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Abstract

The spectral element method was introduced by Khasawneh and Mann (2013) for
the stability analysis of time-periodic delay-differential equations (DDEs) with multiple
delays. In this paper, this method is generalized for time-periodic DDEs with multiple
delays and distributed delay. For this general case, an explicit formula is given for the con-
struction of the matrix approximation of the monodromy operator. The derived formula
enables the algorithmic application of the method to DDEs with general combinations of
delays for arbitrary point sets and test functions. Stability analysis is demonstrated for
specific case studies, and the computation code is provided for a complex example.
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1 Introduction

Time-delay systems are often used for mathematical modelling in engineering and biological
sciences. Models involving delayed terms can be found in the literature of machining operations
[2], feedback control systems [3], wheel dynamics [29], traffic dynamics [24], human balancing
[23, 28], population dynamics [21] and epidemiology [25], just to mention a few areas of applica-
tion. Although time dependency of system parameters is often neglected in these models, this
simplification cannot be justified in all cases. For instance, in milling operations [27], in turning
operations with spindle speed variation (see Chapter 5.1.3 in [17]) and in digitally controlled
systems [13] time-dependent parameters play essential role and affect stability properties. Note
that time-periodic systems often arise in the mathematical models of engineering applications
[9, 26]. For the majority of the applications of dynamical systems, it is desired to keep the
system in the proximity of a particular state or motion by the proper tuning of system and
control parameters. Therefore, increasing attention has been given to the stability properties
of time-delay systems and, as a result, many analytical and numerical methods can be found
on their linear stability analysis. In the recent decades several numerical methods have been
developed for the linear stability analysis of time-periodic delay-differential equations (DDEs).
Examples for such methods are the multifrequency solution [1, 5], semi-discretization [17], full
discretization [12], complete discretization [22], Chebyshev continuous time approximation [10]
and the recently presented spectral element method [18, 19, 20], which is the subject of this
paper. The method was first published in [18] for autonomous DDEs with single delay, there-
after it was extended in [19] to autonomous DDEs with distributed delay and generalized to
time-periodic DDEs with multiple point delays in [20]. Applications to delayed feedback control
of chaos were presented in [31, 32].
The general form of linear, time-periodic DDEs is

ẋ(t) = L(t)x t−τ,t, t ≥ 0, (1)

where L(t) = L(t + T ), ∀t is a linear, time-periodic functional, with T being the principal
period. Here and from now on, notation xa,b is applied for solution segment {x(θ) : θ ∈ [a, b]},
thus in (1), solution segment x t−τ,t = {x(θ) : θ ∈ [t− τ, t]} contains the history of the state
dating back to τ . The stability of (1) is determined by the monodromy operator U(T ), which
maps the initial solution segment x−τ,0 to xT−τ,T . System (1) is stable if and only if all char-
acteristic multipliers (non-zero eigenvalues) of U(T ) are within the unit circle of the complex
plane (for details see Chapter 8 in [14]).
In [20], the spectral element method gives a matrix approximation U of the monodromy oper-
ator for DDEs with point delays, that is for the case when

L(t)x t−τ,t = A(t)

∫ 0

−τ
δ(θ)x(t+ θ)dθ +

u∑
l=1

Bl(t)

∫ 0

−τ
δ(θ + τl) x(t+ θ)dθ

= A(t)x(t) +
u∑
l=1

Bl(t)x(t− τl), (2)

with δ(θ) being the Dirac delta function, x : R→ Rs; A,Bl : R→ Rs×s, 0 < τl, l = 1, 2, . . . , u;
τ ≥ max {τl}ul=1 and A(t) = A(t + T ); Bl(t) = Bl(t + T ), l = 1, 2, . . . , u; ∀t. Under increasing
degree of the approximation scheme the matrix approximation U provides convergent results
for the stability of the original system, given by (1) and (2). This property of the spectral
element method is shown in [20] for several numerical examples. Although the spectral element
method seems to be a handy tool for the stability analysis of time-periodic DDEs, its application
is not straightforward due to the lack of explicit formulas for the computation of U. While
explicit formulas were presented in [18] for the construction of U for autonomous DDEs with
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a single point delay, [19] and [20] does not provide any explicit formula for the general case
with multiple point and distributed delays and with time-periodic coefficients. This paper gives
explicit formulas for all components of the matrices, which are necessary for the computation
of U. In contrast with [20], here the formula of U is derived using operator equations. Results
are presented in the form of stability charts for particular time-periodic DDEs.
The structure of the paper is the following. First, the derivation of the method is presented for
a general type of time-periodic DDE, which involves point delays and one term of distributed
delay. Thereafter the method is applied to particular systems. Finally, some conclusions are
given.

