Review of Propulsion System Design Strategies for Unmanned Aerial Vehicles
<p>Distribution of the analyzed papers among the identified categories according to the proposed classification.</p> "> Figure 2
<p>For each category, the number of published papers over time is plotted in stacked style. In the black line, the cumulative function.</p> "> Figure 3
<p>Schematic of the integrated functional design framework: the propulsion system is modeled as the set of the power supply and actuator sub-systems, interacting each other and with the mission profile module. All the blocks are affected by constraints imposed by technical, normative framework-related, or custom requirements.</p> "> Figure 4
<p>Synthetic road-map of the integrated functional design framework for the propulsion system identification.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
Data Analysis
- functional design, sizing;
- optimization methods;
- controls, identification, modeling;
- detailed design.
- technical constraints;
- normative framework-related limits;
- custom requirements.
- (i)
- UAV type;
- (ii)
- actuation type;
- (iii)
- design level;
- (iv)
- topics.
3. Results
3.1. Literature Analysis
3.2. The Integrated Functional Design Framework
4. Discussion
4.1. Literature Analysis
4.1.1. UAV Types
4.1.2. Actuation Types
4.1.3. Design Level
4.1.4. Integration Level
4.2. The Integrated Design Framework
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schroth, L.; Bödecker, H.; Radovic, M. Drone Market Report 2020–2025. Technical Report. June 2020. Available online: https://droneii.com/ (accessed on 1 June 2020).
- Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- Kahn, J.M.; Katz, R.H.; Fellow, A.; Pister, K.S.J. Next Century Challenges: Mobile Networking for “Smart Dust”. In Proceedings of the 5th Annual ACM/IEEE international Conference on Mobile Computing and Networking, Seattle, WA, USA, 15–19 August 1999; pp. 271–278. [Google Scholar]
- Szafranski, G.; Czyba, R.; Blachuta, M. Modeling and identification of electric propulsion system for multirotor unmanned aerial vehicle design. IEEE Comput. Soc. 2014, 470–476. [Google Scholar] [CrossRef]
- Aksugur, M.; Inalhan, G. Design methodology of a hybrid propulsion driven electric powered miniature tailsitter unmanned aerial vehicle. J. Intell. Robot. Syst. Theory Appl. 2010, 57, 505–529. [Google Scholar] [CrossRef]
- Uninhabited Air Vehicles: Enabling Science for Military Systems; National Academies Press: Washington, DC, USA, 2000. [CrossRef]
- Li, X.; Sun, K.; Li, F. General optimal design of solar-powered unmanned aerial vehicle for priority considering propulsion system. Chin. J. Aeronaut. 2020, 33, 2176–2188. [Google Scholar] [CrossRef]
- Aksugur, M.; Inalhan, G.; Beard, R. Hybrid propulsion system design of a VTOL tailsitter UAV. SAE Tech. Pap. 2008. [Google Scholar] [CrossRef]
- Bershadsky, D.; Haviland, S.; Johnson, E. Electric Multirotor Propulsion System Sizing for Performance Prediction and Design Optimization; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2015. [Google Scholar]
- Zhao, X.; Zhou, Z.; Zhu, X. Design of a Lift-Propulsion VTOL UAV System; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; pp. 1908–1913. [Google Scholar] [CrossRef]
- Dantsker, O.; Caccamo, M.; Imtiaz, S. Propulsion System Design, Optimization, Simulation, and Testing for a Long-Endurance Solar-Powered Unmanned Aircraft; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Hossain, A.; Wang, W.; Yue, H. Design and analysis of a linear servo-actuated variable-span morphing wing. INCAS Bull. 2020, 12, 71–82. [Google Scholar] [CrossRef]
- Saemi, F.; Benedict, M.; Beals, N. Development of a brushless DC motor sizing algorithm for a small UAS design framework. In Proceedings of the Vertical Flight Society’s 76th Annual Forum and Technology Display, Fairfax, VA, USA, 6–8 October 2020. [Google Scholar]
- Siswoyo Jo, R.; Tan, A.; Tee Kit Tsun, M.; Siswoyo Jo, H. Design and modeling of actuation system of unmanned tricopter with thrust-vectoring front tilt rotors for sustainable flying. In Proceedings of the International Conference of Aerospace and Mechanical Engineering 2019; Springer: Singapore, 2020; pp. 45–55. [Google Scholar] [CrossRef]
- Guo, D.; Bacciaglia, A.; Ceruti, A.; Marzocca, P.; Bil, C. Design and Development of a Transition Propulsion System for Bimodal Unmanned Vehicles; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; pp. 549–558. [Google Scholar] [CrossRef]
- Castaneda, H.; Cantu, L.; Leal, A.; Gordillo, J. Guidelines for Propulsion System Design and Implementation in a Quadrotor MAV; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 1302–1308. [Google Scholar] [CrossRef]
- Kotarski, D.; Piljek, P.; Brezak, H.; Kasać, J. Design of a Fully Actuated Passively Tilted Multirotor UAV with Decoupling Control System; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 385–390. [Google Scholar] [CrossRef]
- Heim, M.; Pyne, K.; Bialy, A.; Burns, M.; Mohan, G.; Beaty, N.; MacNeal, C.; Weit, C.; Brady Doepke, E.; Kevorkian, C.; et al. Design and demonstration of a flexible matrix composite actuated flap in a UAV. Am. Soc. Mech. Eng. 2015, 2. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Ma, X.; Tu, H. Design of Hybrid Electric Propulsion System for Long Endurance Small UAV; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2012. [Google Scholar] [CrossRef]
