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Modeling, Control and Design Optimization for a
Fully-actuated Hexarotor Aerial Vehicle with Tilted Propellers

Sujit Rajappa1, Markus Ryll3, Heinrich H. Bülthoff1,2 and Antonio Franchi3,4

Abstract— Mobility of a hexarotor UAV in its standard
configuration is limited, since all the propeller force vectors are
parallel and they achieve only 4 DoF actuation, similar, e.g.,
to quadrotors. As a consequence, the hexarotor pose cannot
track an arbitrary trajectory over time. In this paper, we
consider a different hexarotor architecture where propellers
are tilted, without the need of any additional hardware. In this
way, the hexarotor possess a 6 DoF actuation which allows to
independently reach positions and orientations in free space
and to be able to exert forces on the environment to resist
any wrench for aerial manipulation tasks. After deriving the
dynamical model of the proposed hexarotor, we discuss the
controllability and the tilt angle optimization to reduce the
control effort. An exact feedback linearization and decoupling
control law is proposed based on the input-output mapping,
considering the Jacobian and task acceleration, for non-linear
trajectory tracking. The robustness of our approach is validated
by simulation results.

I. INTRODUCTION

Research in the field and applications related to unmanned
aerial vehicles (UAVs) has been a popular research topic
in recent times, see e.g., [1] and references therein. The
application possibility to use the UAV for various tasks such
as search and rescue operation, exploration, surveillance,
cooperative swarm tasks or transportation are all increasing
and has been the main research subject with growing interest
in the last decade with many industrial collaborations. Lately,
the mobile manipulation tasks by aerial vehicles and physical
interaction with the environment for various applications has
been growing ground within the UAV community. The inter-
action can be done by direct contact [2]–[5], by considering
simple grasping/manipulation tasks [6], [7] and has moved
forward to multiple collaborative interactive UAVs [8].

Among the many challenges faced by typical UAVs, such
as little flight time, limited payload capacity, uncertainties in
outside environment etc., an important one is the underac-
tuation, i.e., the inability to exert forces in some directions
of the body frame. Quadrotors have been used as the main
platform for applications as well as research, though they are
also underactuated, i.e., they cannot exert any force parallel
to the plane perpendicular to their vertical direction in body
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frame. This is why a quadrotor needs to roll and pitch to
move in any direction.

But when it comes to physical interaction, underactuation
might become a serious problem for the capabilities and
overall stabilization of the aerial vehicle. As the applica-
tion complexity is going higher, major breakthroughs and
advancements in innovative mechanical designs, actuation
concepts, micro-electro mechanical systems, sensor tech-
nology and power capacity is always envisioned. Several
possibilities have been proposed in the past literature span-
ning different concepts: ducted-fan designs [9], tilt-wing
mechanisms [10], or tilt-rotor actuations [11], [12]. The
concept of tilt-rotor architecture has been much explored
to increase flight time [13] but not for the improvement of
the underactuation problem. In [14] the underactuation was
addressed by four additional rotors at the end of each frame
in lateral position. But the position of the rotor increased the
complexity of controllability because of the air flow between
the vertical and the lateral rotors, resulting in non-linear
dynamics along with the increase in payload.

Our own in-lab investigation led to the novel quadrotor
design [15] with tilted propellers by 4 additional actuators
included for the tilting thereby creating the possibility to
regulate independently the 6 DoFs of the platform. Though
underactuation problem was solved by this design, the need
of tilting the propellers in order to resist to any external
wrench makes it tough for the aerial manipulation task,
where forces shall be exerted instantaneously to resist to
unexpected external wrenches. Additionally, the use of ser-
vomotors for tilting the propellers makes the overall model
challenging to control in real scenarios involving physical
interaction.

In [16], a hexarotor with the propellers rotated about one
axis was suggested. Our approach is different, as we present
a more general tilt design, a control law for 6 DoFs trajectory
tracking, a methodology to optimize the fixed tilting angles
for each propeller depending on the task in exam and an
improved mechanical design where all the propellers lie in
the same plane.

Taking inspiration from all the related work, we propose
a novel hexarotor with tilted propeller design, where each
rotor is fixedly mounted in a configuration that is rotated
about two possible axes. The main objective of this work
is full controllability of the UAV’s position and orientation
by means of tilted propellers, thereby making it completely
actuated. The full actuation comes with the cost of a more
advanced mechanical design.