2 Derivation of the method

In this section the derivation of the spectral element method is presented for a DDE with
multiple point delays and one distributed-delay term. The investigated linear time-periodic
DDE reads

ẋ(t) = A(t)x(t) +
u∑
l=1

Bl(t)x(t− τl) +

∫ −b
−a

γ(t, θ)x(t+ θ)dθ, (3)

where 0 ≤ b < a; γ : R2 → Rs×s; and γ(t, θ) = γ(t + T, θ), ∀θ, ∀t. With the application
of numerical integration using Lobatto-type Gaussian quadrature, (3) can be approximated by
the time-periodic DDE

ẋ(t) = A(t)x(t) +
v∑
p=1

Bp(t)x(t− τp), (4)

where

Bp(t) =
a− b

2
γ(t, θp−u)wp−u, (5)

τp = −θp−u for p = u + 1, u + 2, . . . , v, while v = u + m and θq = a−b
2
ηq − a+b

2
∈ [−a,−b],

with {ηq}mq=1 ⊂ [−1, 1] and {wq}mq=1 being the set of Lobatto-type Gaussian quadrature nodes
and weights, respectively (see Appendix C for details). Note that quadratures other than
the Lobatto-type Gaussian quadrature can also be used for integration. In fact, the standard
Gaussian quadrature or the Clenshaw-Curtis quadrature can increase the order of accuracy of
the approximate system (4) (see [30] for details). Here the Lobatto-type Gaussian quadrature
is used because it still keeps a good accuracy and the proposed numerical method reuses it
during the calculation. Note that (4) contains point delays only, hence it can be concluded
that DDEs with point delays can approximate the case when terms with distributed delays are
also present. In the following, the approximate system (4) is studied and τ1 ≤ τ2 ≤ . . . ≤ τv is
assumed for convenience. Consider the solution segment x−τ,T , where τ = KT is the monitored
history, with

K =

{
int(τv/T ) if τv modT = 0,

int(τv/T ) + 1 otherwise,
(6)

while int(·) denotes the integer part function. The approximate system (4) is equivalent to the
operator equation

Ax−τ,T = 0, (7)

where the linear operator A is defined by

Ax−τ,T =

{
ẋ(t)−A(t)x(t)−

v∑
p=1

Bp(t)x(t− τp) : t ∈ [0, T ]

}
. (8)
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Figure 1: Splitting of the solution segment x−τ,T for the case s = 1, K = 2 and E = 2. The
depicted delay τp results in rp = 2.

Now split the solution segment x−τ,T onto (K + 1)E number of equidistant sub-segments
(referred to as elements in the following) as

xk = x(k−1)h,kh, k = −EK + 1,−EK + 2, . . . , E; (9)

where h = T/E denotes the length of elements. The splitting of solution segment x−τ,T is
illustrated in Figure 1 for specific s, K and E parameters. Subsequent elements are connected
at their boundaries, therefore conditions

xk(kh) = xk+1(kh), k = −EK + 1,−EK + 2, . . . , E − 1 (10)

are valid. The splitting of solution segment x−τ,T transforms (4) to a system of differential
equations of the form

ẋk(t) = A(t)xk(t) +
v∑
p=1

Bp(t)x
∗
k,p(t), t ∈ ((k−1)h, kh] , k = 1, 2, . . . , E; (11)

with boundary conditions (10) and

x∗k,p(t) =

{
xk−rp−1(t−τp) if (t−τp) ∈ ((k−rp−2)h, (k−rp−1)h] ,

xk−rp(t−τp) if (t−τp) ∈ ((k−rp−1)h, (k−rp)h] ,
(12)

where rp = int(τp/h) (see the illustration in Figure 1). System (11) of differential equations are
equivalent to the system of operator equations

Skxk −
v∑
p=1

Qk,pxk−rp−1 −
v∑
p=1

Rk,pxk−rp = 0, k = 1, 2, . . . , E; (13)

where the operators are defined as

Skxk =

{
ẋk(t)−A(t)xk(t) if t ∈ ((k−1)h, kh] ,

0 otherwise,
(14)

