Stability Analysis of Milling Process with Multiple Delays
<p>Schematic of two-degree of freedom (DOF) milling model with variable pitch milling cutter, (<b>a</b>) schematic of milling model; (<b>b</b>) z-direction view; (<b>c</b>) distribution of the cutter teeth; (<b>d</b>) the lag angle and tooth sweep angle.</p> "> Figure 2
<p>The distribution of free vibration and forced vibration angle interval in one spindle period, (<b>a</b>) at most one tooth is in cutting; (<b>b</b>) more than one tooth is in cutting simultaneously; (<b>c</b>) combine the continuous forced vibration angle interval.</p> "> Figure 3
<p>Approximation of the delayed state vector.</p> "> Figure 4
<p>Stability lobes diagram (SLD) of the two-DOF milling model with radial immersion 0.3 and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>60</mn> </mrow> </semantics></math>, (<b>a</b>) SLD obtained by the 1st-SDM; (<b>b</b>) SLD obtained by the equal-step numerical integration method (ESNIM); (<b>c</b>) SLD obtained by the adaptive variable-step numerical integration method (AVSNIM).</p> "> Figure 5
<p>SLD of the two-DOF milling model with radial immersion 0.2 and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>60</mn> </mrow> </semantics></math>, (<b>a</b>) SLD obtained by the 1st-SDM; (<b>b</b>) SLD obtained by the ESNIM; (<b>c</b>) SLD obtained by the AVSNIM.</p> "> Figure 6
<p>SLD of the two-DOF milling model with radial immersion 0.1 and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>, (<b>a</b>) SLD obtained by the 1st-SDM; (<b>b</b>) SLD obtained by the ESNIM; (<b>c</b>) SLD obtained by the AVSNIM.</p> "> Figure 7
<p>Mean relative error of stability limit obtained by 1st-SDM, ESNIM and AVSNIM.</p> "> Figure 8
<p>Numerical simulation of time step and discretization parameters, (<b>a</b>) time step of equal-step method; (<b>b</b>) time step of variable-step method; (<b>c</b>) discretization parameters obtained by the spindle-speed-dependent discretization algorithm.</p> "> Figure 9
<p>The SLD of the first milling model obtained by the proposed algorithm (<b>a</b>) radial immersion 1.0, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>; (<b>b</b>) radial immersion 0.6, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>; (<b>c</b>) radial immersion 0.1, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>160</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>The SLD of the second milling model obtained by the proposed algorithm with radial immersion 0.02, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>60</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Milling Model with Multiple Delays
3. AVSNIM Considering the Helix Angle
3.1. Algorithm Description
3.2. Algorithm Verification and Results Discussion
4. AVSNIM with Spindle Speed-Dependent Discretization Algorithm
- Sample the spindle speed range to get a series of discrete speed nodes (), where is the sampling interval;
- For each discrete speed nodes , the stability limit is obtained under a large reference discretization parameter through the dichotomy search algorithm adopted in [24] and used as the reference stability limit;
- Starting from a small discretization parameter , the approximate stability limit is obtained through the dichotomy search algorithm. The relative error between and is calculated by the following formula
- Compare with the pre-set relative error limit , if , set and return to step 3, until is satisfied. Then, record the current and let ;
- Repeat steps 2 to 4 for all the spindle speed sampling nodes to get the discretization parameter at each speed node ;
- Interpolate the discretization parameter at the spindle speed sampling points to obtain the approximate discretization parameter at all the spindle speed nodes on the SLD. Finally, are rounded to obtain the final discretization parameter using the following formula
- The stability limit is calculated using the AVSNIM and the corresponding discretization parameter on all the spindle speed nodes, then the SLD is obtained.
5. Conclusions
- The AVSNIM can adaptively complete the discretization of a cutting period according to the machining parameters and the tool geometry. This is convenient for the subsequent numerical calculation;
- The spindle-speed-dependent discretization algorithm can get the appropriate discretization parameters flexibly according to the spindle speed and accuracy requirements, so as to effectively reduce the time required for stability analysis;
- The methods presented in this work are not limited by the geometry of the cutter, and can be extended to the stability analysis of the milling process with uniform pitch cutters and variable helix angle cutters.