The focus and structure of this paper is therefore: (i)
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to discuss in detail and derive the dynamic model for the
proposed hexarotor in Sec. II, (ii) to devise and develop
the closed-loop controller for the hexarotor which is able
to asymptotically track an arbitrary desired trajectory for
the position and orientation in 3 dimensional free space in
Sec. III, (iii) to optimize the propeller tilt angles depending
on the application/trajectory to reduce the overall control
effort in the Sec. IV, (iv) to start the design of a novel
and feasible hexarotor architecture with tilted propellers in
Sec. V, and finally (v) to test the hexarotor model and
its theoretical concepts in simulation, presented in Sec. VI.
Conclusions and future perspectives are given in Sec. VII.

II. DESIGN AND MODELING

A standard hexarotor possesses six propellers that are all
rotating about six parallel axes. Even though this choice
increases redundancy and payload, such configuration has
an underactuated dynamics similar to a standard quadrotor.
In fact, the six propellers create an input force that is always
parallel to that axis, no matter the values of the six rotational
speeds. In this case a change of the direction of the input
force can only be obtained by reorienting the whole vehicle.
Therefore, the desired output trajectory can only be defined
by a 4-dimensional output, namely the center of mass (CoM)
3D position plus the yaw angle, despite the presence of
6 control inputs. In fact in [17] it has been proven that
such kind of systems are exactly linearizable with a dynamic
feedback using as linearizing output, i.e. the CoM position
and the yaw angle. Feedback linearizability also implies that
the system is differentially flat and that the linearizing output
is the flat output [18]. The remaining two configuration
variables, i.e., the roll and pitch angles, cannot be chosen at
will, since they are being determined by the desired trajectory
of the CoM, the yaw angle, and their derivatives.

On the converse, the goal of the hexarotor modeling
approach presented here is to exploit at best the six available
inputs, thus resulting in a system that is fully actuated, i.e.,
linear and angular accelerations can be set independently
acting on the six inputs. In order to obtain full actuation, we
remove the constraint for the propellers to rotate about six
parallel axes, so that a force in any direction can be generated
regardless of the vehicle orientation. Thanks to full actua-
tion, this hexarotor can follow desired 6-DoFs trajectories
comprising both the CoM position and, independently, the
vehicle orientation described, e.g., by roll, pitch, and yaw,
or by a rotation matrix.

Even though a reallocation and reorientation of the six
propellers allows for more design flexibility it also increases
the number of design parameters thus increasing the design
complexity. In order to find a good compromise between full
actuation and low number of model parameters, we decide
to add some constraints on the parameters, i.e.:

• the CoM and the six propeller centers are coplanar, like
in a standard hexarotor;

• the propeller centers lie on lines that intersect with the
CoM and form 6 equal angles of π/3 each;

Fig. 1: Schematic representation of the hexarotor described in this
paper.

• the tilted planes of the propellers are coordinated, in
the sense that, each pair of propellers ((1)-(2), (3)-(4),
(5)-(6)) are tilted oppositely about the X- and Y-axis.
Detailed explanation can be found in Section IV;

These three design choices simplify the design complexity
while still allowing a full spectrum of actuation capabilities,
as it will be shown in the paper. In the following we formally
describe our hexarotor model and all the related design
choices.

A. Static System Description

We denote the world inertial frame with FW : {OW −
XWY WZW } and with FB : {OB−XBY BZB} the body
frame attached to the hexarotor frame, where OB coincides
with the hexarotor CoM. Let the frame associated with the
i-th propeller be defined as FPi

: {OPi
− XPi

Y Pi
ZPi
},

where i = 1 . . . 6. The origin OPi coincides with the center
of spinning and the CoM of the i-th propeller, the axes XPi

and Y Pi
define the rotation plane of the propeller, and ZPi

is the axis about which the propeller spins and coincides
with the generated thrust force. The propeller frame FPi

is
rigidly attached to the hexarotor frame, rather than to the
propeller, which spins about ZPi . In fact, only the direction
of the force and torque exerted by the propeller are relevant
to our problem. The actual spinning angle of each propeller
is not important for the motion, as it will be explained in
Sec. II-B.