- Lindahl, P.; Moog, E.; Shaw, S. Simulation, design, and validation of an UAV SOFC propulsion system. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 2582–2593. [Google Scholar] [CrossRef]
- Capata, R.; Marino, L.; Sciubba, E. Preliminary design of a hybrid propulsion system for high-endurance UAV. ASME Int. Mech. Eng. Congr. Expo. 2010, 1, 107–112. [Google Scholar] [CrossRef]
- Hiserote, R.; Harmon, F. Analysis of Hybrid-Electric Propulsion System Designs for Small Unmanned Aircraft Systems; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2010. [Google Scholar] [CrossRef]
- Lindahl, P.; Moog, E.; Shaw, S. Simulation, design and validation of a UAV SOFC propulsion system. IEEE Trans. Aerosp. Electron. Syst. 2009. [Google Scholar] [CrossRef]
- Stepaniak, M.; Van Graas, F.; De Haag, M. Design of an electric propulsion system for a quadrotor unmanned aerial vehicle. J. Aircr. 2009, 46, 1050–1058. [Google Scholar] [CrossRef]
- Soban, D.; Upton, E. Design of a UAV to Optimize Use of Fuel Cell Propulsion Technology; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2005; Volume 4, pp. 2075–2089. [Google Scholar] [CrossRef]
- Ahn, J.M.; Son, J.C.; Lim, D.K. Optimal Design of Outer-Rotor Surface Mounted Permanent Magnet Synchronous Motor for Cogging Torque Reduction Using Territory Particle Swarm Optimization. J. Electr. Eng. Technol. 2021, 16, 429–436. [Google Scholar] [CrossRef]
- Zhang, H.; Song, B.; Li, F.; Xuan, J. Multidisciplinary design optimization of an electric propulsion system of a hybrid UAV considering wind disturbance rejection capability in the quadrotor mode. Aerosp. Sci. Technol. 2021, 110. [Google Scholar] [CrossRef]
- Thilakraj, M.; Ravi, V.; Charkravarthy, K. Design optimization of rotor propulsive delta wing. Int. J. Mech. Prod. Eng. Res. Dev. 2019, 9, 887–896. [Google Scholar] [CrossRef]
- Anastasopoulos, L.; Hornung, M. Design of a Real-Time Test Bench for UAV Servo Actuators; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Yazdani-Asrami, M.; Alipour, M.; Gholamian, S. Optimal ECO-design of permanent magnet Brushless DC motor using modified tabu search optimizer and finite element analysis. J. Magn. 2015, 20, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Khan, Q.; Mehmood, A.; Kirmani, S.; Mechali, O. Neuro-adaptive fast integral terminal sliding mode control design with variable gain robust exact differentiator for under-actuated quadcopter UAV. ISA Trans. 2021. [Google Scholar] [CrossRef]
- Abro, G.; Asirvadam, V.; Bin Mohd Zulkifli, S.; Sattar, A.; Kumar, D.; Anwer, A. Effects of unmodelled dynamic factors on an under-actuated quadrotor: A review of hybrid observer design methods. Meas. Control. 2020, 53, 1978–1987. [Google Scholar] [CrossRef]
- Pavkovic, D.; Krznar, M.; Cipek, M.; Zorc, D.; Trstenjak, M. Internal Combustion Engine Control System Design Suitable for Hybrid Propulsion Applications; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020; pp. 1614–1619. [Google Scholar] [CrossRef]
- Ullah, S.; Mehmood, A.; Khan, Q.; Rehman, S.; Iqbal, J. Robust Integral Sliding Mode Control Design for Stability Enhancement of Under-actuated Quadcopter. Int. J. Control. Autom. Syst. 2020, 18, 1671–1678. [Google Scholar] [CrossRef]
- Van Treuren, K.; Sanchez, R.; Wisniewski, C.; Leitch, P. Investigation of Aeroacoustics and Motor Efficiency of a Two-Bladed Stock and Five-Bladed Propeller Designs for Static Quadcopter Applications; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2020; pp. 1–20. [Google Scholar] [CrossRef]
- Yang, T.; Wang, S.; Yang, J. Design of High-Power Dual-Redundancy Electro-Mechanical Actuator for Scout and Strike UAV; Institute of Physics Publishing: Bristol, UK, 2020; Volume 790. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.; Cai, C.; Zou, Y. Finite Time Fault Tolerant Control Design for UAV Attitude Control Systems with Actuator Fault and Actuator Saturation; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Volume 52, pp. 53–58. [Google Scholar] [CrossRef]
- Dai, X.; Quan, Q.; Ren, J.; Cai, K.Y. An analytical design-optimization method for electric propulsion systems of multicopter UAVs with desired hovering endurance. IEEE/ASME Trans. Mechatronics 2019, 24, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Gebauer, J.; Wagnerová, R.; Smutný, P.; Podešva, P. Controller Design for Variable Pitch Propeller Propulsion Drive; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Volume 52, pp. 186–191. [Google Scholar] [CrossRef]
- Jims John Wessley, G. Design and modeling of a micro turbojet engine for UAV propulsion. Int. J. Eng. Adv. Technol. 2019, 8, 722–726. [Google Scholar]
- Kasem, A.; Gamal, A.; Hany, A.; Gaballa, H.; Ahmed, K.; Romany, M.; Abdelkawy, M.; Abdelrahman, M. Design and implementation of an unmanned aerial vehicle with self-propulsive wing. Adv. Mech. Eng. 2019, 11. [Google Scholar] [CrossRef]
- Lee, H.S.; Cha, H.R.; Yang, S.H.; Kim, D.H.; Lee, G.S.; Kim, H.W. Optimal Design and Analysis of Interior Permanent Magnet Motor for High-Thrust Drone; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Mallavalli, S.; Fekih, A. A Fault Tolerant Control Design for Actuator Fault Mitigation in Quadrotor UAVS; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 5111–5116. [Google Scholar] [CrossRef]
- Nigro, M.; Pierri, F.; Caccavale, F. Preliminary Design, Modeling and Control of a Fully Actuated Quadrotor UAV; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 1108–1116. [Google Scholar] [CrossRef] [Green Version]
