Abstract
Optimizing the classification accuracy of a mangrove forest is of utmost importance for conservation practitioners. Mangrove forest mapping using satellite-based remote sensing techniques is by far the most common method of classification currently used given the logistical difficulties of field endeavors in these forested wetlands. However, there is now an abundance of options from which to choose in regards to satellite sensors, which has led to substantially different estimations of mangrove forest location and extent with particular concern for degraded systems. The objective of this study was to assess the accuracy of mangrove forest classification using different remotely sensed data sources (i.e., Landsat-8, SPOT-5, Sentinel-2, and WorldView-2) for a system located along the Pacific coast of Mexico. Specifically, we examined a stressed semiarid mangrove forest which offers a variety of conditions such as dead areas, degraded stands, healthy mangroves, and very dense mangrove island formations. The results indicated that Landsat-8 (30 m per pixel) had the lowest overall accuracy at 64% and that WorldView-2 (1.6 m per pixel) had the highest at 93%. Moreover, the SPOT-5 and the Sentinel-2 classifications (10 m per pixel) were very similar having accuracies of 75 and 78%, respectively. In comparison to WorldView-2, the other sensors overestimated the extent of Laguncularia racemosa and underestimated the extent of Rhizophora mangle. When considering such type of sensors, the higher spatial resolution can be particularly important in mapping small mangrove islands that often occur in degraded mangrove systems.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alongi, D. M. (2016). Mangroves. In M. J. Kennish (Ed.), Encyclopedia of estuaries (pp. 393–404). New York: Springer. https://doi.org/10.1007/978-94-017-8801-4_3.
Alsaaideh, B., Al-Hanbali, A., Tateishi, R., Kobayashi, T., & Hoan, N. T. (2013). Mangrove forests mapping in the southern part of Japan using Landsat ETM+ with DEM. Journal of Geographic Information Systems, 5(04), 369–377. https://doi.org/10.4236/jgis.2013.54035.
Blanco-Correa, M. (2011). Diagnóstico funcional de Marismas Nacionales. Tepic: Informe final de los convenios de coordinación entre la Universidad Autónoma de Nayarit y la Comisión Nacional Forestal con el patrocinio del Gobierno del Reino Unido.
Chadwick, J. (2011). Integrated LiDAR and IKONOS multispectral imagery for mapping mangrove distribution and physical properties. International Journal of Remote Sensing, 32(21), 6765–6781. https://doi.org/10.1080/01431161.2010.512944.
Congalton, R., & Green, K. (1999). Assessing the accuracy of remotely sensed data: principles and practices. Boca Raton: CRC/LEWIS Press.
Congedo, L. (2016). Semi-automatic classification plugin documentation. Technical report. https://doi.org/10.13140/RG.2.2.29474.02242/1. Accessed 14 Nov 2017.
De-León-Herrera, R., Flores-Verdugo, F., Flores-de-Santiago, F., & González-Farías, F. (2015). Nutrient removal in a closed silvofishery system using three mangrove species (Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle). Marine Pollution Bulletin, 91(1), 243–248. https://doi.org/10.1016/j.marpolbul.2014.11.040.
Dronova, I. (2015). Object-based image analysis in wetland research: A review. Remote Sensing, 7(5), 6380–6413. https://doi.org/10.3390/rs70506380.
Duke, N. C. (2016). Oil spill impacts on mangroves: recommendations for operational planning and action based on a global review. Marine Pollution Bulletin, 109(2), 700–715. https://doi.org/10.1016/j.marpolbul.2016.06.082.
Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K. C., Field, C. D., Koedam, N., Lee, S. Y., Marchand, C., Nordhaus, I., & Dahdouh-Guebas, F. (2007). A world without mangroves? Science, 317(5834), 41–42. https://doi.org/10.1126/science.317.5834.41b.