Qk,pxk−rp−1 =

{
Bp(t)xk−rp−1(t−τp) if (t−τp) ∈ ((k−rp−1)h−αp, (k−rp−1)h] ,

0 otherwise,
(15)

Rk,pxk−rp =

{
Bp(t)xk−rp(t−τp) if (t−τp) ∈ ((k−rp−1)h, (k−rp)h−αp] ,
0 otherwise,

(16)
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with αp = τp modh (see the illustration in Figure 1). By the introduction of element-wise
(local) coordinates

ζk =
2 (t−(k−1)h)

h
− 1, k = −EK + 1,−EK + 2, . . . , E; (17)

and dropping the index k immediately (see the illustration in Figure 1), operators (14)–(16)
assume the form

Skxk =

{
2
h
x′k(ζ)−A

(
h(ζ+1)

2
+(k−1)h

)
xk(ζ) if ζ ∈ (−1, 1] ,

0 otherwise,
(18)

Qk,pxk−rp−1 =

{
Bp

(
h(ζ+1)

2
+(k−1)h

)
xk−rp−1(ζ + 2− βp) if ζ ∈ (−1,−1 + βp] ,

0 otherwise,
(19)

Rk,pxk−rp =

{
Bp

(
h(ζ+1)

2
+(k−1)h

)
xk−rp(ζ − βp) if ζ ∈ (−1 + βp, 1] ,

0 otherwise,
(20)

where βp = 2αp/h. The application of element-wise coordinate transformation (17) to boundary
conditions (10) gives

xk(1) = xk+1(−1), k = −EK + 1,−EK + 2, . . . , E − 1. (21)

The splitting of solution segment x−τ,T thus transformed operator equation (7) to a system
(13) of operator equations subject to boundary conditions (21).
Operator equations (13) can be converted into their weak forms after taking their scalar product
with test function ψ, which gives

〈
Skxk, ψ

〉
−

v∑
p=1

〈
Qk,pxk−rp−1, ψ

〉
−

v∑
p=1

〈
Rk,pxk−rp , ψ

〉
= 0, k = 1, 2, . . . , E. (22)

Here the scalar product of some functions f and g is defined according to

〈f, g〉 =

∫ b

a

f(ζ)g(ζ)dζ, (23)

where [a, b] is the domain of functions f and g. The solution of (13) always satisfies (22)
however, if a solution satisfies (22), that does not imply that it also satisfies (13). System of
equations (13) and (22) are equivalent if and only if (22) is true for all possible ψ test functions
of the function space (i.e., if the left-hand side of (13) is orthogonal to all elements of the
function space). Using ψ with this purport, (22) is called the weak form of (13).
The spectral element method approximates each element xk with its Lagrange interpolant as

x̃k(ζ) =
n∑
j=1

φj(ζ)xk,j, k = −EK + 1,−EK + 2, . . . , E; (24)

where xk,j = xk(ζj) and φj(ζ) are the Lagrange base polynomials (for details on Lagrange
interpolation see Appendix A). The node set of interpolation {ζj}nj=1 ⊂ [−1, 1] is chosen to be
of Lobatto-type, that is there are nodes on the endpoints of interval ζ ∈ [−1, 1], which simplifies
boundary conditions (21) to

xk,n = xk+1,1, k = −EK + 1,−EK + 2, . . . , E − 1 (25)
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(see the illustration in Figure 1 for k = 0). Note that together with boundary conditions (25),
(24) gives a piecewise Lagrange interpolant for x−τ,T . After the substitution of (24) to (22),
one obtains

〈rk, ψ〉 = 0, k = 1, 2, . . . , E; (26)

where

rk = Skx̃k −
v∑
p=1

Qk,px̃k−rp−1 −
v∑
p=1

Rk,px̃k−rp 6= 0, k = 1, 2, . . . , E; (27)

are the residual functions. Since the approximate solution (24) is an element of the space of
(n−1) – degree polynomials (that is x̃k ∈ Pn−1), the orthogonality of rk to all possible elements
of the subspace of approximation can be ensured by setting rk orthogonal to a basin {ψi}ni=1 of
Pn−1, i.e.