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Arnold, R. Cutting tools research: Report of subcommittee on carbide tools: The mechanism of tool vibration in the cutting of steel. Proc. Inst. Mech. Eng. 1946, 154, 261–284. [Google Scholar] [CrossRef]
- Andrew, C.; Tobias, S. A critical comparison of two current theories of machine tool chatter. Int. J. Mach. Tool Des. Res. 1961, 1, 325–335. [Google Scholar] [CrossRef]
- Hanna, N.; Tobias, S. A theory of nonlinear regenerative chatter. ASME J. Eng. Ind. 1974, 96, 247–255. [Google Scholar] [CrossRef]
- Minis, I.; Yanushevsky, R.; Tembo, A.; Hocken, R. Analysis of linear and nonlinear chatter in milling. CIRP Ann. Manuf. Technol. 1990, 39, 459–462. [Google Scholar] [CrossRef]
- Wiercigroch, M.; Krivtsov, A.M. Frictional chatter in orthogonal metal cutting. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2001, 359, 713–738. [Google Scholar] [CrossRef]
- Rusinek, R.; Wiercigroch, M.; Wahi, P. Modelling of frictional chatter in metal cutting. Int. J. Mech. Sci. 2014, 89, 167–176. [Google Scholar] [CrossRef]
- Altıntas, Y.; Engin, S.; Budak, E. Analytical stability prediction and design of variable pitch cutters. J. Manuf. Sci. Eng. 1999, 121, 173–178. [Google Scholar] [CrossRef]
- Budak, E. An analytical design method for milling cutters with nonconstant pitch to increase stability, part I: Theory. J. Manuf. Sci. Eng. 2003, 125, 29–34. [Google Scholar] [CrossRef]
- Budak, E. An analytical design method for milling cutters with nonconstant pitch to increase stability, part 2: Application. J. Manuf. Sci. Eng. 2003, 125, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Sims, N.; Mann, B.; Huyanan, S. Analytical prediction of chatter stability for variable pitch and variable helix milling tools. J. Sound Vib. 2008, 317, 664–686. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.; Zhang, W.-H.; Dang, J.-W.; Yang, Y. A unified stability prediction method for milling process with multiple delays. Int. J. Mach. Tools Manuf. 2010, 50, 29–41. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, C.; Ding, Y. Improved full-discretization method for milling chatter stability prediction with multiple delays. In Proceedings of the International Conference on Intelligent Robotics and Applications, Shanghai, China, 10–12 November 2010; pp. 541–552. [Google Scholar]
- Zhang, X.; Xiong, C.; Ding, Y.; Xiong, Y. Variable-step integration method for milling chatter stability prediction with multiple delays. Sci. China Technol. Sci. 2011, 54, 3137–3154. [Google Scholar] [CrossRef]
- Olgac, N.; Sipahi, R. Dynamics and stability of variable-pitch milling. J. Vib. Control 2007, 13, 1031–1043. [Google Scholar] [CrossRef]
- Compean, F.I.; Olvera, D.; Campa, F.; De Lacalle, L.L.; Elias-Zuniga, A.; Rodriguez, C. Characterization and stability analysis of a multivariable milling tool by the enhanced multistage homotopy perturbation method. Int. J. Mach. Tools Manuf. 2012, 57, 27–33. [Google Scholar] [CrossRef]
- Khasawneh, F.A.; Mann, B.P. A spectral element approach for the stability of delay systems. Int. J. Numer. Methods Eng. 2011, 87, 566–592. [Google Scholar] [CrossRef]
- Khasawneh, F.A.; Mann, B.P. A spectral element approach for the stability analysis of time-periodic delay equations with multiple delays. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2129–2141. [Google Scholar] [CrossRef]
- Lehotzky, D.; Insperger, T.; Stepan, G. Extension of the spectral element method for stability analysis of time-periodic delay-differential equations with multiple and distributed delays. Commun. Nonlinear Sci. Numer. Simul. 2016, 35, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Jin, G.; Zhang, Q.; Hao, S.; Xie, Q. Stability prediction of milling process with variable pitch and variable helix cutters. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 281–293. [Google Scholar] [CrossRef]
