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1983; ISBN 978-3-642-81925-4. [Google Scholar]
- Bell, F.G.; Stacey, T.R.; Genske, D.D. Mining subsidence and its effect on the environment: Some differing examples. Environ. Geol. 2000, 40, 135–152. [Google Scholar] [CrossRef]
- Reddish, D.J.; Whittaker, B.N. Subsidence: Occurrence, Prediction and Control; Elsevier Science: Amsterdam, The Netherlands, 2012; ISBN 9780444598349. [Google Scholar]
- Ren, F.; Zhang, D.; Cao, J.; Yu, M.; Li, S. Study on the Rock Mass Caving and Surface Subsidence Mechanism Based on an in Situ Geological Investigation and Numerical Analysis. Math. Probl. Eng. 2018, 2018, 1–18. [Google Scholar] [CrossRef]
- Rusek, J. The point nuisance method as a decision-support system based on Bayesian inference approach. Arch. Min. Sci. 2020, 65, 117–127. [Google Scholar]
- Peng, S.S.; Ma, W.M.; Zhong, W.L. Surface Subsidence Engineering; Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA, 1992; ISBN 0873351142. [Google Scholar]
- Stoch, T. Hirizontal Displacement in Mining Area Protection; AGH University of Science and Technology Press: Kraków, Poland, 2019; ISBN 978-83-66364-19-6. [Google Scholar]
- Blachowski, J.; Jiránková, E.; Lazecký, M.; Kadlečík, P.; Milczarek, W. Application of satellite radar interferometry (PSInSAR) in analysis of secondary surface deformations in mining areas. Case studies from Czech Republic and Poland. Acta Geodyn. Geomater. 2018, 15, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Ilieva, M.; Polanin, P.; Borkowski, A.; Gruchlik, P.; Smolak, K.; Kowalski, A.; Rohm, W. Mining deformation life cycle in the light of InSAR and deformation models. Remote Sens. 2019, 11, 745. [Google Scholar] [CrossRef] [Green Version]
- Pawluszek-Filipiak, K.; Borkowski, A. Integration of DInSAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydułtowy Mine in Poland. Remote Sens. 2020, 12, 242. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, A.A.; Witkowski, W.T.; Guzy, A.; Hejmanowski, R. Mapping ground movements caused by mining-induced earthquakes applying satellite radar interferometry. Eng. Geol. 2018, 246, 402–411. [Google Scholar] [CrossRef]
- Milczarek, W. Application of a Small Baseline Subset Time Series Method with Atmospheric Correction in Monitoring Results of Mining Activity on Ground Surface and in Detecting Induced Seismic Events. Remote Sens. 2019, 11, 1008. [Google Scholar] [CrossRef] [Green Version]
- Rudziński, Ł.; Mirek, K.; Mirek, J. Rapid ground deformation corresponding to a mining-induced seismic event followed by a massive collapse. Nat. Hazards 2019, 96, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Popiołek, E.; Ostrowski, J.; Czaja, J.; Mazur, J. The impact of a strong mining tremor on the subsidence of the area surface in the Legnica-Glogow Copper Area. In Proceedings of the 10th FIG International Symposium on Deformation Measurements, International Federation of Surveyors, Orange, CA, USA, 19–22 March 2001; pp. 77–80. [Google Scholar]
- Szczerbowski, Z.; Jura, J. Mining induced seismic events and surface deformations monitored by GPS permanent stations. Acta Geodyn. Geomater. 2015, 12, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Sowter, A.; Bateson, L.; Strange, P.; Ambrose, K.; Fifiksyafiudin, M. Dinsar estimation of land motion using intermittent coherence with application to the south derbyshire and leicestershire coalfields. Remote Sens. Lett. 2013, 4, 979–987. [Google Scholar] [CrossRef] [Green Version]
- Bernardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Sowter, A. The relationship between intermittent coherence and precision of ISBAS InSAR ground motion velocities: ERS-1/2 case studies in the UK. Remote Sens. Environ. 2017, 202, 177–198. [Google Scholar] [CrossRef]
- Yu, H.; Lu, X.; Cheng, G.; Ge, X. Detection and volume estimation of mining subsidence based on multi-temporal LiDAR data. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–6. [Google Scholar]
- Lian, X.; Hu, H. Terrestrial laser scanning monitoring and spatial analysis of ground disaster in Gaoyang coal mine in Shanxi, China: A technical note. Environ. Earth Sci. 2017, 76, 287. [Google Scholar] [CrossRef]
- Ao, J.; Wu, K.; Wang, Y.; Li, L. Subsidence Monitoring Using Lidar and Morton Code Indexing. J. Surv. Eng. 2016, 142, 6015002. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, D.; Zhang, D.; Wu, K.; Zhou, B. Study on subsidence monitoring technology using terrestrial 3D laser scanning without a target in a mining area: An example of Wangjiata coal mine, China. Bull. Eng. Geol. Environ. 2020, 1–9. [Google Scholar] [CrossRef]
- Yu, H.; Lu, X.; Ge, X.; Cheng, G. Digital terrain model extraction from airborne LiDAR data in complex mining area. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–6. [Google Scholar]
- Song, B.; Zheng, N.; Li, D.; Chen, R.; Li, L. Reconstructing DEM using TLS point cloud data and NURBS surface. Trans. Nonferrous Met. Soc. China 2015, 25, 3165–3172. [Google Scholar] [CrossRef]
- Brede, B.; Lau, A.; Bartholomeus, H.M.; Kooistra, L. Comparing RIEGL RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial LiDAR. Sensors 2017, 17, 2371. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef] [Green Version]
- Gasperini, D.; Allemand, P.; Delacourt, C.; Grandjean, P. Potential and limitation of UAV for monitoring subsidence in municipal landfills. Int. J. Environ. Technol. Manag. 2014, 17, 1–13. [Google Scholar] [CrossRef]
- Stupar, D.I.; Rošer, J.; Vulić, M. Investigation of unmanned aerial vehicles-based photogrammetry for large mine subsidence monitoring. Minerals 2020, 10, 186. [Google Scholar]
- Zhou, D.; Qi, L.; Zhang, D.; Zhou, B.; Guo, L. Unmanned Aerial Vehicle (UAV) Photogrammetry Technology for Dynamic Mining Subsidence Monitoring and Parameter Inversion: A Case Study in China. IEEE Access 2020, 8, 16372–16386. [Google Scholar]
- Pal, A.; Rošer, J.; Vulić, M. Surface Subsidence Prognosis above an Underground Longwall Excavation and Based on 3D Point Cloud Analysis. Minerals 2020, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Streutker, D.R.; Glenn, N.F. LiDAR measurement of sagebrush steppe vegetation heights. Remote Sens. Environ. 2006, 102, 135–145. [Google Scholar] [CrossRef]
- Tong, X.; Liu, X.; Chen, P.; Liu, S.; Luan, K.; Li, L.; Liu, S.; Liu, X.; Xie, H.; Jin, Y.; et al. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sens. 2015, 7, 6635–6662. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Li, X.; Ng, A.H. UAV for mining applications: A case study at an open-cut mine and a longwall mine in New South Wales, Australia. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5422–5425. [Google Scholar]
