Remote Sensing of Mangrove Ecosystems: A Review
<p>Generalized global distribution of mangroves and diversity of mangrove species per 15° of longitude (Source: adapted from Tomlinson 1986 [<a href="#B28-remotesensing-03-00878" class="html-bibr">28</a>]).</p> "> Figure 2
<p>Mangroves in Ca Mau Province, Vietnam, January 2010.</p> "> Figure 3
<p>Spectral characteristics and their influencing parameters of the mangrove species <span class="html-italic">Avicennia marina</span> and <span class="html-italic">Rhizophora conjugate</span> as measured with an field spectrometer in Ca Mau Province, Vietnam, January 2010. Stacks of at least eight layers of mangrove leaves were measured, filling the instantaneous field of view, IFOV, of the spectrometer to grant optimal leaf area index (LAI) conditions without background transmission.</p> "> Figure 4
<p>Dominating backscatter mechanisms at different stages of mangrove growth depending on bandwidth of the radar beam.</p> "> Figure 5
<p>Example of a mangrove mapping result, based on a hybrid classification of SPOT 5 and TerraSAR-X data for Ca Mau Province in the Mekong Delta of Vietnam, 2010. Based on these two datasets, different species and different stand characteristics (mangroves only and mangroves mixed with aquaculture) can be differentiated.</p> "> Figure 6
<p>Mangrove density and class mixture information based on Envisat ASAR and TerraSAR-X data for the western tip of Ca Mau Province, Vietnam, December 2009.</p> ">
Abstract
:1. Introduction to the Methodology of Remote Sensing of Mangrove Ecosystems
- Habitat inventories (determination of extent, species and composition, health status);
- Change detection and monitoring (land use, land cover, conservation and reforestation success, silviculture, and aquaculture development);
- Ecosystem evaluation support;
- Productivity assessment (biomass estimation);
- Regeneration capacity estimation;
- Multiple management requests (fisheries, aquaculture activities, conservation management, management guidelines and strategies);
- Field survey planning;
- Water-quality assessment;
- Prompt information supply for disaster management; and
1.1. Spatial Distribution of Mangrove Ecosystems
1.2. Characteristics of Mangroves and Mangrove Ecosystems
1.3. Ecological and Economical Benefits of Mangrove Ecosystems
- Regulating: see above (e.g., shoreline protection);
- Providing: fisheries, aquaculture, construction material, fuel, tannins, honey, traditional medicine, paper, and textiles;
- Cultural: tourism and recreation, spiritual; and
- Supporting: see section above (e.g., nursery habitats, nutrient cycling).
1.4. Need for Mangrove Protection and Reforestation
2. Characteristics for Identifying Mangroves in Remotely Sensed Data
2.1. Mangrove Characteristics in Optical Remotely Sensed Data
2.2. Expression of Mangrove Backscatter in Radar Data
3. Review of Remote Sensing-Based Studies and Methods on Mangrove Ecosystems
Polarization | |||||
---|---|---|---|---|---|
Frequency | General information | VV | HH | HV | |
C-band |
|
|
|
| |
L-band |
|
|
|
| |
P-band |
|
|
|
|
Sensor | Visual interpretation/on-screen digitizing | Vegetation Indices | LAI | Pixel-based classification (unsupervised, supervised) | Neural network classification | Decision tree classifier (rule based) | Object-based methods | Spectral unmixing | SAM | |
In situ measurements | In situ measurements | [4,75,89,127,136,174] | ||||||||
Laboratory measurements | Field spectrometer/spectroradiometer | [15,22,141,175] | [75,76] | [76,139] | [139] | |||||
Aerial photography/videography and digital imagery | CIR videography | [92,94] | [92] | |||||||
CIR photography, aerial photographs | [11,23,74,96,97,98,99,100,103] | [13,86,90,91,93,95] | ||||||||
High-resolution imagery | QuickBird | [132,138] | [2,24,125,132,133] | [24] | ||||||
IKONOS | [41,130,138] | [136] | [136,137] | [24,41,77,134,139] | [77] | [24,77,134,135] | [139] | |||
Sensor | Visual interpretation/on-screen digitizing | Vegetation Indices (e.g., NDVI) | LAI | Pixel-based classification (unsupervised, supervised) | Neural network classification | Decision tree classifier (rule based) | Object-based methods | Spectral unmixing | SAM | |
Medium-resolution imagery | ASTER | [6,110,122] | ||||||||
SPOT 1-4 | [9,19,32,40,89,105,116,120,129] | [75,89,124,126] | [75] | [1,9,16,19,21,72,79,89,103,105,118,122,123,125,129,150,177] | [89,109] | |||||
IRS 1C/1D LISS III/IV | [20,113,115,120] | [108] | ||||||||
Landsat-7 ETM+ | [14] | [31] | [18,31,73,102,128] | |||||||
Landsat-5 TM | [20,89,97,113,117] | [3,5,75,89,112,124,176] | [3,9,13,89,106,110,111,112,119,121,123,125,177,178] | [5] | [89,107,114,128] | |||||