We shall denote simply by p ∈ R3 the position of OB

in FW , and by Bpi ∈ R3 the position of OPi
in FB , with

i = 1 . . . 6. We make the following design choice:

Bpi = RZ

(
(i− 1)

π

3

) Lxi

0
0

 , ∀i = 1 . . . 6 (1)

where RZ(·) is the canonical rotation matrix about a Z-
axis and Lxi

> 0 is the distance between OPi
and OB .

It is important to note that the parameter Lxi is chosen
depending on the strength of propeller, size of hexarotor,
payload needs and doesn’t affect the full-actuation of hexaro-
tor. Furthermore, we chose Lx1

= Lx4
, Lx2

= Lx5
and

Lx3
= Lx6

. With these choices of RZ(·) and Lxi
, the OPi

of the 6 propellers lie on the XBY B plane and are evenly
angularly distributed, having a symmetric configuration in
normal hovering position.



Symbols Definitions
m total mass of the hexarotor
g gravity constant
OB Center of hexarotor or Center of Mass (CoM)
OPi

Center of the each propeller group
p position of OB (the CoM) in FW
Lxi distance between OPi

and OB
FW inertial world frame
FB hexarotor body frame
FPi

i-th propeller frame
WRB rotation matrix from FB to FW
BRPi

rotation matrix from FPi
to FB

IB inertia of the hexarotor frame
kf propeller thrust coefficient
km propeller drag coefficient
αi i-th propeller tilt angle about OPi

OB
βi i-th propeller tilt angle about Y Pi

ω̄i i-th propeller spinning velocity about ZPi

ωB angular velocity of FB w.r.t. FW expressed in FB
τ ext external disturbance torque acting on the hexarotor
T thrusti i-th propeller thrust along ZPi

T dragi drag due to the i-th propeller along ZPi

TABLE I: Main symbols used in the paper

Let the rotation matrix WRB ∈ SO(3) represent the ori-
entation of FB w.r.t. FW and BRPi ∈ SO(3) represent the
orientation of FPi w.r.t. FB , for i = 1 . . . 6. In order to obtain
a minimal parameterization of the propeller orientation we
decompose each BRPi

in three consecutive rotations

BRPi
= RZ

(
(i−1)π

3

)
RX(αi)RY (βi), ∀i = 1 . . . 6 (2)

where the angular parameters αi and βi represent the tilt
angles, that uniquely define the rotation plane of the i-th
propeller, XPiY Pi or, equivalently, the direction of ZPi

in FB . The angles αi and βi have a clear geometrical
interpretation, in fact the i-th propeller plane XPi

Y Pi
is

obtained from XBY B by first applying a rotation of αi
about the line OBOPi

and then a rotation of βi about Y Pi
,

which lies on XBY B and is perpendicular to OBOPi . The
αi and βi rotation is pictorially represented in Fig. 2.

For convenience, we group the tilting angles in
two 6-tuples: α = (α1, α2, α3, α4, α5, α6) and β =
(β1, β2, β3, β4, β5, β6). Considering the design constrains
explained earlier in Section II, the tilt w.r.t. XPi

is fixed
as α1 = −α2 = α3 = −α4 = α5 = −α6 and w.r.t Y Pi

is
β1 = −β2 = β3 = −β4 = β5 = −β6 in a co-ordinated
way. The angle of tilt is further detailed in optimization
(Section IV).

In this paper we consider the case in which Lxi , αi, βi,
for i = 1 . . . 6, are constant during flight, but can be changed
during a pre-flight setup, in order, e.g., to minimize the sum
of the overall control effort for a specific task, as shown in
Sec. IV.

B. Equations of Motion

Utilizing the standard Newton-Euler approach for dynamic
systems, it is possible to derive the complete dynamic
equations of the hexarotor by considering the forces and
torques that are generated by each propeller rotation together
with the significant gyroscopic and inertial effects. In the

following we recap the standard1 assumptions that we are
considering here:
• OB coincides with the CoM of the hexarotor;
• OPi

coincides with the CoM of the i-th propeller;
• the motors actuating the six propellers implement a fast

high-gain local controller which is able to impose a
desired spinning speed with negligible transient, thus
allowing to consider the spinning rates as (virtual)
control inputs in place of the motor torques;

• gyroscopic and inertial effects due to the propellers and
the motors are considered as second-order disturbances
to be rejected by the feedback nature of the controller;

• the tilted propellers might cause additional turbulences
due to the possible intersection of the airflows. These
turbulences are considered as negligible as the possible
intersection of the airflows happens not close to the
propellers. In fact, tilt configurations have been already
proven to be feasible in reality [19].

