[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anticipatory estrogen activation of the unfolded protein response is linked to cell proliferation and poor survival in estrogen receptor α-positive breast cancer

Abstract

In response to cell stress, cancer cells often activate the endoplasmic reticulum (EnR) stress sensor, the unfolded protein response (UPR). Little was known about the potential role in cancer of a different mode of UPR activation, anticipatory activation of the UPR prior to accumulation of unfolded protein or cell stress. We show that estrogen, acting via estrogen receptor α (ERα), induces rapid anticipatory activation of the UPR, resulting in increased production of the antiapoptotic chaperone BiP/GRP78, preparing cancer cells for the increased protein production required for subsequent estrogen–ERα-induced cell proliferation. In ERα-containing cancer cells, the estrogen, 17β-estradiol (E2) activates the UPR through a phospholipase C γ (PLCγ)-mediated opening of EnR IP3R calcium channels, enabling passage of calcium from the lumen of the EnR into the cytosol. siRNA knockdown of ERα blocked the estrogen-mediated increase in cytosol calcium and UPR activation. Knockdown or inhibition of PLCγ, or of IP3R, strongly inhibited the estrogen-mediated increases in cytosol calcium, UPR activation and cell proliferation. E2-ERα activates all three arms of the UPR in breast and ovarian cancer cells in culture and in a mouse xenograft. Knockdown of ATF6α, which regulates UPR chaperones, blocked estrogen induction of BiP and strongly inhibited E2-ERα-stimulated cell proliferation. Mild and transient UPR activation by estrogen promotes an adaptive UPR response that protects cells against subsequent UPR-mediated apoptosis. Analysis of data from ERα+ breast cancers demonstrates elevated expression of a UPR gene signature that is a powerful new prognostic marker tightly correlated with subsequent resistance to tamoxifen therapy, reduced time to recurrence and poor survival. Thus, as an early component of the E2-ERα proliferation program, the mitogen estrogen, drives rapid anticipatory activation of the UPR. Anticipatory activation of the UPR is a new role for estrogens in cancer cell proliferation and resistance to therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Deroo BJ, Korach KS Estrogen receptors and human disease. J Clin Inv 2006; 116: 561–571.

    Article  CAS  Google Scholar 

  2. Musgrove EA, Sutherland RL Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 2009; 9: 631–643.

    Article  CAS  PubMed  Google Scholar 

  3. Yue W, Yager JD, Wang JP, Jupe ER, Santen RJ Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis. Steroids 2013; 78: 161–170.

    Article  CAS  PubMed  Google Scholar 

  4. EBCTCG, Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687–1717.

    Article  Google Scholar 

  5. Jensen EV, Jordan VC The estrogen receptor: a model for molecular medicine. Clin Cancer Res 2003; 9: 1980–1989.

    CAS  PubMed  Google Scholar 

  6. Ron D, Walter P Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8: 519–529.

    Article  CAS  PubMed  Google Scholar 

  7. Walter P, Ron D The unfolded protein response: from stress pathway to homeostatic regulation. Science 2012; 334: 1081–1086.

    Article  Google Scholar 

  8. Ma Y, Hendershot LM The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 2004; 4: 966–977.

    Article  CAS  PubMed  Google Scholar 

  9. Luo B, Lee AS The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 2013; 32: 805–818.

    Article  CAS  PubMed  Google Scholar 

  10. Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 2008; 68: 498–505.

    Article  CAS  PubMed  Google Scholar 

  11. Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res 2006; 66: 7849–7853.

    Article  CAS  PubMed  Google Scholar 

  12. Fu Y, Li J, Lee AS GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 2007; 67: 3734–3740.

    Article  CAS  PubMed  Google Scholar 

  13. Hu CC, Dougan SK, McGehee AM, Love JC, Ploegh HL XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells. EMBO J 2009; 28: 1624–1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Anken E, Romijn EP, Maggioni C, Mezghrani A, Sitia R, Braakman I et al. Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity 2003; 18: 243–253.

    Article  CAS  PubMed  Google Scholar 

  15. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  16. Wang DY, Fulthorpe R, Liss SN, Edwards EA Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1. Mol Endocrinol 2004; 18: 402–411.

    Article  CAS  PubMed  Google Scholar 

  17. Ding L, Yan J, Zhu J, Zhong H, Lu Q, Wang Z et al. Ligand-independent activation of estrogen receptor alpha by XBP-1. Nucleic Acids Res 2003; 31: 5266–5274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gomez BP, Riggins RB, Shajahan AN, Klimach U, Wang A, Crawford AC et al. Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J 2007; 21: 4013–4027.