〈rk, ψi〉 = 0, i = 1, 2, . . . , n; k = 1, 2, . . . , E. (28)

This system of equations gives the finite dimensional approximation of weak form (22). Since
(28) weights rk residual functions by ψi test functions along the domain of solution, this method,
used for the discretization of operator equations, was named weighted residuals by Crandall in
[11]. In order to avoid the accumulation of rounding errors let us choose an orthogonal basin for
{ψi}ni=1, given by Legendre polynomials with degree up to n−1, that is ψi = Pi−1; i = 1, 2, . . . , n;
where Pi is a Legendre polynomial with degree i (for details on Legendre polynomials see
Appendix B). Note that (28) defines En number of linear algebraic equations. For a given initial
function these equations contain En number of unknown parameters (xk,j; k = 1, 2, . . . , E; j =
1, 2, . . . , n), however, there are further constraints for x̃k solution segments, given by boundary
conditions (25). These boundary conditions provide E number of additional equations, which
have to be satisfied by solution segments x̃k. In [20], the equations corresponding to ψn in (28),
were replaced by the boundary conditions with running index k = 0, 1, . . . , E−1 in (25). This
was done, in order to obtain the same number of equations as variables. This approach gives
the system

〈rk, ψi〉 = 0, i = 1, 2, . . . , n− 1; k = 1, 2, . . . , E (29)

of linear algebraic equations with unknown parameters xk,j; k = 1, 2, . . . , E; j = 2, 3, . . . , n.
The left-hand-side in (29) can be expanded as

〈rk, ψi〉 = Ski,1xk−1,n +
n∑
j=2

Ski,jxk,j −Qk,p
i,1 xk−rp−2,n −

v∑
p=1

n∑
j=2

Qk,p
i,j xk−rp−1,j

−Rk,p
i,1 xk−rp−1,n −

v∑
p=1

n∑
j=2

Rk,p
i,j xk−rp,j = 0, (30)

where

Ski,j =

∫ 1

−1

(
2
h
Iφ′j(ζ)−A

(
h(ζ+1)

2
+(k−1)h

)
φj(ζ)

)
ψi(ζ)dζ, (31)

Qk,p
i,j =

∫ −1+βp
−1

Bp

(
h(ζ+1)

2
+(k−1)h

)
φj(ζ + 2− βp)ψi(ζ)dζ, (32)

Rk,p
i,j =

∫ 1

−1+βp
Bp

(
h(ζ+1)

2
+(k−1)h

)
φj(ζ − βp)ψi(ζ)dζ. (33)

Note that the maximum degree of polynomials within these integral terms is 2n−3, that is, on
n number of ηq, q = 1, 2, . . . , n quadrature nodes, the Lobatto–type Gaussian quadrature (see
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Appendix C) gives exact results for the integral terms by

Ski,j = 2
h
I

n∑
q=1

n∑
l=1

Fi,q Lq,lDl,j −
n∑
q=1

Fi,q Ak
q Lq,j, (34)

Qk,p
i,j =

n∑
q=1

FQ,p
i,q BQ,k,p

q LQ,pq,j , (35)

Rk,p
i,j =

n∑
q=1

FR,p
i,q BR,k,p

q LR,pq,j , , (36)

where terms, corresponding to the periodic coefficients are calculated as

Ak
q = A

(
h
2

(ηq + 1) + (k − 1)h
)
, (37)

BQ,k,p
q = Bp

(αp

2
(ηq + 1) + (k − 1)h

)
, (38)

BR,k,p
q = Bp

(
h−αp

2
(ηq + 1) + αp + (k − 1)h

)
, (39)

while the terms containing ψi test functions and wq quadrature weights are defined by

Fi,q = ψi(ηq)wq, (40)

FQ,p
i,q =

wqβp
2

ψi

(
βp
2

(ηq + 1)− 1
)
, (41)

FR,p
i,q =

wq(2− βp)
2

ψi

(
(2−βp)ηq+βp

2

)
, (42)

and the terms corresponding to φj Lagrange base polynomials are given by

Lq,j = φj(ηq), (43)

LQ,pq,j = φj

(
βp
2

(ηq − 1) + 1
)
, (44)

LR,pq,j = φj

(
(2−βp)ηq−βp

2

)
. (45)

The derivative of a φj Lagrange base polynomial at a ζl node of interpolation is denoted by

Dl,j = φ′j(ζl). (46)

The barycentric formula

φj(ζ) =

$j

ζ − ζj∑n
l=1

$l

ζ − ζl
(47)

of Lagrange base polynomials is more resistant to numerical instability than their ordinary
form, hence here and in [20], (47) is applied. In (47), the so called barycentric weights are given
by

$j =
1

ω′(ζj)
, ω(ζ) =

n∏
j=1

(ζ − ζj). (48)