We will test in simulation (see Section VI) the practicability
of these assumptions with the proposed controller on a dy-
namic model which includes the aforementioned unmodeled
effects.

For ease of presentation, in the following we shall express
the translational dynamics in FW where as the rotational
dynamics is expressed in FB .

1) Rotational dynamics: Denote with ωB ∈ R3 the
angular velocity of FB , with respect to FW , expressed in
FB . Then the rotational dynamics is

IBω̇B = −ωB × IBωB + τ + τ ext, (3)

where IB is the hexarotor body inertia matrix, τ ext accounts
for external disturbances and unmodeled effects, and τ is the
input torque, which is decomposed in

τ = τ thrust + τ drag, (4)

where τ thrust is produced by the six propeller thrusts and
τ drag is due to the six propeller drags. The two individual
components of (4) are discussed in detail below.

a) Torque due to thrusts (τ thrust): The i-th propeller
creates a force vector applied at OPi

and directed along ZPi
,

which is expressed in FPi by

T thrusti =
[
0 0 kf ω̄

2
i

]T
(5)

where kf > 0 is a constant thrust coefficient and ω̄i is the
spinning velocity of the i-th propeller. The thrust torque,
expressed in FB is then

τ thrust =

6∑
i=1

(
Bpi × BRPi T thrusti

)
. (6)

b) Torque due to drag (τ drag): The drag moment gen-
erated by the i-th propeller acts in the opposite direction of
the propeller angular velocity and is expressed in FPi

by

T dragi =
[
0 0 (−1)ikmω̄

2
i

]T
, (7)

1Similar assumptions have been used, e.g., in [13]–[15]



(a) (b) (c)

Fig. 2: (a): i-th hexarotor arm presenting body frame FPi and the generated thrust Tthrusti and drag Tdragi ; (b) and (c): Visualization of
the possible reorientation of the propeller around XPi (case (b)) and YPi (case (c)). The angle of reorientation is denoted with α in (b)
and β in (c)

where km > 0 is the propeller drag coefficient. The factor
(−1)i is used since half of the propellers rotate clockwise
and the other half rotates counter-clockwise. This is done
in order to have an automatic counterbalance of the drag
torques at hovering. The drag torque due to the six propellers
expressed in FB is then

τ drag =

6∑
i=1

BRPi
T dragi . (8)

Putting together (8) and (6) in (4) we can write

τ = τ (α,β)u, (9)

where τ (α,β) ∈ R3×6 is the Jacobian matrix that relates
the input torque τ to the control input

u = [ω̄2
1 ω̄2

2 ω̄2
3 ω̄2

4 ω̄2
5 ω̄2

6 ]T ∈ R6×1, (10)

i.e., the squares of the rotational speeds of each propeller.
2) Translational dynamics: Thanks to the assumption on

the location of the hexarotor and propeller centers of mass,
we can express the translational dynamics in FW , using the
standard Newton-Euler formulation, as

mp̈ = m

 0
0
−g

+ WRBF (α,β)u+ f ext (11)

where f ext represents external disturbances and unmodeled
effects, and F (α,β) ∈ R3×6 is the Jacobian matrix that
relates u with the total force produced by the propellers
(expressed in body frame), i.e.,

F (α,β)u =

6∑
i=1

BRPi T thrusti . (12)

Notice that in a standard hexarotor αi = βi = 0, for all
i = 1 . . . 6. This implies that F (α,β) has rank equal to one
(the total force is always directed on the ZB axis).

III. CONTROL DESIGN

The control problem considered here is an output tracking
problem. In particular, the hexarotor is tasked to track,
simultaneously, a desired trajectory pd(t) with the CoM
position p and a given orientation Rd(t) with the body
orientation WRB . The available control inputs are the six
spinning rates of the propellers u defined in (10).