Landsat MSS | [120] | [3,5] | [3,110] | [5] | [107,114] | |||||
Hyperspectral Data | ||||||||||
Airborne | AISA+ | [175] | [144] | [144] | [144] | |||||
CASI | [89] | [4,89] | [4] | [4,12,89] | [12] | [89] | [12] | |||
Hymap | [141] | |||||||||
AVIRIS | [143] | |||||||||
Dedalus | [142] | |||||||||
Spaceborne | EO-1 Hyperion | [145] | [145] | |||||||
RADAR Data | ||||||||||
Airborne | AIRSAR | [81,82,83,85,87] | [12] | [12] | [12] | |||||
Spaceborne | ALOS PALSAR | [147] | ||||||||
ERS-1/2 | [9,146] | [9,151] | [155] | [155] | ||||||
JERS-1 | [9,87] | [9,129] | [155] | [155] | ||||||
Envisat ASAR | [88] | [88] | ||||||||
Radarsat-1 SAR | [149] | [149] | ||||||||
SIR-C | [150] | [150] | ||||||||
SIR-B | [84] |
3.1. Overview of Mangrove-Mapping Studies Based on Aerial Photography
3.2. Overview of Mangrove Mapping Studies Based on Medium-Resolution Data
Applications
Methods
3.3. Overview of Mangrove-Mapping Studies Based on High-Resolution Optical Data
3.4. Overview of Mangrove-Mapping Studies Based on Airborne Hyperspectral Data
3.5. Overview of Mangrove-Mapping Studies and Methods Based on Radar Data
4. Discussion
Aerial photography | Benefits | Limitations |
---|---|---|
1. Spectral resolution | Red–near-infrared spectral information with red-edge slope | None at all or very low (R,G,B; near-infrared) |
2. Spatial resolution | Very high (centimeter to meter range) | Only small area is covered |
3. Temporal resolution | Always available on demand | Complex acquisition of equipment and flight campaign planning is needed |
4. Costs | Low costs for small areas | Increasing costs with increasing spatial coverage; high costs if professional flight campaign planning and multispectral camera |
5. Long-term monitoring | Data available for >50 years | |
6. Purposes | Local maps of mangrove ecosystems, parametrization, change detection | Only local-scale studies |
7. Discrimination level | Species communities, density parameters | Sometimes too much detail (hampering unbiased image processing) |
8. Methods | Visual interpretation with on-screen digitizing and object-oriented approaches | Automatization usually not possible; considerable analyst bias and, thus, hampered transferability or comparability |
9. Other | Valuable additional information source to support field survey, image interpretation, or accuracy assessments. If overlapping pictures are acquired (stereo pairs), it is possible to derive canopy-elevation model |
Medium-resolution imagery | Benefits | Limitations |
---|---|---|
1. Spectral resolution | Several multispectral bands, always including R,G,B; near-infrared; and oftentimes even mid-infrared; and thermal bands | Skilled trained personnel are required to best exploit the information content of the multiple bands (considering transformations, etc.) |
2. Spatial resolution | Ideal for mapping on a large regional scale | Too coarse for local observations requiring in-depth species differentiation and parameterization |
3. Temporal resolution | Frequent mapping (e.g., rainy season and dry season within 1 year; or repeated annual mapping) is possible | Repetition rate may be too low to record impact of extreme events (e.g., cyclones, floods, tsunamis); furthermore, very weather dependent (clouds) = critical in subtropical and tropical regions |
4. Costs | Depending on sensor, freely available (e.g., Landsat), very cost efficient (ASTER), or expensive (e.g., SPOT); but all are cost efficient compared with field surveys and airborne campaigns | Software for image processing needed (common software, such as Erdas, ENVI, and ArcGIS, have high license fees), but usually not a real limitation |
5. Long-term monitoring | Data availability over three decades | Depending on the future duration of the systems and subsequent comparable sensors |
6. Purposes | Inventory and status maps; change detection, such as assessment of impact damages; assessment of reforestation and conservation success | For some species-oriented botany-focused studies, resolution may already be too coarse |
7. Discrimination level | Mangrove–non-mangrove, density variations, condition status, mangrove zonation, in rare cases also species discrimination | High regional differences; classification Result depends highly on the ecosystem conditions, such as biodiversity, heterogeneity of forests, adjacent targets; species identification is rarely possible |
8. Methods | Visual interpretation with on-screen digitizing, pixel-based, object based, and hybrid classification approaches; image transformation and analyses (PCA, TCT, IHS indices, etc.) | To exploit the full potential of the data skilled analysts needed |