The barycentric form (47) provides a compact formula

φ′j(ζl) =


$j/$l

ζl − ζj
if j 6= l,

−∑n
e=1

e6=j

$e/$j

ζj − ζe
if j = l,

(49)
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for the derivatives of Lagrange base polynomials at the nodes of interpolation. For details on
barycentric Lagrange interpolation see [6]. System (30) of algebraic equations, together with
x0,n = x1,1, define the mapping

H X0,T = GX−τ,0, (50)

where H is a square matrix, while X0,T ∈ Rs(E(n−1)+1)×1, X−τ,0 ∈ Rs(KE(n−1)+1)×1 and their
elements are given by

XAh,Bh =
{
XAh,Bh
u

}(B−A)(n−1)+1

u=1
(51)

and
XAh,Bh
u = xk,j, (52)

with

k=

{
1 + A if u = 1,

int
(
u−2
n−1
)

+ 1 + A otherwise,
(53)

j=

{
1 if u = 1,

u−(k−1−A)(n−1) otherwise.
(54)

Matrices G and H can be calculated according to

G =
v∑
p=0

Gp , H =
v∑
p=0

Hp , (55)

where matrices Gp and Hp are constructed as shown in Figure 2, where the submatrices are
defined according to

Sk =
{
Ski,j
}n−1,n
i,j=1

∈ Rs(n−1)×sn, k = 1, 2, . . . , E; (56)

Qk,p =
{

Qk,p
i,j

}n−1,n
i,j=1

∈ Rs(n−1)×sn, k = 1, 2, . . . , E; p = 1, 2, . . . , v; (57)

Rk,p =
{

Rk,p
i,j

}n−1,n
i,j=1

∈ Rs(n−1)×sn, k = 1, 2, . . . , E; p = 1, 2, . . . , v. (58)

Note that matrices Qk,p, k = 1, 2, . . . , E are zero when τp modh = 0. In Figure 2, the empty
parts of matrices Gp and Hp are also zeros. The overlapping parts of submatrices Qk,p and
Rk,p are highlighted by circles. In these overlapping parts s number of columns of Qk,p and
Rk,p overlap. The overlapping elements are merged by summation. Note, that matrix Sk+1 is
shifted to the right by s(n−1) number of columns with respect to Sk. Since the elements of
X−τ+T,T and X−τ,0 precisely define the piecewise Lagrange interpolant of x−τ+T,T and x−τ,0,
respectively, an approximation of the monodromy operator is given by the mapping

X−τ+T,T = U X−τ,0. (59)

For the case T < τv, the structure of U is shown in Figure 3, where I and Θ are identity and
null matrices, respectively, depicted with their corresponding dimensions. For the case T ≥ τv,
K = 1 and τ = T due to (6), hence the identity block in U disappears. Consequently, the
matrix approximation of the monodromy operator becomes simply

U = H−1G. (60)

The stability of the approximate system (59) can be checked easily after the computation of the
eigenvalues of U, since (59) is stable if and only if all eigenvalues of U are located within the
unit circle of the complex plane. In order to show the effectiveness of the method, in the next
section, some results are presented for the stability charts of particular time-periodic DDEs.
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H0 =

S1

S2

S3

SE

I 0 0

G0 =

0 0 I

0 0

0 0

Gp =

Q1,p R1,p

Q2,p R2,p

Q3,p R3,p

QE,p RE,p

0 0

Hp = 0

Gp =

Q1,p R1,p

Qrp,p Rrp,p

Qrp+1,p

0 0

Hp =

−QE,p −RE,p

−Qrp+2,p −Rrp+2,p

−Rrp+1,p

0 0

0

k = −EK+1 −rp −rp+1 −rp+E−1 −rp+E 0

k = −EK+1 −rp −rp+1 0 k = 1 −rp+E−1 −rp+E E

if τp ≥ T and p > 0 :

if τp < T and p > 0 :

Figure 2: Structure of matrices Gp and Hp for p = 0, 1, . . . , v.
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U=

H−1G
s(E(n−1)+1)×s(KE(n−1)+1)

Θ
s(K−1)E(n−1)

×
sE(n−1)

I
s(K−1)E(n−1)

×
s(K−1)E(n−1)

0
0...

0

Figure 3: Structure of the matrix approximation U of monodromy operator U(T ) in case
T < τv.