Duke, N. C., Kovacs, J. M., Griffiths, A. D., Preece, L., Hill, D. J. E., van Oosterzee, P., Mackenzie, J., Morning, H. S., & Burrows, D. (2017). Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Marine and Freshwater Research, 68(10), 1816–1829. https://doi.org/10.1071/MF16322.
Ferreira, A. C., Ganade, G., & Attayde, J. L. D. (2015). Restoration vs natural regeneration in neotropical mangrove: effects on plant biomass and crab communities. Ocean and Coastal Management, 110, 38–45. https://doi.org/10.1016/j.ocecoaman.2015.03.006.
Flores-de-Santiago, F., Kovacs, J. M., & Lafrance, P. (2013a). An object-oriented classification method for mapping mangroves in Guinea, West Africa, using multipolarized ALOS PALSAR L-band data. International Journal of Remote Sensing, 34(2), 563–586. https://doi.org/10.1080/01431161.2012.715773.
Flores-de-Santiago, F., Kovacs, J. M., & Flores-Verdugo, F. (2013b). The influence of seasonality in estimating mangrove leaf chlorophyll-a content from hyperspectral data. Wetlands Ecology and Management, 21(3), 193–207. https://doi.org/10.1007/s11273-013-9290-x.
Flores-de-Santiago, F., Kovacs, J. M., Wang, J., Flores-Verdugo, F., Zhang, C., & González-Farías, F. (2016). Examining the influence of seasonality, condition, and species composition on mangrove leaf pigment contents and laboratory based spectroscopy data. Remote Sensing, 8(3), 226. https://doi.org/10.3390/rs8030226.
Flores-Verdugo, F. J., Day, J. W., & Briseño-Dueñas, R. (1987). Structure, litter fall, decomposition, and detritus dynamics of mangroves in a Mexican coastal lagoon with an ephemeral inlet. Marine Ecology Progress Series, 35, 83–90. https://doi.org/10.3354/meps035083.
Friess, D. A., & Webb, E. L. (2014). Variability in mangrove change estimates and implications for the assessment of ecosystem service provision. Global Ecology and Biogeogreography, 23(7), 715–725. https://doi.org/10.1111/geb.12140.
Gao, J. (1998). A hybrid method toward accurate mapping of mangroves in a marginal habitat from SPOT multispectral data. International Journal of Remote Sensing, 19(10), 1887–1899. https://doi.org/10.1080/014311698215045.
Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x.
Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., & Ellis, A. C. (1998). Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 19(5), 935–956. https://doi.org/10.1080/014311698215801.
Guo, M., Li, J., Sheng, C., Xu, J., & Wu, L. (2017). A review of wetland remote sensing. Sensors, 17(4), 777. https://doi.org/10.3390/s17040777.
Heenkenda, M. K., Joyce, K. E., Maier, S. W., & Bartolo, R. (2014). Mangrove species identification: Comparing WorldView-2 with aerial photographs. Remote Sensing, 6(7), 6064–6088. https://doi.org/10.3390/rs6076064.
Heenkenda, M. K., Joyce, K. E., Maier, S. W., & Bruin, S. D. (2015). Quantifying mangrove chlorophyll from high spatial resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 234–244. https://doi.org/10.1016/j.isprsjprs.2015.08.003.
Horstman, E. M., Dohmen-Janssen, C. M., Bouma, T. J., & Hulscher, S. J. M. H. (2015). Tidal-scale flow routing and sedimentation in mangrove forests: Combining field data and numerical modeling. Geomorphology, 228, 244–262. https://doi.org/10.1016/j.geomorph.2014.08.011.
Ibharim, N. A., Mustapha, M. A., Lihan, T., & Mazlan, A. G. (2015). Mapping mangrove changes in the Matang mangrove forest using multi temporal satellite imageries. Ocean and Coastal Management, 114, 64–76. https://doi.org/10.1016/j.ocecoaman.2015.06.005.
Jensen, R. J. (2016). Introductory digital image processing: a remote sensing perspective. Upper Saddle River: Prentice Hall 544 pp.