9. Other | Data easy to access or order; best explored data type and, thus, most literature available; long-term monitoring granted |
High-resolution imagery | Benefits | Limitations |
---|---|---|
1. Spectral resolution | Red–near-infrared spectral information with red-edge slope; usually panchromatic band allowing image fusion (pan-sharpening) | Relatively few spectral bands |
2. Spatial resolution | High resolution (0.5–4 m range) for mapping on a local scale | Only a small area is covered |
3. Temporal resolution | Regular mapping is possible on demand | Weather dependent (clouds); cost intensive if repeated monitoring is requested |
4. Costs | Moderate costs for single acquisitions (usually 2,000–10,000 Euro, depending on area) | Very high costs if repeated monitoring is requested. Also, high costs of object-oriented image-processing software (e.g., Ecognition) |
5. Long-term monitoring | Theoretically possible, but usually not used because of expense. Sensors, such as IKONOS, QuickBird, etc., available since late 1990s/2000. | Depending on the future duration of the systems and subsequent comparable sensors. Only back to the late 1990s. |
6. Purposes | Discrimination of mangrove species, spatial distribution and variability, health status, parameterization | Single-tree species discrimination usually not possible |
7. Discrimination level | Down to species communities; detailed parameterization | Regional differences; classification result depends highly on the ecosystem conditions, such as biodiversity, heterogeneity of forests, adjacent targets |
8. Methods | Visual interpretation with on-screen digitizing, pixel-based, object-based, and hybrid-classification approaches | Skilled analysts needed to exploit the full potential of the data |
9. Other | Valuable information source to support field survey and accuracy assessment. Easy to close the scale gap to in situ investigations | In some (developing/emerging) countries, data of the relevant sensors very difficult to purchase; few studies published based on the data type |
Hyperspectral imagery | Benefits | Limitations |
---|---|---|
1. Spectral resolution | Very high, covering a broad range with narrow bandwidths | High data volume, bands with redundant information |
2. Spatial resolution | Usually very high (centimeter to meter range) | Very small area covered |
3. Temporal resolution | Spaceborne: because of few sensors without long-term acquisition, maximum monthly; airborne: on demand if costs do not play a role | Weather dependent (clouds); complex acquisition of equipment is needed; very cost intensive |
4. Costs | None | Very high costs for airborne campaigns and sensor operation; very high costs for personnel working in airborne or spaceborne data |
5. Long-term monitoring | Theoretically possible; practically not feasible | Unsuitable because of small areas covered and very high costs; will only be possible with a reliable spaceborne, operational sensor |
6. Purposes | Maps of mangroves on species level; highly detailed parameterization; detailed analyses of status (vigor, health, etc.) | No major limitations |
7. Discrimination level | Species communities | No major limitations |
8. Methods | Typical hyperspectral data-analysis methods (spectral unmixing, SAM, MTMF, etc.); partially also paired with object-oriented analyses | Specialized knowledge is needed for data analysis; experience in sound hyperspectral data processing often not available; hyperspectral analyses often lead to only seemingly quantitative results (e.g., end member-fraction images) |
9. Other | Detailed mapping of non-mangrove constituents also probably beneficial (e.g., different water classes, depending on sediment load, algae, etc.; or soil types) | Relatively few studies have been conducted; still in a testing phase; very few spaceborne sensors available (Hyperion with questionable SNR, Sebas, etc.). See Table 3 for airborne sensor limitations |
Radar (SAR) imagery | Benefits | Limitations |
---|---|---|
1. Spectral resolution | Active microwave radiation; delivers alternative information about the surface structure; various wavelengths and polarizations are selectable | No spectral information |
2. Spatial resolution | Varies | Usually low, except TerraSAR-X |
3. Temporal resolution | High; weather independent | None |
4. Costs | Many data types available at low cost in the context of science proposals (ESA, JAXA, DLR, etc.) | Restricted access to data (certain number of scenes; also some data not sharable with certain developing countries (e.g., TSX) |
5. Long-term monitoring | Good; long-duration systems | None |