- Jin, G.; Qi, H.; Cai, Y.; Zhang, Q. Stability prediction for milling process with multiple delays using an improved semi-discretization method. Math. Methods Appl. Sci. 2016, 39, 949–958. [Google Scholar] [CrossRef]
- Otto, A.; Rauh, S.; Ihlenfeldt, S.; Radons, G. Stability of milling with non-uniform pitch and variable helix Tools. Int. J. Adv. Manuf. Technol. 2017, 89, 2613–2625. [Google Scholar] [CrossRef]
- Tao, J.; Qin, C.; Liu, C. Milling stability prediction with multiple delays via the extended Adams-Moulton-based method. Math. Probl. Eng. 2017, 2017, 7898369. [Google Scholar] [CrossRef] [Green Version]
- Ozoegwu, C.; Amiebenomo, S. A speed-dependent discretization for faster and more accurate milling stability analysis. In Proceedings of the International Conference of Mechanical Engineering, Energy Technology and Management, IMEETMCON 2018, Ibadan, Nigeria, 4–7 September 2018. [Google Scholar]
- Li, Z.; Yang, Z.; Peng, Y.; Zhu, F.; Ming, X. Prediction of chatter stability for milling process using Runge-Kutta-based complete discretization method. Int. J. Adv. Manuf. Technol. 2016, 86, 943–952. [Google Scholar] [CrossRef]
- Insperger, T.; Munoa, J.; Zatarain, M.A.; Peigné, G. Unstable islands in the stability chart of milling processes due to the helix angle. In Proceedings of the CIRP 2nd International Conference on High Performance Cutting, Vancouver, Canada, 12–13 June 2006; pp. 12–13. [Google Scholar]
- Delves, L.M.; Mohamed, J. Computational Methods for Integral Equations; CUP Archive: Cambridge, UK, 1988. [Google Scholar]
- Zhang, Z.; Li, H.; Meng, G.; Liu, C. A novel approach for the prediction of the milling stability based on the Simpson method. Int. J. Mach. Tools Manuf. 2015, 99, 43–47. [Google Scholar] [CrossRef]
- Mei, Y.; Mo, R.; Sun, H.; He, B.; Wan, N. Stability prediction in milling based on linear multistep method. Int. J. Adv. Manuf. Technol. 2019, 105, 2677–2688. [Google Scholar] [CrossRef]
- Insperger, T.; Stépán, G. Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int. J. Numer. Methods Eng. 2004, 61, 117–141. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, L.; Zhang, X.; Ding, H. Numerical integration method for prediction of milling stability. J. Manuf. Sci. Eng. 2011, 133, 031005. [Google Scholar] [CrossRef]
- Mann, B.P.; Edes, B.T.; Easley, S.J.; Young, K.A.; Ma, K. Chatter vibration and surface location error prediction for helical end mills. Int. J. Mach. Tools Manuf. 2008, 48, 350–361. [Google Scholar] [CrossRef]
Radial Immersion | |||
---|---|---|---|
0.3 | 0.2 | 0.1 | |
1st-SDM | 1423.85 | 1409.86 | 1385.09 |
ESNIM | 331.22 | 322.28 | 303.50 |
AVSNIM | 381.37 | 364.53 | 341.17 |
Radial Immersion | AVSNIM with Constant Discretization Parameter | AVSNIM with Spindle-Speed-Dependent Discretization Parameters |
---|---|---|
1.0 | 1857.21 | 857.57 |
0.6 | 1784.73 | 1079.14 |
0.1 | 1073.48 | 492.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, Y.; Mo, R.; Sun, H.; He, B.; Bu, K. Stability Analysis of Milling Process with Multiple Delays. Appl. Sci. 2020, 10, 3646. https://doi.org/10.3390/app10103646
Mei Y, Mo R, Sun H, He B, Bu K. Stability Analysis of Milling Process with Multiple Delays. Applied Sciences. 2020; 10(10):3646. https://doi.org/10.3390/app10103646
Chicago/Turabian StyleMei, Yonggang, Rong Mo, Huibin Sun, Bingbing He, and Kun Bu. 2020. "Stability Analysis of Milling Process with Multiple Delays" Applied Sciences 10, no. 10: 3646. https://doi.org/10.3390/app10103646
APA StyleMei, Y., Mo, R., Sun, H., He, B., & Bu, K. (2020). Stability Analysis of Milling Process with Multiple Delays. Applied Sciences, 10(10), 3646. https://doi.org/10.3390/app10103646