- Oukassi, S.; Poncet, S.; Frutos, J.; Salot, R. Design, Microfabrication and Characterization of Free form Factor, Lightweight thin Film Battery for Powering Bioinspired Nano-Drones Based on MEMS Actuation; Institute of Physics Publishing: Bristol, UK, 2019; Volume 1407. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Song, B.; He, L.; Lang, X. Modeling and Robust Attitude Controller Design of a Distributed Propulsion Tilt-Wing UAV in Hovering Flight; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 1480–1485. [Google Scholar] [CrossRef]
- Wang, S.; Song, B.; He, L. Robust Attitude Control System Design for a Distributed Propulsion Tilt-Wing UAV in Flight State Transition. In Asia-Pacific International Symposium on Aerospace Technology; Springer: Singapore, 2018; pp. 2368–2387. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, T.; Hao, S.; Wang, Z.; Liu, Y. Design of A Distributed Propulsion VTOL UAV; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 84–89. [Google Scholar] [CrossRef]
- Franz-Michael, S.; Philipp, S.; Christian, R.; Mirko, H. Design and Testing of an Electric Actuated Airbrake for Dynamic Airspeed Control of an Unmanned Aeroelastic Research Vehicle; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Shavin, M. Design and identification of tilt-motor quadrotor control system. EDP Sci. 2018, 211. [Google Scholar] [CrossRef]
- He, Y.; Woolston, M.; Perreault, D. Design and Implementation of a Lightweight High-Voltage Power Converter for Electro-Aerodynamic Propulsion; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Kimaru, J.; Bouferrouk, A. Design, Manufacture and Test of a Camber Morphing Wing Using MFC Actuated Mart rib; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 791–796. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, D.; Zhang, J.; Li, T.; Hu, T. Design and Implementation of a Gasoline-Electric Hybrid Propulsion System for a Micro Triple Tilt-Rotor VTOL UAV; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 433–438. [Google Scholar] [CrossRef]
- Qian, M.; Gao, Z. Adaptive Fault Tolerant Control Design for UAV with Multiple Actuator Faults; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 814–819. [Google Scholar] [CrossRef]
- Qian, M.; Xiong, K.; Gao, Z.; Lin, J. T-S fuzzy Model-Based adaptive controller design for UAV with actuator saturation. ICIC Express Lett. 2017, 11, 221–230. [Google Scholar]
- Yu, X.; Li, P.; Zhang, Y. Fault-tolerant control design against actuator faults with application to UAV formation flight. IEEE Comput. Soc. 2017, 7167–7171. [Google Scholar] [CrossRef]
- Bondyra, A.; Gardecki, S.; Gąsior, P.; Giernacki, W. Performance of coaxial propulsion in design of multi-rotor UAVs. Adv. Intell. Syst. Comput. 2016, 440, 523–531. [Google Scholar] [CrossRef]
- Giernacki, W. Near to Optimal Design of PID Fractional-Order Speed Controller (FOPID) for Multirotor Motor-Rotor Simplified Model; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 320–326. [Google Scholar] [CrossRef]
- Kawai, Y.; Uchiyama, K. Design of Frequency Shaped LQR Considering Dynamic Characteristics of the Actuator; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 1235–1239. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, S.; Wang, S.; Huang, J.; Zhao, Y.; Guo, J. Research on Optimization Design of UAV Main Propulsion Motor Based on Particle Swarm Optimization Algorithm; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 2472–2476. [Google Scholar] [CrossRef]
- Ortiz-Torres, G.; López-Estrada, F.; Reyes-Reyes, J.; García-Beltrán, C.; Theilliol, D. An Actuator Fault Detection and Isolation method design for Planar Vertical Take-off and Landing Unmanned Aerial Vehicle modelled as a qLPV system. IFAC Pap. 2016, 49, 272–277. [Google Scholar] [CrossRef]
- Qi, X.; Qi, J.; Theilliol, D.; Song, D.; Zhang, Y.; Han, J. Self-Healing Control Design under Actuator Fault Occurrence on Single-rotor Unmanned Helicopters. J. Intell. Robot. Syst. Theory Appl. 2016, 84, 21–35. [Google Scholar] [CrossRef]
- Grannan, N.; Gutmark, E. An Off-Design Analysis of an Inverse Brayton Cycle Based UAV Propulsion System; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2015. [Google Scholar] [CrossRef]
- Theilliol, D.; Weber, P.; Chamseddine, A.; Zhang, Y. Optimization-Based Reliable Control Allocation Design for Over-Actuated Systems; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2015; pp. 1225–1230. [Google Scholar] [CrossRef]
- Wąsik, M.; Skarka, W. Design Optimization of Electric Propulsion of Flying Exploratory Autonomous Robot; IOS Press BV: Amsterdam, The Netherlands, 2015; Volume 2, pp. 367–376. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, H.; Jiang, B.; Zhou, D.; Zhang, Y. Adaptive fault-tolerant control design for UAVs formation flight under actuator faults. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013; pp. 1097–1105. [Google Scholar] [CrossRef]
- Gao, Z.; Qian, M.; Yin, J.; Lin, J.; He, H. Fault tolerant control design for hypersonic UAV attitude dynamical systems with actuator faults. ICIC Express Lett. Part B Appl. 2012, 3, 1293–1301. [Google Scholar]
- Hung, J.C.; Gonzalez, L. Design, simulation and analysis of a parallel hybrid electric propulsion system for unmanned aerial vehicles. Prog. Aerosp. Sci. 2012, 4, 2655–2661. [Google Scholar]
- Koster, J.; Balaban, S.; Hillery, D.; Humbargar, C.; Nasso, D.; Serani, E.; Velazco, A. Design of a blended wing body UAS with hybrid propulsion. Am. Soc. Mech. Eng. 2011, 1, 331–337. [Google Scholar] [CrossRef]