6. Purposes | Mangrove extent, condition, canopy properties, deforestation, biomass estimation | No information derivable from typical spectra (species differentiation not possible unless species vary in their structural appearance) |
7. Discrimination level | Age structure, forest parameters, biomass estimation | No discrimination between mangroves and other vegetation forms without a priori knowledge; no separation among species |
8. Methods | Analyses of the backscatter signals using advanced image-processing techniques; very quantitative physics-based manner of image analysis | Extremely skilled analysts with experience in radar-image processing needed (availability, costs) |
9. Other | Most promising results when SAR data combined with optical imagery (e.g., Figure 5) | Relatively few studies have been conducted; special software or modules are needed for radar-image processing |
Need for a Homogeneous Definition of the Term “Mangrove”
- The mangrove ecosystem, with mangroves as leading plant families, but also containing other vegetation, open water surfaces, rivers, creeks, and open muddy soil surfaces;
- An evergreen woody formation of shrubs or trees belonging to the mangrove family; or
- A single mangrove tree
Need for Homogenized Classification Schemes
Need for Standardized Data-Processing Methods
Need for Homogenized, Transparent Accuracy Assessment
Need for Further Investigations on Synergetic Data Use
Need for Ecosystem Service Assessment
Need for Interdisciplinary and Well-Networked Research Teams
5. Conclusions
Acknowledgements
References
- Blasco, F.; Aizpuru, M.; Gers, C. Depletion of the mangroves of continential Asia. Wetlands Ecol. Manage. 2001, 9, 245–256. [Google Scholar] [CrossRef]
- Everitt, J.H.; Yang, C.; Sriharan, S.; Judd, F.W. Using high resolution satellite imagery to map black mangrove on the Texas Gulf Coast. J. Coast. Res. 2008, 24, 1582–1586. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring Mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
- Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D.; Ellis, A.C. The assessment of mangrove areas using high resolution multispectral airborne imagery. J. Coast. Res. 1998, 14, 433–443. [Google Scholar]
- Seto, K.C.; Fragkias, M. Mangrove conversion and aquaculture development in Vietnam: A remote sensing-based approach for evaluating the Ramsar Convention on Wetlands. Glob. Environ. Change 2007, 17, 486–500. [Google Scholar]
- Vaiphasa, C.; Skidmore, A.K.; de Boer, W.F. A post-classifier for mangrove mapping using ecological data. ISPRS J. Photogramm. Remote Sens. 2006, 61, 1–10. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove forests: One of the world’s threatened major tropical environments. Bioscience 2001, 51, 807–815. [Google Scholar] [CrossRef]
- FAO. The World’s Mangroves 1980–2005; FAO Forestry Paper 153; FAO: Rome, Italy, 2007; Available online: ftp://ftp.fao.org/docrep/fao/010/a1427e/a1427e00.pdf (accessed on 30 October 2009).
- Aschbacher, J.; Ofren, R.; Delsol, J.P.; Suselo, T.B.; Vibulsresth, S.; Charrupat, T. An integrated comparative approach to mangrove vegetation mapping using advanced remote sensing and GIS technologies: Preliminary results. Hydrologica 1995, 295, 285–295. [Google Scholar]
- Blasco, F.; Gauquelin, T.; Rasolofoharinoro, M.; Denis, J.; Aizpuru, M.; Caldairou, V. Recent advances in mangrove studies using remote sensing data. Mar. Freshwater Res. 1998, 49, 287–296. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F. The use of remote sensing and GIS in the sustainable management of tropical coastal ecosystems. Environ. Develop. Sustain. 2002, 4, 93–112. [Google Scholar] [CrossRef]
- Hernández Cornejo, R.; Koedam, N.; Ruiz Luna, A.; Troell, M.; Dahdouh-Guebas, F. Remote sensing and ethnobotanical assessment of the mangrove forest changes in the Navachiste-San Ignacio-Macapule Lagoon Complex, Sinaloa, Mexico. Ecol. Soc. 2005, 10, art. 16. [Google Scholar]
- Manson, F.J.; Loneragan, N.R.; McLeod, I.M.; Kenyon, R.A. Assessing techniques for estimating the extent of mangroves: topographic maps; aerial photographs and Landsat TM images. Mar. Freshwater Res. 2001, 52, 787–792. [Google Scholar] [CrossRef]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J. Environ. Manag. 1999, 55, 157–166. [Google Scholar] [CrossRef]
- Wang, L.; Sousa, W.P. Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance. Int. J. Remote Sens. 2009, 30, 1267–1281. [Google Scholar] [CrossRef]
- Giri, C.P.; Kratzschmar, E.; Ofren, R.S.; Pradhan, D.; Shrestha, S. Assessing Land Use/Land Cover Dynamics in Two Identified “Hot Spot” Areas: Oudomxay Province of Lao P.D.R. and Mekong Delta of Vietnam. In Proceeding of The 17th Asian Conference on Remote Sensing, Colombo, Sri Lanka, 4–8 November 1996.
- Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D. A review of remote sensing for the assessment and management of tropical coastal resources. Coast. Manage. 1996, 24, 1–40. [Google Scholar] [CrossRef]
- Malthus, T.J.; Mumby, P.J. Remote sensing of the coastal zone: An overview and priorities for future research. Int. J. Remote Sens. 2003, 24, 2805–2815. [Google Scholar] [CrossRef]
- Rasolofoharinoro, M.; Blasco, F.; Bellan, M.F.; Aizpuru, M.; Gauquelin, T.; Denis, J. A remote sensing based methodology for mangrove studies in Madagascar. Int. J. Remote Sens. 1998, 19, 1873–1886. [Google Scholar] [CrossRef]
- Selvam, V.; Ravichandran, K.K.; Gnanappazham, L.; Navamuniyammal, M. Assessment of community-based restoration of Pichavaram mangrove wetland using remote sensing data. Curr. Sci. 2003, 85, 794–798. [Google Scholar]
- Tong, P.H.; Auda, Y.; Populus, J.; Aizpura, M.; Habshi, A.A.; Blasco, F. Assessment from space of mangroves evolution in the Mekong Delta; in relation to extensive shrimp farming. Int. J. Remote Sens. 2004, 25, 4795–4812. [Google Scholar] [CrossRef]
- Vaiphasa, C.; Ongsomwang, S.; Vaiphasa, T.; Skidmore, A.K. Tropical mangrove species discrimination using hyperspectral data: A laboratory study. Estuar. Coast. Shelf Sci. 2005, 65, 371–379. [Google Scholar] [CrossRef]
- Verheyden, A.; Dahdouh-Guebas, F.; Thomaes, K.; De Genst, W.; Hettiarachchi, S.; Koedam, N. High-resolution vegetation data for mangrove research as obtained from aerial photography. Environ. Develop. Sustain. 2002, 4, 113–133. [Google Scholar] [CrossRef]
- Wang, L.; Sousa, W.P.; Gong, P.; Biging, G.S. Comparison of IKONOS and QuickBird imagery for mapping mangrove species on the Caribbean coast of Panama. Remote Sens. Environ. 2004, 91, 432–440. [Google Scholar] [CrossRef]
- Spalding, M. The global distribution and status of mangrove ecosystems. Int. NewsLett. Coast. Manage. 1997, 1, 20–21. [Google Scholar]
- Kathiresan, K.; Bingham, B. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar]
- Lugo, A.E.; Snedaker, S.C. The ecology of mangroves. Ann. Rev. Ecol. Systemat. 1974, 5, 39–64. [Google Scholar] [CrossRef]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Melbourne, VIC, Australia, 1986. [Google Scholar]
- Alongi, D.M. Present state and future of world’s mangrove forest. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Blasco, F.; Saenger, P.; Janodet, E. Mangroves as indicators of coastal change. Catena 1996, 27, 167–178. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience; protection from tsunamis; and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Fromard, F.; Vega, C.; Proisy, C. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Marine Geology 2004, 208, 265–280. [Google Scholar] [CrossRef]
- Barbier, E.B. Natural barriers to natural disasters: Replanting mangroves after tsunami. Front. Ecol. Environ. 2006, 4, 124–131. [Google Scholar] [CrossRef]
- Cochard, R.; Ranamukhaarachchi, S.L.; Shivakoti, G.P.; Shipin, O.V.; Edwards, P.J.; Seeland, K.T. The 2004 tsunami in Aceh and Southern Thailand: A review on coastal ecosystems; wave hazards and vulnerability. Perspect. Plant Ecol. Evol. Systemat. 2008, 10, 3–40. [Google Scholar] [CrossRef]
- Danielsen, F.; Sørensen, M.K.; Olwig, M.F.; Selvam, V.; Parish, F.; Burgess, N.D.; Hiraishi, T.; Karunagaran, V.; Rasmussen, M.S.; Hansen, L.B.; Quarto, A.; Suryadiputra, N. The Asian tsunami: A protective role for coastal vegetation. Science 2005, 310, 643. [Google Scholar] [CrossRef] [PubMed]
- Kathiresan, K.; Rajendran, N. Coastal mangrove forests mitigated tsunami. Estuar. Coast. Shelf Sci. 2005, 65, 601–606. [Google Scholar] [CrossRef]
- Kerr, A.M.; Baird, A.H.; Campbell, S.J. Comments on “Coastal mangrove forests mitigated tsunami” by Kathiresan K. and Rajendran N. Estuar. Coast. Shelf Sci. 2005, 65, 601-606. Estuar. Coast. Shelf Sci. 2006, 67, 539–541. [Google Scholar]