- Dang, K.; Sassa, K.; Fukuoka, H.; Sakai, N.; Sato, Y.; Takara, K.; Quang, L.H.; Loi, D.H.; Van Tien, P.; Ha, N.D. Mechanism of two rapid and long-runout landslides in the 16 April 2016 Kumamoto earthquake using a ring-shear apparatus and computer simulation (LS-RAPID). Landslides 2016, 13, 1525–1534. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Chan, Y.C.; Hu, J.C. Digital elevation model differencing and error estimation from multiple sources: A case study from the Meiyuan Shan landslide in Taiwan. Remote Sens. 2016, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Lindner, G.; Schraml, K.; Mansberger, R.; Hübl, J. UAV monitoring and documentation of a large landslide. Appl. Geomat. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Moretti, S.; Casagli, N. Multitemporal UAV surveys for landslide mapping and characterization. Landslides 2018, 15, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Huang, Y.; Zhou, J.; Mao, L. Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion. Environ. Earth Sci. 2017, 76, 520. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Li, Y.; Fan, T.; Ouyang, C.; Ji, F. Characteristics and dynamic process analysis of the 2018 Mabian consequent landslide in Sichuan Province, China. Bull. Eng. Geol. Environ. 2020, 1–23. [Google Scholar] [CrossRef]
- Maciuk, K.; Lewińska, P. High-rate monitoring of satellite clocks using two methods of averaging time. Remote Sens. 2019, 11, 2754. [Google Scholar] [CrossRef] [Green Version]
- Stoch, T. Spatial observation network for measuring surface deformation in mining areas. In Proceedings of the Wyd. Monograficzne Konferencji: X Dni Miernictwa Górniczego i Ochrony Terenów Górniczych, Kraków, Poland, 28–29 May 2009; pp. 387–394. [Google Scholar]
- Maciuk, K. Satellite clock stability analysis depending on the reference clock type. Arab. J. Geosci. 2019, 12, 28. [Google Scholar] [CrossRef] [Green Version]
- Ćwiąkała, P. Testing procedure of unmanned aerial vehicles (UAVs) trajectory in automatic missions. Appl. Sci. 2019, 9, 3488. [Google Scholar] [CrossRef] [Green Version]
- Niedojadło, Z.; Piwowarski, W.; Mościcki, W.; Sopata, P.; Stoch, T.; Bania, G.; Ćwiklik, M. The impact of local surface geological structure on ground deformation under the conditions of underground mining exploitation. Przegląd Górniczy 2016, 72, 18–26. [Google Scholar]
- Şerifoğlu Yilmaz, C.; Güngör, O. Comparison of the performances of ground filtering algorithms and DTM generation from a UAV-based point cloud. Geocarto Int. 2018, 33, 522–537. [Google Scholar] [CrossRef]
- Şerifoğlu Yilmaz, C.; Yilmaz, V.; Güngör, O. Investigating the performances of commercial and non-commercial software for ground filtering of UAV-based point clouds. Int. J. Remote Sens. 2018, 39, 5016–5042. [Google Scholar] [CrossRef]
- Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M.Y. Filtering Photogrammetric Point Clouds Using Standard Lidar Filters Towards Dtm Generation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Zeybek, M.; Şanlıoğlu, İ. Point cloud filtering on UAV based point cloud. Measurement 2019, 133, 99–111. [Google Scholar] [CrossRef]
- Gruszczyński, W.; Matwij, W.; Ćwiąkała, P. Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation. ISPRS J. Photogramm. Remote Sens. 2017, 126, 168–179. [Google Scholar] [CrossRef]
- Yilmaz, V.; Konakoglu, B.; Serifoglu, C.; Gungor, O.; Gökalp, E. Image classification-based ground filtering of point clouds extracted from UAV-based aerial photos. Geocarto Int. 2018, 33, 310–320. [Google Scholar] [CrossRef]
- Gruszczyński, W.; Puniach, E.; Ćwiąkała, P.; Matwij, W. Application of convolutional neural networks for low vegetation filtering from data acquired by UAVs. ISPRS J. Photogramm. Remote Sens. 2019, 158, 1–10. [Google Scholar] [CrossRef]
- Debella-Gilo, M.; Kääb, A. Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens. Environ. 2011, 115, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Tareen, S.A.K.; Saleem, Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 2018. [Google Scholar]