- Yu, K.; Guo, H.; Wang, D.; Li, L. Design of multi-redundancy electro-mechanical actuator controller with DSP and FPGA. In Proceedings of the 2007 International Conference on Electrical Machines and Systems (ICEMS), Seoul, Korea, 8–11 October 2007; pp. 584–587. [Google Scholar] [CrossRef]
- Tang, L.; Kacprzynski, G.; Roemer, M.; Vachtsevanos, G.; Patterson-Hine, A. Automated Contingency Management Design for Advanced Propulsion Systems; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2005; Volume 2, pp. 878–886. [Google Scholar] [CrossRef]
- Chew, F.; Gan, S.; Hesse, H. Rapid Design Process of Shrouded Rotors for Efficient UAV Propulsion; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2021; pp. 1–19. [Google Scholar] [CrossRef]
- Hossain, A. Conceptual design of a low—Cost linear actuator for variable span wing application. INCAS Bull. 2021, 13, 69–76. [Google Scholar] [CrossRef]
- Liben, M.; Ludois, D. Analytical Design and Experimental Testing of a Self-Cooled, Toroidally Wound Ring Motor with Integrated Propeller for Electric Rotorcraft. IEEE Trans. Ind. Appl. 2021. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, J.; Li, K.; Wen, D. Design and implementation of an innovative airborne electric propulsion measure system of fixed-wing UAV. Aerosp. Sci. Technol. 2021, 109. [Google Scholar] [CrossRef]
- Duan, D.; Wang, Z.; Wang, Q.; Li, J. Research on integrated optimization design method of high-efficiency motor propeller system for UAVs with multi-states. IEEE Access 2020, 8, 165432–165443. [Google Scholar] [CrossRef]
- Liu, Z.; Theilliol, D.; Yang, L.; He, Y.; Han, J. Interconnection and Damping Assignment Passivity-Based Control Design Under Loss of Actuator Effectiveness. J. Intell. Robot. Syst. Theory Appl. 2020, 100, 29–45. [Google Scholar] [CrossRef]
- Marcolini, F.; De Donato, G.; Giulii Capponi, F.; Incurvati, M.; Caricchi, F. Design of a Multiphase Coreless Axial Flux Permanent Magnet Machine for Unmanned Aerial Vehicle Propulsion; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020; pp. 1756–1763. [Google Scholar] [CrossRef]
- Ren, X.L. Observer Design for Actuator Failure of a Quadrotor. IEEE Access 2020, 8, 152742–152750. [Google Scholar] [CrossRef]
- Anzai, T.; Zhao, M.; Murooka, M.; Shi, F.; Okada, K.; Inaba, M. Design, Modeling and Control of Fully Actuated 2D Transformable Aerial Robot with 1 DoF Thrust Vectorable Link Module; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 2820–2826. [Google Scholar] [CrossRef]
- Dai, W.; Li, W.; Wan, F. Dual Redundancy Design of Brushless DC Motor for UAV Steering Gear; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 279–283. [Google Scholar] [CrossRef]
- Guan, W.; Shi, P. Design of Fault Tolerant Control System for Four-Rotor UAV Actuator Failure; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 3927–3932. [Google Scholar] [CrossRef]
- Guiatni, M.; Saidani, H.; Bouzid, Y. Fault Tolerant Control Design for Actuator Loss of Effectiveness in Quadrotor Uavs; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Liben, M.; Ludois, D. Analytical Design of an Easily Manufacturable, Air-Cooled, Toroidally Wound Permanent Magnet Ring Motor with Integrated Propeller for Electric Rotorcraft; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 4483–4490. [Google Scholar] [CrossRef]
- Priatmoko, M.; Nirbito, W. Design Analysis of Ducted Propeller for Bicopter Drone Propulsion; Institute of Physics Publishing: Bristol, UK, 2019; Volume 685. [Google Scholar] [CrossRef]
- Qian, M.; Zhai, L.; Zhong, G.; Gao, Z. Adaptive Backstepping Fault Tolerant Controller Design for UAV with Multiple Actuator Faults; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 682–688. [Google Scholar] [CrossRef]
- De Simone, M.; Guida, D. Control design for an under-actuated UAV model. FME Trans. 2018, 46, 443–452. [Google Scholar] [CrossRef]
- Kang, Y.; Lim, B.; Rhee, D.; Jun, S.; Park, T.; Lee, Y.; Jun, Y. Design of turbo-compression system for Hale UAV propulsion system. Am. Soc. Mech. Eng. 2018, 2. [Google Scholar] [CrossRef]
- Liu, B.; Jiao, Z. LQR Lateral-Directional Control Law Design for Distributed Propulsion Layout Flying Wing; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; pp. 715–719. [Google Scholar] [CrossRef]
- Mallavalli, S.; Fekih, A. Adaptive Fault Tolerant Control Design for Actuator Fault Mitigation in Quadrotor UAVs; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; pp. 193–198. [Google Scholar] [CrossRef]
- Xu, X.; Deng, Y. UAV Power Component—DC Brushless Motor Design with Merging Adjacent-Disturbances and Integrated-Dispatching Pigeon-Inspired Optimization. IEEE Trans. Magn. 2018, 54. [Google Scholar] [CrossRef]
- Bougas, L.; Rößler, C.; Hornung, M. Design and Experimental Validation of a Propulsion Duct for a Jet Propelled Low Observable Scaled UAV Demonstrator; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2017. [Google Scholar] [CrossRef]
- Gong, A.; Verstraete, D. Design and Bench Test of a Fuel-Cell/Battery Hybrid UAV Propulsion System Using Metal Hydride Hydrogen Storage; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2017. [Google Scholar]
- Kamaruzaman, N.; Abdullah, E. Design and Testing of Shape Memory Alloy Actuation Mechanism for Flapping Wing Micro Unmanned Aerial Vehicles; Institute of Physics Publishing: Bristol, UK, 2017; Volume 270. [Google Scholar] [CrossRef]