3 Application

In this section, results are presented for some particular time-periodic DDEs in the form of
stability charts (see in Figures 4–9) computed by the spectral element method. First, the
general settings of the computational method is described. Then, the particular DDEs are
given and the computed results are discussed. Finally, computational details are shown for one
of these examples under a particular set of computational and system parameters.

3.1 General settings

In [18, 19, 20], the nodes of interpolation are chosen to be the same as the quadrature nodes,
that is the Lobatto-type Legendre nodes. The application of quadrature nodes for interpolation
is beneficial, since this reduces (34) to

Ski,j = 2
h
I

n∑
q=1

Fi,qDq,j − Fi,j Ak
j . (61)

The results in [18] show high convergence rates, therefore, in the following, the Lobatto-type
Legendre nodes are used for interpolation. Note, however that the derived formulas enable the
application of arbitrary Lobatto-type node sets. The same way as in [18], the test function set
is chosen to be the set of Legendre polynomials up to degree n−2 (see Appendix B for details).
For all the examples of the next subsection, only one element is used, that is E = 1. The
number n of the nodes of interpolation and (if necessary) the number m of quadrature nodes,
used in (4), are given for each example (see the captions of Figures 4–9).
The stability charts are constructed in the plane of system parameters and are determined as
follows. Eigenvalues of matrix U are computed on an equidistant 300×300 grid in the plane of
system parameters. Eigenvalues having the largest absolute value are stored in each girdpoint.
On these absolute values a 3–dimensional surface is fitted over the parameter plane using the
“contour” function of Matlab. Thereafter, the approximate border of stability is obtained as a
level curve of this 3–dimensional surface at 1. Note that the efficiency of this method can be
increased if system parameters are computed sparsely far from the boundary of stability and
with an increasing density close to the boundary of stability (for such methods see [7] and [4]).
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3.2 Case studies

The spectral element method is applied for six particular time–periodic DDEs (shown below)
using the settings discussed in the previous subsection. For Examples 1–5, references are
available in the literature, and the results can be directly compared. In case of Example 6,
no results can be found in the literature, therefore, the results presented for this example
were verified by numerical convergence analysis of the stability boundaries. This convergence
analysis is not detailed here, however, the presented stability diagrams of Example 6 show the
converged stability boundaries.

Example 1 (see Figure 4 and compare with the analytical results of [16])

ẍ(t) + (a+ ε cos(t))x(t) = bx(t− 2π) (62)

Example 2 (see Figure 5 and compare with Fig. 11 in [10] and Fig. 7 in [8])

ẍ(t) + (a+ ε cos(t))x(t) = bx(t− 2π) + εx(t− 4π) (63)

Example 3 (see Figure 6 and compare with Fig. 6 in [8] and Fig. 10 in [20])

ẍ(t) + (6 + ε cos(2πt))x(t) = x(t− τ1) + x(t− τ2) (64)

Example 4 (see Figure 7 and compare with Fig. 4 in [8] and Fig. 4.9 in [17])

ẍ(t) + (a+ ε cos(4πt))x(t) = b

∫ 0

−1

π

2
sin(πθ)x(t+ θ)dθ (65)

Example 5 (see Figure 8 and compare with Fig. 5 in [8] and Fig. 4.10 in [17])

ẍ(t) + (a+ ε cos(4πt))x(t) = b

∫ 0

−1

(
π

2
sin(πθ) +

13π

77
sin(2πθ)

)
x(t+ θ)dθ (66)

Example 6 (see Figure 9)

ẍ(t) + (a+ ε cos(4πt))x(t) = b cos(πt)

∫ 0

−1

π

2
sin(πθ)x(t+ θ)dθ (67)

It can be seen in Figures 4–8, that the stability charts are the same as those given in the
corresponding references. Note for these examples that the number n of interpolation nodes is
smaller than or equal to the approximation number of the results presented in the corresponding
references (when numerical results are given in the reference). This implies that the spectral
element method is competitive with the methods available in the literature. Note however
that for precise comparison the time necessary for computation is of interest rather than the
approximation number.
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Figure 4: Stability charts of Example 1 for different ε values. The number of elements is E = 1,
the

number of interpolation nodes is n = 10.
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Figure 5: Stability charts of Example 2 for different ε values. The number of elements is E = 1,
the number of interpolation nodes is n = 10.
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Figure 6: Stability charts of Example 3 for different ε values. The number of elements is E = 1,
the number of interpolation nodes is n = 10.