- Liu, C.; Liu, H.; Liu, Y.; Li, T.; Wang, T. Normalized cross correlation image stitching algorithm based on minimum spanning tree. Optik 2019, 179, 610–616. [Google Scholar] [CrossRef]
- Malinowska, A.A.; Witkowski, W.T.; Hejmanowski, R.; Chang, L.; van Leijen, F.J.; Hanssen, R.F. Sinkhole occurrence monitoring over shallow abandoned coal mines with satellite-based persistent scatterer interferometry. Eng. Geol. 2019, 262, 105336. [Google Scholar] [CrossRef]
- Firek, K.; Rusek, J. Partial least squares method in the analysis of the intensity of damage in prefabricated large-block building structures. Arch. Min. Sci. 2017, 62, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Knothe, S. Observations of surface movements under influence of mining and their theoretical interpretation. In Proceedings of the European Congress on Ground Movement, Leeds, UK, 9–12 April 1957; pp. 210–218. [Google Scholar]
- Malinowska, A.; Hejmanowski, R.; Dai, H. Ground movements modeling applying adjusted influence function. Int. J. Min. Sci. Technol. 2020, 30, 243–249. [Google Scholar] [CrossRef]
- Kwinta, A.; Gradka, R. Analysis of the damage influence range generated by underground mining. Int. J. Rock Mech. Min. Sci. 2020, 128, 104263. [Google Scholar] [CrossRef]
- Gruszczyński, W.; Niedojadło, Z.; Mrocheń, D. Influence of model parameter uncertainties on forecasted subsidence. Acta Geodyn. Geomater. 2018, 15, 211–228. [Google Scholar] [CrossRef] [Green Version]
Dataset | Overlap Front / Side [%] | No. of Images | No. of Ground Control Points (GCP) | Ground Sampling Distance (GSD) [mm] | UAV Measurement Areas [ha] | Root Mean Square Errors (RMS)on GCP [mm] | Fieldwork Time [h] |
---|---|---|---|---|---|---|---|
Piekary 03.2016 | 75 / 55 | 556 | 44 | 20 | 110 | 84 | 5 |
Piekary 09.2016 | 75 / 55 | 573 | 43 | 20 | 110 | 50 | 5 |
Piekary 11.2016 | 75 / 55 | 570 | 59 | 20 | 110 | 63 | 5 |
Piekary 04.2017 | 75 / 55 | 556 | 50 | 20 | 110 | 62 | 5 |
Jaworzno 04.2016 | 80 / 60 | 349 | 17 | 11 | 20 | 34 | 3 |
Jaworzno 02.2020 | 60 / 60 double grid | 2458 | 42 | 10 | 110 | 27 | 7 |
Site | Land Cover | Method of Determination | RMS [cm] | ||
---|---|---|---|---|---|
North | East | Height | |||
Piekary 11.2016 | slate (railway embankment) | ORTO | 3.4 | 4.6 | 3.2 |
AERO | 3.2 | 4.4 | 3.4 | ||
Jaworzno 02.2020 | asphalt (road) | ORTO | 1.6 | 1.4 | 1.9 |
AERO | 1.6 | 1.6 | 1.8 | ||
grass (dirt road) | ORTO | 1.5 | 1.3 | 2.9 | |
AERO | 1.3 | 1.3 | 2.9 |
Site | Land Cover | RMS [cm] | ||
---|---|---|---|---|
North | East | Height | ||
Piekary 03.2016–09.2016 | asphalt/paving (road) | 3.1 | 3.2 | 4.1 |
grass (meadow) | 4.1 | 4.2 | 6.3 | |
Jaworzno 04.2016–02.2020 | grass (meadow) | 1.6 | 1.2 | 4.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćwiąkała, P.; Gruszczyński, W.; Stoch, T.; Puniach, E.; Mrocheń, D.; Matwij, W.; Matwij, K.; Nędzka, M.; Sopata, P.; Wójcik, A. UAV Applications for Determination of Land Deformations Caused by Underground Mining. Remote Sens. 2020, 12, 1733. https://doi.org/10.3390/rs12111733
Ćwiąkała P, Gruszczyński W, Stoch T, Puniach E, Mrocheń D, Matwij W, Matwij K, Nędzka M, Sopata P, Wójcik A. UAV Applications for Determination of Land Deformations Caused by Underground Mining. Remote Sensing. 2020; 12(11):1733. https://doi.org/10.3390/rs12111733
Chicago/Turabian StyleĆwiąkała, Paweł, Wojciech Gruszczyński, Tomasz Stoch, Edyta Puniach, Dawid Mrocheń, Wojciech Matwij, Karolina Matwij, Michał Nędzka, Paweł Sopata, and Artur Wójcik. 2020. "UAV Applications for Determination of Land Deformations Caused by Underground Mining" Remote Sensing 12, no. 11: 1733. https://doi.org/10.3390/rs12111733