- Kochersberger, K.; Ohanian, O.J.I.; Probst, T.; Gelhausen, P. Design and flight test of the generic micro-aerial vehicle (GenMAV) utilizing piezoelectric conformal flight control actuation. J. Intell. Mater. Syst. Struct. 2017, 28, 2793–2809. [Google Scholar] [CrossRef]
- Zhu, M.; Xia, L.; Hu, Y.; Chen, J.; Song, X. Design of Compact Smart Actuator; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Muehlebach, M.; D’Andrea, R. The Flying Platform—A testbed for ducted fan actuation and control design. Mechatronics 2017, 42, 52–68. [Google Scholar] [CrossRef]
- Parvez Alam, P.; Manoharan, D.; Chandramohan, S.; Chakkath, S.; Maurya, S. Design, Development & Testing of Test Rig Setup for UAV Propulsion System. SAE Tech. Pap. 2017, 2017. [Google Scholar] [CrossRef]
- Zhu, M.; Xia, L.; Hu, Y.; Zhang, W.; Ji, D.; Song, X. Air cooling analysis and design of impacted flexible actuator’s servo controller based on PLECS. EDP Sci. 2017, 108. [Google Scholar] [CrossRef] [Green Version]
- Zulkipli, A.; Raj, T.; Hashim, F.; Huddin, A. Characterization of DC Brushless Motor for an Efficient Multicopter Design; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 586–591. [Google Scholar] [CrossRef]
- Chu, W.; Guo, H.; Xing, W. Design of Non-Similar Dual-Redundant Electromechanical Actuation System for UAV Landing Gear; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 592–595. [Google Scholar] [CrossRef]
- Qian, M.S.; Jiang, B.; Liu, H.T. Dynamic surface active fault tolerant control design for the attitude control systems of UAV with actuator fault. Int. J. Control. Autom. Syst. 2016, 14, 723–732. [Google Scholar] [CrossRef]
- Valencia, E.; Benalcazar, M.; Saá, J.; Magne, N.; Hidalgo, V. Design Point Analysis of a Distributed Propulsion System with Boundary Layer Ingestion Implemented in UAVs for Agriculture in the Andean Region; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2016. [Google Scholar] [CrossRef]
- Bryner, E.; Ransom, D.; Bishop, J.; Coogan, S.; Musgrove, G. Design of a small scale gas turbine for a hybrid propulsion system. Am. Soc. Mech. Eng. 2015, 8. [Google Scholar] [CrossRef]
- Chamseddine, A.; Theilliol, D.; Zhang, Y.; Join, C.; Rabbath, C. Active fault-tolerant control system design with trajectory re-planning against actuator faults and saturation: Application to a quadrotor unmanned aerial vehicle. Int. J. Adapt. Control. Signal Process. 2015, 29, 1–23. [Google Scholar] [CrossRef]
- Khamlia, M.; Bennaceur, S.; Azouz, N.; Samaali, S.; Abichou, A.; Lerbet, J. Modeling and actuators design of an unconventional airship. Am. Soc. Mech. Eng. 2015, 57397, V04AT04A018. [Google Scholar] [CrossRef] [Green Version]
- Bahoura, M.; Williams, F.; Myers, O.; Plastied, B.; Hall, A.; Riddick, J. Design and fabrication of a functionally modified bimorph actuator. Am. Soc. Mech. Eng. 2014, 2. [Google Scholar] [CrossRef]
- Chamseddine, A.; Theilliol, D.; Sadeghzadeh, I.; Zhang, Y.; Weber, P. Optimal reliability design for over-actuated systems based on the MIT rule: Application to an octocopter helicopter testbed. Reliab. Eng. Syst. Saf. 2014, 132, 196–206. [Google Scholar] [CrossRef]
- Jackson, T.; Livne, E. Integrated aeroservoelastic design optimization of actively controlled strain-actuated flight vehicles. AIAA J. 2014, 52, 1105–1123. [Google Scholar] [CrossRef]
- Marimuthu, N.; Abdullah, E.; Majid, D.; Romli, F. Conceptual design of flapping wing using shape memory alloy actuator for micro unmanned aerial vehicle. Appl. Mech. Mater. 2014, 629, 152–157. [Google Scholar] [CrossRef]
- Prazenica, R.; Kim, D.; Moncayo, H.; Azizi, B.; Chan, M. Design, characterization, and testing of macro-fiber composite actuators for integration on a fixed-wing UAV. SPIE 2014, 9057. [Google Scholar] [CrossRef]
- Bogusz, P.; Korkosz, M.; Prokop, J. A study of design process of BLDC motor for aircraft hybrid drive. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 27–30 June 2011; pp. 508–513. [Google Scholar] [CrossRef]
- Dönmez, B.; Özkan, B. Design of an antagonistic shape memory alloy actuator for flap type control surfaces. Int. Soc. Opt. Photonics 2011, 7977. [Google Scholar] [CrossRef]
- Dönmez, B.; Özkan, B. Design and control of a shape memory alloy actuator for flap type aerodynamic surfaces. IFAC Secr. 2011, 44, 8138–8143. [Google Scholar] [CrossRef] [Green Version]
- Lieh, J.; Spahr, E.; Behbahani, A.; Hoying, J. Design of Hybrid Propulsion Systems for Unmanned Aerial Vehicles; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2011. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Guo, H.; Xing, W.; Xu, J. Controller design and implementation for double-stator tri-redundant brushless DC motor based on DSP and FPGA. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011. [Google Scholar] [CrossRef]
- Sofla, A.; Meguid, S.; Tan, K. Novel morphing wing design using antagonistic shape memory alloy actuation. ASME Int. Mech. Eng. Congr. Expo. 2010, 1, 33–36. [Google Scholar] [CrossRef]
- Barrett, R.; McMurtry, R.; Vos, R.; Tiso, P.; De Breuker, R. Post-buckled precompressed piezoelectric flight control actuator design, development and demonstration. Smart Mater. Struct. 2006, 15, 1323–1331. [Google Scholar] [CrossRef]
- Engeda, A. Development of a design methodoloy for ducted fan systems used in micro unmanned air vechile propulsion. Turbo Expo Power Land Sea Air 2006, 429–438. [Google Scholar] [CrossRef]
- Yoon, K.; Setiawan, H.; Goo, N. Design of elevator control surface actuated by LIPCA for small unmanned air vehicle. Int. Soc. Opt. Photonics 2006, 6173. [Google Scholar] [CrossRef]