Neglecting the external forces and torques (which are
handled by the feedback nature of the control) we rewrite

here the hexarotor dynamical model, that is used for the
control design

p̈ =
[
0 0 −g

]T
+

1

m
WRBF (α,β)u (13)

ω̇B = −I−1B (ωB × IBωB) + I−1B τ (α,β)u (14)
WṘB = WRB [ωB ]∧ (15)

with [·]∧ being the usual map from R3 to so(3).

A. Exact Feedback Linearization and Decoupling Control

In order to apply a feedback linearization technique we
rewrite (13)–(14) in a matricial form[

p̈

ω̇B

]
= f + JR

[
J̄(α,β)

]
u = f + J(α,β)u (16)

where f ∈ R6 is the drift vector due to the gravity and the

rotational inertia, JR =

[
1
m

WRB 0

0 I−1
B

]
∈ R6×6, J̄(α,β) =[

F (α,β)

τ (α,β)

]
∈ R6×6, and the 6 × 6 matrix J(α,β) will be

referred to as the input Jacobian2.
If J(α,β) is invertible we choose the control input as

u = J−1(α,β) (−f + v) (17)

where v is an additional input, thus obtaining[
p̈

ω̇B

]
= v =

[
vp
vR

]
, (18)

i.e. the system is exactly linearized via a static feedback.
Fig. 3 shows the control scheme architecture.

In order to obtain an exponential convergence to 0 of the
position error p−pd = ep one can choose a linear controller

vp = p̈d −Kp1ėp −Kp2ep −Kp3

∫ t

t0

ep, (19)

where the diagonal positive definite gain matrixesKp1 ,Kp2 ,
Kp3 define Hurwitz polynomials.

Now considering the orientation tracking, a popular used
parameterization is to resort to Euler angles. However it
is well known that they are prone to singularity problems.
Keeping this in mind, the controller for the rotational config-
uration is developed directly on so(3) and thereby it avoids

2In standard hexarotor the input Jacobian J(α,β) has rank equal to four
similar to a quadrotor.
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Fig. 3: Control scheme architecture

any singularities that arise in local coordinates, such as Euler
angles. Now assuming that Rd(t) ∈ C̄3 and ωd = [RT

d Ṙd]∨,
where [·]∨ represents the inverse map from so(3) to R3, the
attitude tracking error eR ∈ R3 is defined similarly to [20]
as

eR =
1

2
[RT

d
WRB −WRT

BRd]∨, (20)

and the tracking error of the angular velocity eω ∈ R3 is
given by

eω = ωB −WRT
BRdωd. (21)

In order to obtain an asymptotic convergence to 0 of the
rotational error eR one can choose the following controller

vR = ω̇d −KR1
eω −KR2

eR −KR3

∫ t

t0

eR (22)

where the diagonal positive definite gain matrixes KR1 ,
KR2 , KR3 define Hurwitz polynomials also in this case.

B. Discussion on the Invertibility of J(α,β)

The previous control design relies on the invertibility of
the matrix J(α,β). To have the 6 DoFs, it is necessary
to create acceleration in all direction (i.e. ẍ, ÿ, z̈, ṗ, q̇, ṙ).
This is possible only if the Jacobian matrix J(α,β) in (17)
is invertible at all time instances. This implies ρJ =
rank(J(α,β)) = rank(JR.J̄(α,β)) ≡ rank(J̄(α,β)) =
6, ∀t > 0. Here JR is a nonsingular square matrix as
seen in (16) and therefore doesn’t affect rank(J(α,β)).
Therefore J̄(α,β) is the only rank affecting component and
is directly dependent on the propeller tilting configuration
αi and βi. Necessary conditions for αi and βi are:
• αi 6= ±π/2, where rank(J̄(α,β)) < 6 ∀ βi.

Due to the high non linearity of J̄(α,β) sufficient condi-
tions for the invertibility are hard to find. Figure 4 shows
det(J̄(α,β)) of the presented prototype in Sec.V. All com-
binations lying in the XY-plane are no feasible solutions.

IV. OPTIMIZATION

The angles αi and βi for i = 1 . . . 6 are adjusted during
the pre-flight setup as described in Sec. II. This gives the
possibility to change the angles depending on the needs
of a particular trajectory. In this section, we consider this
capability to optimize the angles αi and βi depending on
a predefined desired trajectory to reduce the control effort.
As a reminder, the main motive is the full controllability in
position and orientation. This comes with the cost of a higher
control effort. The objective of this section is therefore to
reduce this parasitic effect.