3.3 Numerical example

Section 2 provides compact formulas for the construction of the matrix approximation U of
the monodromy operator for the general case (4). However, application of these formulas to
specific examples is not always straightforward. In order to help to understand the process
of computation, a computational example is given in this subsection for Example 3, under
particular computational and system parameters. In addition, a Matlab code is also provided
for the calculation of stability charts corresponding to Example 6 through the link: http:

//www.mm.bme.hu/~lehotzky/Case_5.m .
The first-order form of (64) reads

ẋ(t) = A(t)x(t) + Bx(t− τ1) + Bx(t− τ2), (68)

where

x(t) =

[
x(t)
ẋ(t)

]
, A(t) =

[
0 1

−6−ε cos(2πt) 0

]
, B =

[
0 0
1 0

]
. (69)

Assume that E = 3 and n = 3, that is 3 elements and 3 interpolation nodes are used. Conse-
quently, the length of the elements is h = T/3 and the Lobatto-type Gaussian quadrature nodes
and weights are η1 = −1, η2 = 0, η3 = 1 and w1 = 1/3, w2 = 4/3, w3 = 1/3; respectively (see
Appendix C). Note that the nodes of interpolation are the same as the quadrature nodes, that
is ζj = ηj for j = 1, 2, 3. The test functions are the Legendre polynomials up to degree 1, hence
ψ1(ζ) = 1 and ψ2(ζ) = ζ (see Appendix B). Assume that 2h < τ1 < 3h and 4h < τ2 < 5h, there-
fore (6) gives K = 2, which results in r1 = 2 and r2 = 4. After α1 = τ1 modh, α2 = τ2 modh
and β1 = 2α1/h, β2 = 2α2/h are computed, the submatrices (34)–(36) can be calculated using
formulas (37)–(49). Using submatrices (34)–(36), matrices H ∈ R14×14 and G ∈ R14×26 can be
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Figure 7: Stability charts of Example 4 for different ε values. The number of elements is E = 1,
the

number of interpolation nodes is n = 10 and the number of quadrature nodes in (4) is
m = 10.
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Figure 8: Stability charts of Example 5 for different ε values. The number of elements is
E = 1, the number of interpolation nodes is n = 10 and the number of quadrature nodes in (4)
is m = 10.
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Figure 9: Stability charts of Example 6 for different ε values. The number of elements is
E = 1, the number of interpolation nodes is n = 40 and the number of quadrature nodes in (4)
is m = 40.

computed from (55). The matrices H0 and H1 in (55) are given by (70), while H2 = 0 because
τ2 > T . The structure of G0 is shown in Figure 2, while matrices G1 and G2 are given in (71)
and (72), respectively. Knowing that τ1 < T and τ2 > T , the structure of G1 and G2 can be
verified by the corresponding matrix structures shown in Figure 2. The matrix approximation
U ∈ R26×26 of the monodromy operator can be constructed according to Figure 3, using (50).

H0 =



I 0 0 0 0 0 0
S1
1,1 S1

1,2 S1
1,3 0 0 0 0

S1
2,1 S1

2,2 S1
2,3 0 0 0 0

0 0 S2
1,1 S2

1,2 S2
1,3 0 0

0 0 S2
2,1 S2

2,2 S2
2,3 0 0

0 0 0 0 S3
1,1 S3

1,2 S3
1,3

0 0 0 0 S3
2,1 S3

2,2 S3
2,3


, H1 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−R3,1
1,1 −R3,1

1,2 −R3,1
1,3 0 0 0 0

−R3,1
2,1 −R3,1

2,2 −R3,1
2,3 0 0 0 0


(70)