- Lim, S.; Lee, S.; Park, H.; Yoon, K.; Goo, N. Design and demonstration of a biomimetic wing section using a lightweight piezo-composite actuator (LIPCA). Smart Mater. Struct. 2005, 14, 496–503. [Google Scholar] [CrossRef]
- Manzo, J.; Garcia, E.; Wickenheiser, A.; Horner, G. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism. Int. Soc. Opt. Photonics 2005, 5764, 232–240. [Google Scholar] [CrossRef]
- Rajashekar, S.; Venkatesh, C.; Singh, P. Design of linear electro-mechanical actuator for an unmanned air vehicle. In Proceedings of the National Conference on Machines and Mechanisms, NaCoMM 2005, North Guwahati, India, 16–17 December 2005; pp. 159–164. [Google Scholar]
- Collie, W.; Burgun, R.; Heinzen, S.; Hall, C., Jr.; Chokani, N. Advanced propulsion system design and integration for a turbojet powered unmanned aerial vehicle. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003. [Google Scholar]
- Ehrlich, H.; Kurz, K.H.; Rued, K.P.; Lauer, W. Trends in Military Aeroengine-Design—From EJ200 to Future Manned and Unmanned Vehicle Propulsion; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2003. [Google Scholar]
- Lim, S.; Lee, S.; Park, H.; Yoon, K.; Goo, N. Design and demonstration of a biomimetic wing section using Lightweight Piezoceramic Composite Actuator (LIPCA). Smart Mater. Struct. 2003, 5056, 142–150. [Google Scholar] [CrossRef]
- Amici, C.; Pellegrini, N.; Tiboni, M. The Robot Selection Problem for Mini-Parallel Kinematic Machines: A Task-Driven Approach to the Selection Attributes Identification. Micromachines 2020, 11, 711. [Google Scholar] [CrossRef] [PubMed]
- Boukoberine, M.N.; Zhou, Z.; Benbouzid, M. A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects. Appl. Energy 2019, 255, 113823. [Google Scholar] [CrossRef]
- Yezeguelian, A.; Isikveren, A.T. Methods to improve UAV performance using hybrid-electric architectures. Aircr. Eng. Aerosp. Technol. 2020, 92, 685–700. [Google Scholar] [CrossRef]
- Kidd, T.; Yu, Z.; Dobbs, S.; Anderson, K.R.; Oetting, G.; Kim, J.; O’Connell, M. UAV Power Management, Generation, and Storage System Principles and Design. In Proceedings of the 2020 IEEE Conference on Technologies for Sustainability (SusTech), Santa Ana, CA, USA, 23–25 April 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Dobbs, S.; Yu, Z.; Anderson, K.R.; Franco, J.A.; Deravanessian, A.E.; Lin, A.; Ahn, A. Design of an Inflight Power Generation and Storage System for Use in UAVs. In Proceedings of the 2018 IEEE Conference on Technologies for Sustainability (SusTech), Long Beach, CA, USA, 11–13 November 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Kim, S.A. Design and characteristic analysis of motor considering propeller structure of integrated propulsor for underwater drone. Trans. Korean Inst. Electr. Eng. 2020, 69, 1010–1015. [Google Scholar] [CrossRef]
- Rajappa, S.; Ryll, M.; Bulthoff, H.; Franchi, A. Modeling, Control and Design Optimization for a Fully-Actuated Hexarotor Aerial Vehicle with Tilted Propellers; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2015; pp. 4006–4013. [Google Scholar] [CrossRef] [Green Version]
- Ampatis, C.; Papadopoulos, E. Parametric Design and Optimization of Multi-Rotor Aerial Vehicles; Springer: Cham, Switzerland, 2014; Volume 91, pp. 1–25. [Google Scholar] [CrossRef]
Drone Size Class | Mass | Wingspan |
---|---|---|
SDs | 0.5 g–0.005 g | 1 mm–2.5 mm |
PAVs | 0.5 g–3 g | 2.5 mm–25 mm |
NAVs | 3 g–50 g | 25 mm–250 mm |
MAVs | 50 g–2 kg | 250 mm–1 m |
UAVs | 2 kg–5 kg | 1 m–2 m |
UAVs | 5 kg–15,000 kg | 2 m–61 m |
Paper | Technical | Normative | Custom | |||
---|---|---|---|---|---|---|
G | D | PS | MRs | |||
Dantsker 2020 [11] | x | x | x | x | ||
Hossain 2020 [12] | x | x | ||||
Saemi * 2020 [13] | x | x | x | x | ||
Siswoyo Jo 2020 [14] | x | x | x | x | ||
Guo 2018 [15] | x | x | x | |||
Zhao 2018 [10] | x | x | x | x | ||
Castaneda 2017 [16] | x | x | ||||
Kotarski 2017 [17] | x | x | x | |||
Bershadsky 2015 [9] | x | x | x | x | ||
Heim 2015 [18] | x | x | x | |||
Li 2012 [19] | x | x | x | x | x | |
Lindahl 2012 [20] | x | x | ||||
Aksugur 2010 [5] | x | x | x | x | x | |
Capata 2010 [21] | x | x | x | |||
Hiserote 2010 [22] | x | x | x | x | x | |
Lindahl 2009 [23] | x | x | x | |||
Stepaniak 2009 [24] | x | x | x | |||
Aksugur 2008 [8] | x | x | x | x | x | |
Soban 2005 [25] | x | x | x | x |
Paper | UAV Type | Actuation Type | Design Level | Topics | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FxW | FlW | Mr | O | F | E | H | O | Ve | PrS | PrC | K | D | Me | PS | MP | Op | Va | FM | C | ||||
Mo | Pl | B | O | ||||||||||||||||||||
Dantsker 2020 [11] | x | x | x | x | x | x | |||||||||||||||||
Hossain 2020 [12] | x | x | x | x | |||||||||||||||||||
Saemi 2020 [13] | x | x | x | x | x | ||||||||||||||||||
Siswoyo Jo 2020 [14] | x | x | x | x | x | x | x | x | |||||||||||||||
Guo 2018 [15] | x | x | x | x | x | x | |||||||||||||||||
Zhao 2018 [10] | x | x | x | x | x | x | x | ||||||||||||||||
Castaneda 2017 [16] | x | x | x | x | x | x | x | ||||||||||||||||
Kotarski 2017 [17] | x | x | x | x | x | ||||||||||||||||||
Bershadsky 2015 [9] | x | x | x | x | x | x | |||||||||||||||||
Heim 2015 [18] | x | x | x | x | x | ||||||||||||||||||
Li 2012 [19] | x | x | x | x | x | x | |||||||||||||||||
Lindahl 2012 [20] | x | x | x | x | x | x | x | x | |||||||||||||||
Aksugur 2010 [5] | x | x | x | x | |||||||||||||||||||
Hiserote 2010 [21] | x | x | x | x | |||||||||||||||||||