The predominant energy consuming parts of the hexaro-
tor are the propeller motors. Minimizing the control effort

Fig. 4: Determinant value (z-axis) of J̄(α,β) of the presented
prototype
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1.3e7 1.0e6 1.1e6 no feasible no feasible
solution solution

(a) (b) (c) (d) (e)

TABLE II: Stylized tested configuration and results. First row:
Different configuration presented. Outside the circle the sign of αi
is indicated, within the circle the sign of βi is indicated. Second
row: Value of the optimized

∫
||ω||min. Configuration (b) is the

best configuration for the given trajectory. Configurations (d) and
(e) are not feasible configurations

through the norm of the control output ||u|| by optimizing
the particular αi and βi will as well reduce the energy
consumption in flight. To reduce the complexity of the
optimization, αi and βi shall be changed in a coordinated
way as explained before. We decided to use the same α′ and
β′ respectively for αi and βi ∈ i = 1 . . . 6, but with different
signs for the individual joints. An overview of the compared
configurations can be found in table II. The coordinated
variation of αi and βi offers two additional advantages:
(i) no asymmetries in the hexarotor body and (ii) no or a
minimum change of the CoM. Considering these constraints,
the optimization problem can be defined as:

min
α,β

∫ tf

0

||u||dt (23)

Subject to:

0 < α′ <
π

2
(24)

0 < β′ <
π

2
(25)

0 < ω̄i , for i ∈ 1..6 (26)

Here (24) and (25) are defining the lower and upper
bounds for αi and βi, while (26) ensures a positive rotation
speed ω̄i for all propellers. The presented minimization
problem is a multi-dimensional constrained nonlinear op-
timization problem and can be solved using the in-build
optimization capabilities of MATLAB by exploiting the
fmincon-function [21].

To compare (minimal control effort) the different configu-
rations shown in table II, we used the presented optimization
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technique to find the optimal values α? and β? and the
associated

∫
||ω||min. As trajectory, a typical flight regime

has been chosen, which is presented in Section VI-A. The
minimum value of the objective function could be found in
configuration (b). Therefore all further experiments will be
performed by using this configuration: α′ = α1 = −α2 =
α3 = −α4 = α5 = −α6 and β′ = β1 = −β2 = β3 =
−β4 = β5 = −β6.

The optimal angles α′ and β′ are highly dependent on the
desired trajectory. To visualize the influence we conducted a
trajectory, where the hexarotor hovers in place but performs
a sinusoidal rotation around θ and φ at the same time (see
figure 5 (a)). The magnitude of the rotation is increased in 6
steps up to 22.5◦. α′ and β′ are increasing accordingly from
almost zero values to α′ = 0.49 rad and β′ = 0.33 rad for
the maximum amplitude.

Figure 6 shows the influence of the optimization itself. For
the considered sinusoidal trajectory, we calculated the value
of the objective function for a wide variety of α′ and β′. The
optimal value is marked by a red circle in Fig. 6.

V. TILTED PROPELLER HEXAROTOR DESIGN

In order to independently control the six DoFs of the UAV,
e.g., for tracking a desired position pd(t) and orientation
Rd(t), the UAV needs to have at least six actuators.

Here we have designed a novel hexarotor architecture
with the design concepts discussed in Section II. The six
propellers are tilted αi w.r.t. XPi

and βi w.r.t. Y Pi
as seen

(a) (b)

Fig. 7: (a) and (b): Visualization of the possible reorientation of the
propeller around XPi (case (a)) and YPi (case (b)). The angle of
reorientation is denoted with αi in (a) and βi in (b)

Fig. 8: CAD model of the hexarotor with tilted propellers. It is
composed of: (1) Micro controller, (2) Brushless controller, (3)
Lander, (4) Propeller motor, (5) Tilting set-up.

in the Fig. 7. Generally the complexity of such a tilt model
would alter the point where the force and torque acts (i.e.,
the origin of each propeller OPi

), into a different plane
for each propeller P i, thereby making the hexarotor model
asymmetric and indirectly increasing the complexity of the
system dynamics. A similar problem existed in [16]. As
shown in Fig. 8, here we have designed the tilting mechanism
such that the thrust forces generated by each propeller are in
the same point with respect to the main body after tilting. It
must be noted here that OPi