- Othman, M.A. Value of mangroves in coastal protection. Hydrobiologia 1994, 285, 277–282. [Google Scholar] [CrossRef]
- Vermaat, J.E.; Thampanya, U. Mangroves mitigate tsunami damage: A further response. Estuar. Coast. Shelf Sci. 2006, 69, 1–3. [Google Scholar] [CrossRef]
- Blasco, F.; Bellan, M.F.; Chaudhury, M.U. Estimating the Extent of Floods in Bangladesh—Using SPOT Data. Remote Sens. Environ. 1992, 39, 167–178. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; Jayatissa, L.P.; Di Nitto, D.; Bosire, J.O.; Lo Seen, D.; Koedam, N. How effective were mangroves as a defence against the recent tsunami? Curr. Biol. 2005, 15, R443–R447. [Google Scholar] [CrossRef] [PubMed]
- Mazda, Y.; Magi, M.; Kogo, M.; Hong, P.N. Mangroves as coastal protection from waves in the Tong King delta, Vietnam. Mangroves Salt Marshes 1997, 1, 127–135. [Google Scholar] [CrossRef]
- Mazda, Y.; Magi, M.; Nanao, H.; Kogo, M.; Toyohiko, M.; Kanazawa, N.; Kobashi, D. Coastal erosion due to long-term human impact on mangrove forests. Wetlands Ecol. Manage. 2002, 10, 1–9. [Google Scholar] [CrossRef]
- Manson, F.J.; Loneragan, N.R.; Skilleter, G.A.; Phinn, S.R. An evaluation of the evidence for linkages between mangroves and fisheries: A synthesis of the literature and identification of research directions. In Oceanography and Marine Biology: An Annual Review; Gibson, R.N., Atkinson, R.J.A., Gordon, J.D.M., Eds.; Taylor and Francis: London, UK, 2005; Volume 43, pp. 485–515. [Google Scholar]
- Mumby, P.J.; Edwards, A.J.; Arias-Gonzáles, E.; Lindeman, K.C.; Blackwell, P.G.; Gall, A.; Gorczynska, M.I.; Harborne, A.R.; Pescod, C.L.; Renken, H.; Wabnitz, C.C.; Llewellyn, G. Mangrove enhance the biomass of coral reef fish communities in the Caribbean. Nature 2004, 427, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Nagelkerken, I.; Blaber, S.J.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.-O.; Pawlik, J.; Penrose, H.M.; Sasekumar, A.; Somerfield, P.J. The habit function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 2008, 89, 155–185. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Cannicci, S.; Burrows, D.; Fratini, S.; Smith, T.J.; Offenberg, J.; Dahdouh-Guebas, F. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review. Aquat. Bot. 2008, 89, 186–200. [Google Scholar] [CrossRef]
- Primavera, J.H. Socio-economic impacts of shrimp culture. Aquac. Res. 1997, 28, 815–827. [Google Scholar] [CrossRef]
- Marshall, N. Mangrove conservation in relation to overall environmental considerations. Hydrobiologia 1994, 285, 303–309. [Google Scholar] [CrossRef]
- Walters, B.B.; Rönnbäck, P.; Kovacs, J.M.; Crona, B.; Hussain, S.A.; Badola, R.; Primavera, J.H.; Barbier, E.; Dahdouh-Guebas, F. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquat. Bot. 2008, 89, 220–236. [Google Scholar] [CrossRef]
- Boullion, S.; Borges, A.V.; Castañeda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V.H.; Smith, T.J., III; Twilley, R.R. Mangrove production and carbon sinks: A revision of global budget estimates. Glob. Biochem. Cycles 2008, 22, GB 2013, 1-12. [Google Scholar]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef]
- Bandaranayake, W.M. Traditional and medicinal uses of mangroves. Mangroves Salt Marshes 1998, 2, 133–148. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Li, W. Applying Value Transfer Method for Eco-Service Valuation in China. J. Resour. Ecol. 2010, 1, 51–59. [Google Scholar]
- UNEP-WCMC. In the Front Line: Shoreline Protection and Other Ecosystem Services from Mangroves and Coral Reefs; UNEP-WCMC: Cambridge, UK, 2006; Available online: http://new.unep.org/pdf/infrontline_06.pdf (accessed on 30 October 2009).