G1 =



0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Q1,1
1,1 Q1,1

1,2 Q1,1
1,3+R1,1

1,1 R1,1
1,2 R1,1

1,3 0 0

0 0 0 0 0 0 Q1,1
2,1 Q1,1

2,2 Q1,1
2,3+R1,1

2,1 R1,1
2,2 R1,1

2,3 0 0

0 0 0 0 0 0 0 0 Q2,1
1,1 Q2,1

1,2 Q2,1
1,3+R2,1

1,1 R2,1
1,2 R2,1

1,3

0 0 0 0 0 0 0 0 Q2,1
2,1 Q2,1

2,2 Q2,1
2,3+R2,1

2,1 R2,1
2,2 R2,1

2,3

0 0 0 0 0 0 0 0 0 0 Q3,1
1,1 Q3,1

1,2 Q3,1
1,3

0 0 0 0 0 0 0 0 0 0 Q3,1
2,1 Q3,1

2,2 Q3,1
2,3


(71)
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G2 =



0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 Q1,2
1,1 Q1,2

1,2 Q1,2
1,3+R1,2

1,1 R1,2
1,2 R1,2

1,3 0 0 0 0 0 0

0 0 Q1,2
2,1 Q1,2

2,2 Q1,2
2,3+R1,2

2,1 R1,2
2,2 R1,2

2,3 0 0 0 0 0 0

0 0 0 0 Q2,2
1,1 Q2,2

1,2 Q2,2
1,3+R2,2

1,1 R2,2
1,2 R2,2

1,3 0 0 0 0

0 0 0 0 Q2,2
2,1 Q2,2

2,2 Q2,2
2,3+R2,2

2,1 R2,2
2,2 R2,2

2,3 0 0 0 0

0 0 0 0 0 0 Q3,2
1,1 Q3,2

1,2 Q3,2
1,3+R3,2

1,1 R3,2
1,2 R3,2

1,3 0 0

0 0 0 0 0 0 Q3,2
2,1 Q3,2

2,2 Q3,2
2,3+R3,2

2,1 R3,2
2,2 R3,2

2,3 0 0


(72)

Note that BQ,k,p
q = BR,k,p

q = B for p = 1, 2; k = 1, 2, 3 and q = 1, 2, 3, hence Qk,p
i,j = Qk+1,p

i,j and

Rk,p
i,j = Rk+1,p

i,j for k = 1, 2. In order to determine stability boundaries, the matrix approximation
U of the monodromy operator has to be computed in several points of the (τ1, τ2) parameter
plane. Note, however, that if τ1 and τ2 are changed, then only the terms FQ,p

i,q , FR,p
i,q and LQ,pi,q ,

LR,pi,q for p = 1, 2; i = 1, 2 and q = 1, 2, 3 have to be recomputed and all the other terms in
(37)–(39) and (46)–(49) remain the same. This feature is reflected in the low time-demand of
the calculation of stability charts.

4 Conclusions

A generalization of the spectral element method, introduced in [20], was presented for time-
periodic DDEs with point delays and distributed delay. An explicit formula was given for the
construction of the matrix approximation of the monodromy operator. This formula enables
the application of arbitrary point sets and test functions for general combinations of delays
without any insight into the derivations of the method. Stability analysis was demonstrated
for some case studies, and the computation code is also provided for the most general example.
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Appendices

Appendix A Lagrange interpolation

On a t ∈ [a, b] interval the x̃(t) Lagrange interpolant of an x(t) function is an (n − 1)-order
polynomial satisfying conditions

x̃(tj) = x(tj), tj ∈ [a, b], j = 1, 2, . . . , n

where tj, j = 1, 2, . . . , n; are called the nodes of interpolation. The unique solution for the
interpolant is

x̃(t) =
n∑
j=1

φj(t)x̃(tj),

where the Lagrange base polynomials are computed as

φj(t) =
n∏
k=1
k 6=j

t− tk
tj − tk

,

and have the property
φj(tk) = δj,k

with δj,k being the Kronecker delta function.

Appendix B Legendre polynomials

Definition of Legendre polynomials by Bonnet’s recursion formula:

P1 = 1 ,
P2 = ζ ,
Pj(ζ) = 2j−3

j−1 ζ Pj−1(ζ)− j−2
j−1 Pj−2(ζ) j = 3, 4, . . . .

Some properties of Legendre polynomials are

• orthogonality:

∫ 1

−1
Pj(ζ)Pi(ζ)dζ =

2

2j − 1
δi,j and

• Pj(1) = 1 and Pj(−1) = (−1) j−1.

Appendix C Lobatto-type Gaussian quadrature

The Lobatto-type Gaussian quadrature approximates a definite integral by a sum as

I =

∫ b

a

x(t)dt ≈ Ĩ =
n∑
q=1

x(tq)wq,

where tq = a−b
2
ηq + a+b

2
with ηq and wq being the quadrature nodes and weights, respectively.

The Lobatto-type Gaussian quadrature gives exact results for all polynomials with maximum
order 2n− 3. The quadrature nodes are the roots of (1−ζ2)P ′n(ζ), that is −1, 1 and the roots
of the first derivative of the Legendre polynomial with degree (n−1). The quadrature weights
are given by

wq =


2

n(n− 1)
if q = 1, n;

2

n(n− 1)P 2
n(ηq)

if q = 2, 3, . . . , n− 1.
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