(point in which thrust force acts)
of each propeller frame FPi are in the same plane XBY B

as the origin OB of hexarotor body.
Each propeller is mounted in an arc frame which is free to

rotate in XPi and Y Pi , so that the tilt angle of αi and βi can
be fixed as desired. The radius of the arc(Rarc) is designed
equal to the length of the motor (with the propeller attached),
so that OPi

always stays at the same location in the XBY B

plane with only its direction vector [XPi
Y Pi

ZPi
]T

changing according to the αi and βi orientation. The origin
OPi of each propeller frame is equally spaced with 60◦

between each other from the center of the body frame OB to
have a symmetric configuration in normal hovering position.
It must be noted that the alternating propellers are rotating
in clockwise and counter-clockwise rotations, through which
the torque produced by each motor shares the same direction
with the motor force’s in-plane components. The arm in
which each propeller set-up is suspended is designed to have
a curved architecture with the radius of the curvature, more
than the propeller radius (Rprop), so that independent from
the tilt of αi and βi, the propellers never come in contact
with the arm during flight. The individual αi and βi are
fixed following the design constrains discussed in detail in
Section II. It is important to note that this hexarotor is made
to freely position/orient in free space for 6 DoFs and be



able to exert force in the environment to resist any wrench
for aerial manipulation task, without any additional hardware
(extra payload).

VI. SIMULATIONS AND RESULTS
Here, we intend to present two simulations performed on

the novel tilted propeller hexarotor, designed in Sec. II by
applying the controller presented in Sec. III. We aim to prove
the important contribution of the papers: (i) Hovering and
reorienting the hexarotor, while maintaining a fixed position
under the influence of an external force / torque disturbance,
(ii) And importantly, we intend to prove the 6 DoFs this
hexarotor model achieves with the proposed controller show-
ing the robustness in a more complex trajectory tracking
problem. Given the chosen α and β, not all trajectories
might be feasible since the negative control outputs ui might
occur. This needs to be considered during the pre-trajectory
planning step.
A. Hovering with external disturbance (f ext/τ ext)

In the first simulation, we tested a hovering trajectory in
which the hexarotor maintains a fixed position p but re-
orients itself changing at the same time the roll φ, pitch
θ and yaw ψ angles. This involves hexarotor orienting −12◦

w.r.t. XB , 12◦ w.r.t. Y B axis and 15◦ w.r.t. ZB while
still hovering in the position p = [0 0 0]T . Clearly
orienting w.r.t. the 3 principal body axes {XB , Y B , ZB}
while holding the same position is not feasible in a standard
hexarotor UAV. The initial conditions were set to p(t0) =
0, ṗ(t0) = 0, WRB(t0) = I3 and ωB(t0) = 0. The
desired trajectory was chosen as pd(t) = 0 and Rd(t) =
RX(φ(t))RY (θ(t))RZ(ψ(t)) with φ(t), θ(t), ψ(t) follow-
ing the smooth profile having the maximum velocity θ̇max =
5◦/s and the maximum acceleration θ̈max = 2.5◦/s2. The
optimized value of α′ = 13.6◦ and β′ = 10.6◦ obtained from
Sec. IV has been used. The gains in Equations (19) and (22)
were set to Kp1 = KR1 = 10 I3, Kp2 = KR2 = 29 I3 and
Kp3 = KR3 = 30 I3.

Figures 9(a–d) show the result of hovering with external
force/torque disturbance. As clearly seen in Fig. 9(c) a
constant external force disturbance (f ext = [4 2 1]TN)
is applied, along the 3 principal axis {XB , Y B , ZB},
from t = 4 to 9s. Fig. 9(a) shows the position (current (solid
line) and desired (dashed line)) brought under control while
f ext is applied thanks to the integral term in (19). Similarly
in Fig. 9(d) a constant external torque disturbance (τ ext =
[0.2 0.175 0.15]TNm) is applied, about the 3 principal
axes {XB , Y B , ZB}, from t = 12 to 18s. Fig. 9(b) shows
the orientation that gets disturbed by this external torque
and brought under control after a short transient, thanks to
the integral term in (22). The in-zoomed Fig. 9(a) shows
that the position tracking error is very minimal in powers
of 10−9. This simulation provides a first confirmation of the
validity of the robustness of the controller during hovering
with external disturbance and also the reorientation of the
hexarotor while maintaining a fixed position, because of the
possibility to create 6 DoFs. This point will also be addressed
more thoroughly by the next simulation.
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Fig. 9: Results of the hovering with external force/torque distur-
bance. 9(a): Desired (dashed line) and current (solid line) position
pd in x(red), y(green) and z(blue). 9(b): Desired (dashed line) and
current (solid line) orientation ηd in roll(red), pitch(green) and
yaw(blue). 9(c–d): external force(f ext) and torque(τ ext) applied to
the hexarotor