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; Raskin, R.G.; Sutton, P.; van den Belt, M. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Sathirathai, S.; Barbier, E.B. Valuing mangrove conservation in southern Thailand. Contemp. Economic Policy 2001, 19, 109–122. [Google Scholar] [CrossRef]
- Primavera, J.H. Mangroves, fishponds, and the quest for sustainability. Science 2005, 310, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Primavera, J.H. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manage. 2006, 49, 531–545. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- EJF. Farming The Sea, Costing The Earth: Why We Must Green The Blue Revolution; Environmental Justice Foundation: London, UK, 2004. Available online: http://www.ejfoundation.org/pdf/farming_the_sea_costing_the_earth.pdf (accessed on 30 October 2009).
- Lebel, L.; Tri, N.H.; Saengnoree, A.; Pasong, S.; Buatama, U.; Thoa, L.K. Industrial transformation and shrimp aquaculture in Thaland and Vietnam: Pathways to ecological, social, and economic sustainability? Ambio 2002, 31, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Farnsworth, E.J.; Ellison, A.M. The global conservation status of mangroves. Ambio 1997, 26, 328–334. [Google Scholar]
- Primavera, J.H. Development and conservation of Philippine mangroves: Institutional issues. Ecol. Economics 2000, 35, 91–106. [Google Scholar] [CrossRef]
- Chan, H.T.; Baba, S. Manual on Guidelines for Rehabilitation of Coastal Forests Damaged by Natural Hazards in the Asia-Pacific Region; International Society for Mangrove Ecosystems (ISME) and International Tropical Timber Organization (ITTO): Okinawa, Japan, 2009; p. 66. [Google Scholar]
- Field, C.D. Impact of expected climate change on mangroves. Hydrobiologia 1995, 295, 75–81. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Jungblut, V.; Van Lavieren, H.; Wilson, L.; Areki, F.; Brighouse, G.; Bungitak, J.; Dus, E.; Henry, M.; et al. Adapting to Pacific Island mangrove responses to sea level rise and climate change. Climate Res. 2006, 32, 161–176. [Google Scholar] [CrossRef]
- Krauss, K.W.; Lovelock, C.E.; Mckee, K.L.; Lopez-Hoffman, L.; Ewe, S.M.L.; Sousa, W.P. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 2008, 89, 105–127. [Google Scholar] [CrossRef]
- Bosire, J.O.; Dahdouh-Guebas, F.; Walton, M.; Crona, B.I.; Lewis III, R.R.; Field, C.; Kairo, J.G.; Koedam, N. Functionality of restored mangroves: A review. Aquat. Bot. 2008, 89, 251–259. [Google Scholar] [CrossRef]
- Thu, P.M.; Populus, J. Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam. Estuar. Coast. Shelf Sci. 2007, 71, 98–109. [Google Scholar] [CrossRef]
- Field, C.D. Mangrove rehabilitation: Choice and necessity. Hydrobiologia 1999, 413, 47–52. [Google Scholar] [CrossRef]
- Kairo, J.G.; Dahdouh-Guebas, F.; Bosire, J.; Koedam, N. Restoration and management of mangrove systems—A lesson for and from the East African region. South Afr. J. Bot. 2001, 67, 383–389. [Google Scholar] [CrossRef]
- Ramsey, E.W., III; Jensen, J.R. Remote sensing of mangrove wetlands: Relating canopy spectra to site-specific data. Photogramm. Eng. Remote Sensing 1996, 62, 939–948. [Google Scholar]
- Meza Diaz, B.; Blackburn, G.A. Remote sensing of mangrove biophysical properties: Evidence from a laboratory simulation of the possible effects of background variation on spectral vegetation indices. Int. J. Remote Sens. 2003, 24, 53–73. [Google Scholar] [CrossRef]
- Wang, L.; Silván-Cárdenas, L.; Sousa, W.P. Neural network classification of mangrove species from multi-seasonal Ikonos imagery. Photogramm. Eng. Remote Sensing 2008, 74, 921–927. [Google Scholar] [CrossRef]
- Jones, J.; Dale, P.E.; Chandica, A.L.; Breitfuss, M.J. Changes in distribution of grey mangrove Avicennia marina (Forsk.) using large scale aerial color infrared photographs: Are changes related to habitat modification for mosquito control? Estuar. Coast. Shelf Sci. 2004, 61, 45–54. [Google Scholar] [CrossRef]