Capata 2010 [22] | x | x | x | x | x | x | x | x | |||||||||||||||
Lindahl 2009 [23] | x | x | x | x | x | x | |||||||||||||||||
Stepaniak 2009 [24] | x | x | x | x | x | x | x | x | x | ||||||||||||||
Aksugur 2008 [8] | x | x | x | x | x | ||||||||||||||||||
Soban 2005 [25] | x | x | x | x |
Paper | UAV Type | Actuation Type | Design Level | Topics | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FxW | FlW | Mr | O | F | E | H | O | Ve | PrS | PrC | K | D | Me | PS | MP | Op | Va | FM | C | ||||
Mo | Pl | B | O | ||||||||||||||||||||
Ahn 2021 [26] | x | x | x | x | |||||||||||||||||||
Zhang 2021 [27] | x | x | x | x | x | x | x | x | x | ||||||||||||||
LI 2020 [7] | x | x | x | x | x | x | x | x | |||||||||||||||
Thilakraj 2019 [28] | x | x | x | x | x | x | |||||||||||||||||
Anastasopoulos 2018 [29] | x | x | x | x | x | ||||||||||||||||||
Yazdani-Asrami 2015 [30] | x | x | x | x | x | ||||||||||||||||||
Ullah 2021 [31] | x | x | x | x | x | x | x |
Paper | UAV Type | Actuation Type | Design Level | Topics | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FxW | FlW | Mr | O | F | E | H | O | Ve | PrS | PrC | K | D | Me | PS | MP | Op | Va | FM | C | ||||
Mo | Pl | B | O | ||||||||||||||||||||
Abro 2020 [32] | x | x | x | x | x | ||||||||||||||||||
Pavkovic 2020 [33] | x | x | x | x | x | x | x | ||||||||||||||||
Ullah 2020 [34] | x | x | x | x | x | ||||||||||||||||||
VanTreuren 2020 [35] | x | x | x | x | x | x | |||||||||||||||||
Yang 2020 [36] | x | x | x | x | x | x | x | x | x | ||||||||||||||
Cheng 2019 [37] | x | x | x | x | x | ||||||||||||||||||
Dai 2019 [38] | x | x | x | x | x | x | x | x | |||||||||||||||
Gebauer 2019 [39] | x | x | x | x | x | ||||||||||||||||||
Jims John Wessley 2019 [40] | x | x | x | x | x | ||||||||||||||||||
Kasem 2019 [41] | x | x | x | x | x | ||||||||||||||||||
Lee 2019 [42] | x | x | x | x | x | x | |||||||||||||||||
Mallavalli 2019 [43] | x | x | x | x | x | x | |||||||||||||||||
Nigro 2019 [44] | x | x | x | x | x | x | x | x | x | ||||||||||||||
Oukassi 2019 [45] | x | x | x | x | x | ||||||||||||||||||
Wang 2019a [46] | x | x | x | x | |||||||||||||||||||
Wang 2019b [47] | x | x | x | x | x | x | x | x | |||||||||||||||
Zhang 2019 [48] | x | x | x | x | x | x |
Paper | UAV Type | Actuation Type | Design Level | Topics | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FxW | FlW | Mr | O | F | E | H | O | Ve | PrS | PrC | K | D | Me | PS | MP | Op | Va | FM | C | ||||
Mo | Pl | B | O | ||||||||||||||||||||
Franz-Michael 2018 [49] | x | x | x | x | x | x | x | x | |||||||||||||||
Shavin 2018 [50] | x | x | x | x | x | x | x | x | |||||||||||||||
He 2017 [51] | x | x | x | x | x | ||||||||||||||||||
Kimaru 2017 [52] | x | x | x | x | x | x | |||||||||||||||||
Lu 2017 [53] | x | x | x | x | x | x | |||||||||||||||||
Qian 2017a [54] | x | x | x | x | x | x | x | ||||||||||||||||
Qian 2017b [55] | x | x | x | x | x | x | x | ||||||||||||||||
Yu 2017 [56] | x | x | x | x | x | x | x | ||||||||||||||||
Bondyra 2016 [57] | x | x | x | x | x | x | |||||||||||||||||
Giernacki 2016 [58] | x | x | x | x | x | x | x | x | x | ||||||||||||||
Kawai 2016 [59] | x | x | x | x | |||||||||||||||||||
Li 2016 [60] | x | x | x | x | x | x | x | x | |||||||||||||||
Ortiz-Torres 2016 [61] | x | x | x | x | x | x | x | x | x | ||||||||||||||
Qi 2016 [62] | x | x | x | x | x | x | x | x |
Paper | UAV Type | Actuation Type | Design Level | Topics | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FxW | FlW | Mr | O | F | E | H | O | Ve | PrS | PrC | K | D | Me | PS | MP | Op | Va | FM | C | ||||
Mo | Pl | B | O | ||||||||||||||||||||
Grannan 2015 [63] | x | x | x | x | x | x | |||||||||||||||||
Theilliol 2015 [64] | x | x | x | x | x | x | |||||||||||||||||
Wąsik 2015 [65] | x | x | x | x | x | x | |||||||||||||||||
Szafranski 2014 [4] | x | x | x | x | x | ||||||||||||||||||
Xu 2013 [66] | x | x | x | x | x | x | x | ||||||||||||||||
Gao 2012 [67] | x | x | x | x | x | x | |||||||||||||||||
Hung 2012 [68] | x | x | x | x | x | x | x | ||||||||||||||||
Koster 2011 [69] | x | x | x | x | x | x | x | x | |||||||||||||||
Yu 2007 [70] | x | x | x | x | x | x | x | ||||||||||||||||
Tang 2005 [71] | x | x | x | x | x | x | x | x | x | x |
Paper | UAV Type | Actuation Type | Design Level | Topics | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FxW | FlW | Mr | O | F | E | H | O | Ve | PrS | PrC | K | D | Me | PS | MP | Op | Va | FM | C | ||||
Mo | Pl | B | O | ||||||||||||||||||||
Chew 2021 [72] | x | x | x | ||||||||||||||||||||
Hossain 2021 [73] | x | x | x | ||||||||||||||||||||
Liben 2021 [74] | x | x | x | x | x | ||||||||||||||||||
Zhao 2021 [75] | x | x | x | x | |||||||||||||||||||
Duan 2020 [76] | x | x | x | x | x | ||||||||||||||||||
Liu 2020 [77] | x | ||||||||||||||||||||||
Marcolini 2020 [78] | x | x | x | x | |||||||||||||||||||
Ren 2020 [79] | x | x | x | x | |||||||||||||||||||
Anzai 2019 [80] | x | x | x | ||||||||||||||||||||
Dai 2019a [81] | x | x | x | x | x | x | |||||||||||||||||
Guan 2019 [82] | x | x | x | x | x | ||||||||||||||||||
Guiatni 2019 [83] | x | x | x | x | x | x | |||||||||||||||||
Liben 2019 [84] | x | x | x | x | x | ||||||||||||||||||
Priatmoko 2019 [85] | x | x | x | x | |||||||||||||||||||
Qian 2019 [86] | x | x | x | x | x | x | |||||||||||||||||
De Simone 2018 [87] | x | x | x | x | x | x | |||||||||||||||||
Kang 2018 [88] | x | x | x | x | x | x | x | ||||||||||||||||
Liu 2018 [89] | x | x | x | x | |||||||||||||||||||