B. 6 DoFs trajectory tracking

In this simulation, we have addressed a more com-
plex trajectory following a square path with vertexes
{V1, V2, V3, V4, V5, V6, V7}. Each vertex was associated
with the following desired positions and orientations3

• V 1: pd = [0 0 0]T , ηd = [0◦ 0◦ 0◦]T

• V 2: pd = [2 0 0]T , ηd = [−18◦ 0◦ 0◦]T

• V 3: pd = [2 3 0]T , ηd = [−18◦ 12◦ 0◦]T

• V 4: pd = [2 3 1]T , ηd = [−18◦ 12◦ 9◦]T

• V 5: pd = [2 0 1]T , ηd = [−18◦ 12◦ 0◦]T

• V 6: pd = [2 0 0]T , ηd = [−18◦ 0◦ 0◦]T

• V 7: pd = [0 0 0]T , ηd = [0◦ 0◦ 0◦]T

which were traveled along with rest-to-rest motions with
maximum linear/angular velocities of 0.3 m/s and 15◦/s,
and maximum linear/angular accelerations of 0.2 m/s2

and 5◦/s2. Figures 10(a–d) show the desired trajectory
(pd(t), ηd(t)), and the tracking errors (ep(t), eR(t)). The
same initial condition as in Section VI-A is considered.
The optimized value of α′ = 26.5◦ and β′ = 19◦ for
this trajectory obtained from Sec. IV has been used. Here
it is clearly illustrated that at the vertex V 4 the hexarotor
exploits the 6 DoFs which is one of the main objectives of
this titled propeller architecture. Note again how the tracking
errors are kept to minimum (in power of 10−5) despite the
more complex motion involving several reorientations of the
propellers. This confirms again the validity of the controller
proposed in the previous Section III.

The interested reader can refer to the video attached to the
paper for a more exhaustive illustration of the hovering and

3Here, for the sake of clarity, we represent orientations by means of the
classical roll/pitch/yaw Euler set η ∈ R3.
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Fig. 10: Results of the robust 6 DoFs trajectory tracking. 10(a):
Desired (dashed line) and current (solid line) position pd in x(red),
y(green) and z(blue). 10(b): Desired (dashed line) and current (solid
line) orientation ηd in roll(red), pitch(green) and yaw(blue). 10(c–
d): behavior of the position/orientation tracking errors (ep, eη).

6 DOF hexarotor motion capabilities.

VII. CONCLUSIONS AND FUTURE WORKS
In this paper, we have overcome the underactuation, mod-

eling and control issues for a standard UAV with a tilted
propeller hexarotor architecture where the propellers can be
rotated both w.r.t. X-axis and Y-axis. This concept allows
to (i) gain full controllability over the 6 DoFs hexarotor
pose in free space, and (ii) optimize the propeller tilt angle
with respect to a minimum control effort over a desired
trajectory. Carefully analyzing the controllability properties
of the dynamic model, resulted in the hexarotor design
being combined with trajectory tracking controller based
on feedback linearization techniques. A clear validation of
the controller’s robustness is proved by means of extensive
simulations.

Our future works are aimed at (i) developing robust
control designs based on different non-linear techniques (e.g.,
sliding mode, backstepping) for robust stability analysis,
(ii) realizing the prototype of the proposed tilted propeller
hexarotor in order to experimentally validate the ideas dis-
cussed in this paper. Further research is mandatory for
feasibility of u. In addition, we are also, (iii) proceeding in
the direction of optimizing the tilt angle to get a desired force
(F x,F y,F z ∈ R3) and desired torque (T x,T y,T z ∈ R3)
along the 3 principal body axes {XB , Y B , ZB}, which
is the futuristic objective for any physical UAV interaction
with the environment.
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