Koedsin, W., & Vaiphasa, C. (2013). Discrimination of tropical mangroves at the species level with EO-1 Hyperion data. Remote Sensing, 5(7), 3562–3582. https://doi.org/10.3390/rs5073562.
Kovacs, J. M. (2000). Perceptions of environmental change in a tropical coastal wetland. Land Degradation and Development, 11(3), 209–220. https://doi.org/10.1002/1099-145X(200005/06)11:3<209::AID-LDR378>3.0.CO;2-Y.
Kovacs, J. M., Wang, J., & Blanco-Correa, M. (2001). Mapping disturbances in a mangrove forest using multi-date Landsat TM imagery. Environmental Management, 27(5), 763–776. https://doi.org/10.1007/s002670010186.
Kovacs, J. M., Flores-Verdugo, F., Wang, J., & Aspden, L. P. (2004). Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data. Aquatic Botany, 80(1), 13–22. https://doi.org/10.1016/j.aquabot.2004.06.001.
Kovacs, J. M., Wang, J., & Flores-Verdugo, F. (2005). Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuarine, Coastal and Shelf Science, 62(1-2), 377–384. https://doi.org/10.1016/j.ecss.2004.09.027.
Kovacs, J. M., King, J. M. L., Flores-de-Santiago, F., & Flores-Verdugo, F. (2009). Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach. Environmental Monitoring and Assessment, 157(1-4), 137–149. https://doi.org/10.1007/s10661-008-0523-z.
Kovacs, J. M., Flores-de-Santiago, F., Bastien, J., & Lafrance, P. (2010). An assessment of mangroves in Guinea, West Africa, using a field and remote sensing based approach. Wetlands, 30(4), 773–782. https://doi.org/10.1007/s13157-010-0065-3.
Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: a review. Remote Sensing, 3(12), 878–928. https://doi.org/10.3390/rs3050878.
Lee, T. M., & Yeh, H. C. (2009). Applying remote sensing techniques to monitor shifting wetland vegetation: a case of study of Danshui river estuary mangrove communities, Taiwan. Ecological Engineering, 35(4), 487–496. https://doi.org/10.1016/j.ecoleng.2008.01.007.
Li, X., Yeh, A. G. O., Wang, S., Liu, K., Liu, X., Qian, J., & Chen, X. (2007). Regression and analytical models for estimating mangrove wetland biomass in South China using Radarsat images. International Journal of Remote Sensing, 28(24), 5567–5582. https://doi.org/10.1080/01431160701227638.
Lillesand, T. M., Kiefer, R. W., & Chapman, J. W. (2008). Remote sensing and image interpretation. New York: John Wiley & Sons.
Martin, T. S. H., Olds, A. D., Pitt, K. A., Johnston, A. B., Butler, I. R., Maxwell, P. S., & Connolly, R. M. (2015). Effective protection of fish on inshore coral reefs depends on the scale of mangrove-reef connectivity. Marine Ecology Progress Series, 527, 157–165. https://doi.org/10.3354/meps11295.
McCarthy, M. J., Merton, E. J., & Muller-Karger, F. E. (2015). Improved coastal wetland mapping using very-high 2-meter spatial resolution imagery. International Journal of Applied Earth Observation and Geoinformation, 40, 11–18. https://doi.org/10.1016/j.jag.2015.03.011.
Mukherjee, N., Sutherland, W. J., Dicks, L., Hugé, J., Koedam, N., & Dahdouh-Guebas, F. (2014). Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises. PLoS One, 9(9), e107706. https://doi.org/10.1371/journal.pone.0107706.
Ose, K. (2015). Geosud Toa Reflectance. QGIS Python Plugins Repository. https://plugins.qgis.org/plugins/geosudRefToa/. Accessed 14 Nov 2017.
Otero, V., Quisthoudt, K., Koedam, N., & Dahdouh-Guebas, F. (2016). Mangroves at their limits: Detection and area estimation of mangroves along the Sahara desert coast. Remote Sensing, 8(6), 512. https://doi.org/10.3390/rs8060512.