Mallavalli 2018 [90] | x | x | x | x | |||||||||||||||||||
Xu 2018 [91] | x | x | x | x | x | x |
Paper | UAV Type | Actuation Type | Design Level | Topics | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FxW | FlW | Mr | O | F | E | H | O | Ve | PrS | PrC | K | D | Me | PS | MP | Op | Va | FM | C | ||||
Mo | Pl | B | O | ||||||||||||||||||||
Bougas 2017 [92] | x | x | x | x | x | x | |||||||||||||||||
Gong 2017 [93] | x | x | x | x | x | ||||||||||||||||||
Kamaruzaman 2017 [94] | x | x | x | x | |||||||||||||||||||
Kochersberger 2017 [95] | x | x | x | x | |||||||||||||||||||
Mingjun 2017 [96] | x | x | x | ||||||||||||||||||||
Muehlebach 2017 [97] | x | x | x | x | |||||||||||||||||||
Parvez Alam 2017 [98] | x | x | x | x | |||||||||||||||||||
Zhu 2017 [99] | x | x | x | x | x | x | |||||||||||||||||
Zulkipli 2017 [100] | x | x | x | x | |||||||||||||||||||
Chu 2016 [101] | x | x | x | x | |||||||||||||||||||
Qian 2016 [102] | x | x | x | x | |||||||||||||||||||
Valencia 2016 [103] | x | x | x | x | x | x | x |
Paper | UAV Type | Actuation Type | Design Level | Topics | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FxW | FlW | Mr | O | F | E | H | O | Ve | PrS | PrC | K | D | Me | PS | MP | Op | Va | FM | C | ||||
Mo | Pl | B | O | ||||||||||||||||||||
Bryner 2015 [104] | x | x | x | ||||||||||||||||||||
Chamseddine 2015 [105] | x | x | x | x | x | ||||||||||||||||||
Khamlia 2015 [106] | x | x | x | x | |||||||||||||||||||
Rajappa 2015 [64] | x | x | x | x | |||||||||||||||||||
Bahoura 2014 [107] | x | x | x | x | |||||||||||||||||||
Chamseddine 2014 [108] | x | x | x | x | x | ||||||||||||||||||
Jackson 2014 [109] | x | x | x | x | x | ||||||||||||||||||
Marimuthu 2014 [110] | x | x | x | x | x | ||||||||||||||||||
Prazenica 2014 [111] | x | x | x | x | x | ||||||||||||||||||
Bogusz 2011 [112] | x | x | x | x | |||||||||||||||||||
Dönmez 2011a [113] | x | x | x | x | |||||||||||||||||||
Dönmez 2011b [114] | x | x | x | x | x | x | x | x | |||||||||||||||
Lieh 2011 [115] | x | x | x | x | x | ||||||||||||||||||
Yu 2011 [116] | x | x | x | x |
Paper | UAV Type | Actuation Type | Design Level | Topics | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FxW | FlW | Mr | O | F | E | H | O | Ve | PrS | PrC | K | D | Me | PS | MP | Op | Va | FM | C | ||||
Mo | Pl | B | O | ||||||||||||||||||||
Sofla 2010 [117] | x | x | x | ||||||||||||||||||||
Barrett 2006 [118] | x | x | x | x | x | ||||||||||||||||||
Engeda 2006 [119] | x | x | x | ||||||||||||||||||||
Yoon 2006 [120] | x | x | x | x | x | ||||||||||||||||||
Lim 2005 [121] | x | x | x | x | x | ||||||||||||||||||
Manzo 2005 [122] | x | x | x | x | |||||||||||||||||||
Rajashekar 2005 [123] | x | x | x | x | |||||||||||||||||||
Collie 2003 [124] | x | x | x | x | |||||||||||||||||||
Ehrlich 2003 [125] | x | x | x | x | |||||||||||||||||||
Lim 2003 [126] | x | x | x | x | x |
Parameter | Functional Design, Sizing | Optimization Methods | Control, Identification, Modeling | Detailed Design | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
UAV Type | FxW | 12 | 24.5% | 2 | 4.1% | 12 | 24.5% | 23 | 46.9% | 49 | |
FlW | 0 | 0.0% | 0 | 0.0% | 1 | 20.0% | 4 | 80.0% | 5 | ||
Mr | 5 | 15.4% | 0 | 0.0% | 14 | 43.8% | 13 | 40.6% | 32 | ||
O | 1 | 5.9% | 2 | 11.8% | 9 | 52.9% | 5 | 29.4% | 17 | ||
Actuation Type | F | 0 | 0.0% | 1 | 9.1% | 4 | 36.4% | 6 | 54.5% | 11 | |
E | 9 | 10.8% | 4 | 4.8% | 28 | 33.7% | 42 | 50.6% | 83 | ||
H | 1 | 50.0% | 1 | 50.0% | 0 | 0.0% | 0 | 0.0% | 2 | ||
O | 0 | 0.0% | 0 | 0.0% | 1 | 7.7% | 12 | 92.3% | 13 | ||
Design level | Ve | 4 | 30.8% | 1 | 7.7% | 8 | 61.5% | 0 | 0.0% | 13 | |
PrS | 11 | 23.4% | 2 | 4.3% | 15 | 31.9% | 19 | 40.4% | 47 | ||
PrC | Mo | 0 | 0.0% | 2 | 5.9% | 5 | 14.7% | 27 | 79.4% | 34 | |
Pl | 0 | 0.0% | 1 | 12.5% | 1 | 12.5% | 6 | 75.0% | 8 | ||
B | 0 | 0.0% | 0 | 0.0% | 1 | 33.3% | 2 | 66.7% | 3 | ||
O | 2 | 9.1% | 0 | 0.0% | 13 | 59.1% | 7 | 31.8% | 22 | ||
Topics | K | 0 | 0.0% | 0 | 0.0% | 6 | 85.7% | 1 | 14.3% | 7 | |
D | 10 | 20.8% | 5 | 10.4% | 25 | 52.1% | 8 | 16.7% | 48 | ||
Me | 15 | 25.4% | 4 | 6.8% | 23 | 39.0% | 17 | 28.8% | 59 | ||
PS | 11 | 23.4% | 3 | 6.4% | 17 | 36.2% | 16 | 34.0% | 47 | ||
MP | 4 | 17.4% | 2 | 8.7% | 15 | 65.2% | 2 | 8.7% | 23 | ||
Op | 4 | 21.1% | 4 | 21.1% | 5 | 26.3% | 6 | 31.6% | 19 | ||
Va | 14 | 25.9% | 4 | 7.4% | 30 | 55.6% | 6 | 11.1% | 54 | ||
FM | 0 | 0.0% | 0 | 0.0% | 11 | 55.0% | 9 | 45.0% | 20 | ||
C | 6 | 10.7% | 0 | 0.0% | 28 | 50.0% | 22 | 39.3% | 56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amici, C.; Ceresoli, F.; Pasetti, M.; Saponi, M.; Tiboni, M.; Zanoni, S. Review of Propulsion System Design Strategies for Unmanned Aerial Vehicles. Appl. Sci. 2021, 11, 5209. https://doi.org/10.3390/app11115209
Amici C, Ceresoli F, Pasetti M, Saponi M, Tiboni M, Zanoni S. Review of Propulsion System Design Strategies for Unmanned Aerial Vehicles. Applied Sciences. 2021; 11(11):5209. https://doi.org/10.3390/app11115209
Chicago/Turabian StyleAmici, Cinzia, Federico Ceresoli, Marco Pasetti, Matteo Saponi, Monica Tiboni, and Simone Zanoni. 2021. "Review of Propulsion System Design Strategies for Unmanned Aerial Vehicles" Applied Sciences 11, no. 11: 5209. https://doi.org/10.3390/app11115209
APA StyleAmici, C., Ceresoli, F., Pasetti, M., Saponi, M., Tiboni, M., & Zanoni, S. (2021). Review of Propulsion System Design Strategies for Unmanned Aerial Vehicles. Applied Sciences, 11(11), 5209. https://doi.org/10.3390/app11115209