    Article  CAS  PubMed  Google Scholar 

  19. Lee AH, Iwakoshi NN, Glimcher LH XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003; 23: 7448–7459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T, Wang J et al. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 2007; 13: 351–364.

    Article  CAS  PubMed  Google Scholar 

  21. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 2002; 366: 585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 2006; 4: e374.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Divekar SD, Storchan GB, Sperle K, Veselik DJ, Johnson E, Dakshanamurthy S et al. The role of calcium in the activation of estrogen receptor-alpha. Cancer Res 2011; 71: 1658–1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 2003; 144: 4562–4574.

    Article  CAS  PubMed  Google Scholar 

  25. Rae JM, Johnson MD, Scheys JO, Cordero KE, Larios JM, Lippman ME GREB 1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res Treat 2005; 92: 141–149.

    Article  CAS  PubMed  Google Scholar 

  26. Ju YH, Doerge DR, Allred KF, Allred CD, Helferich WG Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res 2002; 62: 2474–2477.

    CAS  PubMed  Google Scholar 

  27. Rutkowski DT, Kaufman RJ That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 2007; 32: 469–476.

    Article  CAS  PubMed  Google Scholar 

  28. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T et al. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 2002; 514: 122–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ariazi EA, Cunliffe HE, Lewis-Wambi JS, Slifker MJ, Willis AL, Ramos P et al. Estrogen induces apoptosis in estrogen deprivation-resistant breast cancer through stress responses as identified by global gene expression across time. Proc Natl Acad Sci USA 2011; 108: 18879–18886.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG et al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell 2011; 22: 4390–4405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andruska N, Mao C, Cherian M, Zhang C, Shapiro DJ Evaluation of a luciferase-based reporter assay as a screen for inhibitors of estrogen-ERalpha-induced proliferation of breast cancer cells. J Biomol Screen 2012; 17: 921–932.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cherian MT, Wilson EM, Shapiro DJ A competitive inhibitor that reduces recruitment of androgen receptor to androgen-responsive genes. J Biol Chem 2012; 287: 23368–23380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kretzer NM, Cherian MT, Mao C, Aninye IO, Reynolds PD, Schiff R et al. A noncompetitive small molecule inhibitor of estrogen-regulated gene expression and breast cancer cell growth that enhances proteasome-dependent degradation of estrogen receptor {alpha}. J Biol Chem 2010; 285: 41863–41873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dong S, Teng Z, Lu FH, Zhao YJ, Li H, Ren H et al. Post-conditioning protects cardiomyocytes from apoptosis via PKC(epsilon)-interacting with calcium-sensing receptors to inhibit endo(sarco)plasmic reticulum-mitochondria crosstalk. Mol Cell Biochem 2010; 341: 195–206.

    Article  CAS  PubMed  Google Scholar 

  35. Spiller DG, Wood CD, Rand DA, White MR Measurement of single-cell dynamics. Nature 2010; 465: 736–745.

    Article  CAS  PubMed  Google Scholar 

  36. Graham K, de las Morenas A, Tripathi A, King C, Kavanah M, Mendez J et al. Gene expression in histologically normal epithelium from breast cancer patients and from cancer-free prophylactic mastectomy patients shares a similar profile. Br J Cancer 2010; 102: 1284–1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 2010; 28: 827–838.

    Article  CAS  PubMed  Google Scholar 

  38. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 2007; 25: 1239–1246.

    Article  CAS  PubMed  Google Scholar 

  39. Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F, Regitnig P et al. Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol 2010; 28: 4111–4119.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 2005; 102: 13550–13555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bolstad BM, Irizarry RA, Astrand M, Speed TP A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    Article  CAS  PubMed  Google Scholar 

  42. Bair E, Tibshirani R Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol 2004; 2: E108.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr J Hartman for assistance with xenografts, and Dr S Kaufmann and Dr K Korach for cell lines. This work was supported by NIH RO1DK 071909 (to DS) and Westcott and Carter predoctoral fellowships (to NA). Analyses were performed using BRB-ArrayTools, developed by Dr Richard Simon and BRB-ArrayTools Development Team at the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D J Shapiro.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andruska, N., Zheng, X., Yang, X. et al. Anticipatory estrogen activation of the unfolded protein response is linked to cell proliferation and poor survival in estrogen receptor α-positive breast cancer. Oncogene 34, 3760–3769 (2015). https://doi.org/10.1038/onc.2014.292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.292

This article is cited by

Search

Quick links