Pettorelli, N. (2013). The normalized differential vegetation index. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:osobl/9780199693160.001.0001.
Pettorelli, N., Laurance, W. F., O'Brien, T. G., Wegmann, M., Nagendra, H., Turner, W., & Milner-Gulland, E. J. (2014). Satellite remote sensing for applied ecologists: opportunities and challenges. Journal of Applied Ecology, 51(4), 839-848. https://doi.org/10.1111/1365-2664.12261
Richter, R., & Schläpfer, D. (2016). Atmospheric / topographic correction for satellite imagery. ATCOR-2/3 User Guide, Version 9.0.2. http://www.rese.ch/pdf/atcor3_manual.pdf. Accessed 14 Nov 2017.
Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A., & Krauss, K. W. (2014). Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology, 20(1), 147–157. https://doi.org/10.1111/gcb.12341.
Son, N. T., Thanh, B. X., & Da, C. T. (2016). Monitoring mangrove forest changes from multi-temporal Landsat data in Can Gio biosphere reserve, Vietnam. Wetlands, 36(3), 565–576. https://doi.org/10.1007/s13157-016-0767-2.
Troche-Souza, C., Rodriguez-Zuñiga, M. T., Velázquez-Salazar, S., Valderrama-Landeros, L., Villeda-Chávez, E., Alcántara-Maya, A., Vázquez-Balderas, B., Cruz-López, M. I., & Ressl, R. (2016). Manglares de México: extensión, distribución y monitoreo (1970/1980–2015). Mexico City: CONABIO.
Van Bochove, J. W., Sullivan, E., & Nakamura, T. (2014). The importance of mangroves to people: A call to action. Cambridge: United Nations Environment Programme World Conservation Monitoring Centre.
Vo, T. Q., Kuenzer, C., & Oppelt, N. (2015). How remote sensing supports mangrove ecosystem service valuation: a case study in Ca Mau province, Vietnam. Ecosystem Services, 14, 67–75.
Walters, B. B., Rönnbäck, P., Kovacs, J. M., Crona, B., Hussain, S. A., Badola, R., Primavera, J. H., Barbier, E., & Dahdouh-Guebas, F. (2008). Ethnobiology, socio-economics and management of mangrove forests: a review. Aquatic Botany, 89(2), 220–236. https://doi.org/10.1016/j.aquabot.2008.02.009.
Wang, T., Zhang, H., Lin, H., & Fang, C. (2016). Textural-spectral feature-based species classification of mangroves in Mai Po Nature Reserve from Worldview-3 imagery. Remote Sensing, 8, 24.
Ximenes, A. C., Maeda, E. E., Arcoverde, G. F. B., & Dahdouh-Guebas, F. (2016). Spatial assessment of the bioclimatic and environmental factors driving mangrove tree species’ distribution along the Brazilian coastline. Remote Sensing, 8(6), 451. https://doi.org/10.3390/rs8060451.
Zhang, C., Kovacs, J. M., Liu, Y., Flores-Verdugo, F., & Flores-de-Santiago, F. (2014). Separating mangrove species and conditions using laboratory hyperspectral data: A case study of a degraded mangrove forest of the Mexican Pacific. Remote Sensing, 6(12), 11673–11688. https://doi.org/10.3390/rs61211673.
Acknowledgements
LVL acknowledge financial support for the WorldView-2 data acquisition and field work campaigns in 2015 through the Packard Foundation and the Fondo Mexicano para la Conservación de la Naturaleza (FMCN). FFS appreciate the financial support through a grant provided by the Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (DGAPA-UNAM, Mexico). We thank the Mexican Navy (SEMAR) for the helicopter flights and oblique photos collection.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Valderrama-Landeros, L., Flores-de-Santiago, F., Kovacs, J.M. et al. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme. Environ Monit Assess 190, 23 (2018). https://doi.org/10.1007/s10661-017-6399-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-017-6399-z