- Gao, J.A. Hybrid method toward accurate mapping of mangroves in a marginal habitat from SPOT Multispectral data. Int. J. Remote Sens. 1998, 19, 1887–1899. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The Use of Imaging Radars for Ecological Applications—A Review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Mougin, E.; Proisy, C.; Marty, G.; Fromard, F.; Puig, H.; Betoulle, J.L.; Rudant, J.P. Multifrequency and multipolarization radar backscattering from mangrove forests. IEEE Trans. Geosci. Remote Sens. 1999, 37, 94–102. [Google Scholar] [CrossRef]
- Proisy, C.; Mougin, E.; Fromard, F.; Karam, M.A. Interpretation of polarimetric radar signatures of mangrove forests. Remote Sens. Environ. 2000, 71, 56–66. [Google Scholar] [CrossRef]
- Proisy, C.; Mougin, E.; Fromard, F.; Trichon, V.; Karam, M.A. On the influence of canopy structure on the radar backscattering mangrove forests. Int. J. Remote Sens. 2002, 23, 4197–4210. [Google Scholar] [CrossRef]
- Wang, Y.; Imhoff, M.L. Simulated and observed L-HH radar backscatter from tropical mangrove forests. Int. J. Remote Sens. 1993, 14, 2819–2828. [Google Scholar] [CrossRef]
- Proisy, C.; Mitchell, A.; Lucas, R.; Fromard, F.; Mougin, E. Estimation of Mangrove Biomass using Multifrequency Radar Data. Application to Mangroves of French Guiana and Northern Australia. In Proceedings of the Mangrove 2003 Conference, Salvador, Bahia, Brazil, 20–24 May 2003.
- Lucas, R.M.; Ellison, J.C.; Mitchell, A.; Donnelly, B.; Finlayson, M.; Milne, A.K. Use of stereo aerial photography for quantifying changes in the extent and height of mangroves in tropical Australia. Wetlands Ecol. Manage. 2002, 10, 161–175. [Google Scholar] [CrossRef]
- Lucas, R.M.; Mitchell, A.L.; Rosenqvist, A.; Proisy, C.; Melius, A.; Ticehurst, C. The potential of L-band SAR for quantifying mangrove characteristics and change: Case studies from the tropics. Aquat. Conserv. 2007, 17, 245–264. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Vandenberg, C.V.; Wang, J.; Flores-Verdugo, F. The Use of multipolarized spaceborne SAR backscatter for monitoring the health of a degraded mangrove forest. J. Coast. Res. 2008, 24, 248–254. [Google Scholar] [CrossRef]
- Green, E.P.; Clark, C.D.; Mumby, P.J.; Edwards, A.J.; Ellis, A.C. Remote sensing techniques for mangrove mapping. Int. J. Remote Sens. 1998, 19, 935–956. [Google Scholar] [CrossRef]
- Dale, P.E.; Chandica, A.L.; Evans, M. Using image subtraction and classification to evaluate change in sub-tropical intertidal wetlands. Int. J. Remote Sens. 1996, 17, 703–719. [Google Scholar] [CrossRef]
- Jones, J.; Dale, P.E.; Chandica, A.L.; Breitfuss, M.J. Changes in distribution of grey mangrove Avicennia marina (Forsk.) unsing large scale aerial color infrared photographs: Are changes related to habitat modification for mosquito control? Estuar. Coast. Shelf Sci. 2004, 61, 45–54. [Google Scholar] [CrossRef]
- Everitt, J.H.; Escobar, D.E.; Judd, F.W. Evaluation of airborne video imagery for distinguishing black mangrove (Avicennia germinans) on the lower Texas Gulf Coast. J. Coast. Res. 1991, 7, 1169–1173. [Google Scholar]
- Everitt, J.H.; Judd, F.W. Using remote sensing techniques to distinguish and monitor black mangrove (Avicennia germinans). J. Coast. Res. 1989, 5, 737–745. [Google Scholar]
- Everitt, J.H.; Judd, F.W.; Escobar, D.E.; Davis, M.R. Integration of remote sensing and spatial information technologies for mapping black mangrove on the Texas Gulf Coast. J. Coast. Res. 1996, 12, 64–69. [Google Scholar]
- Everitt, J.H.; Yang, C.; Summy, K.R.; Judd, F.W.; Davis, M.R. Evaluation of color-infrared photography and digital imagery of map black mangrove on Texas Gulf Coast. J. Coast. Res. 2007, 23, 230–235. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; Zetterström, T.; Rönnbäck, P.; Troell, M.; Wickramasinghe, A.; Koedam, N. Recent changes in land-use in the Pambala-Chilaw Lagoon complex (Sri Lanka) investigated using remote sensing and GIS: Conservation of mangroves vs. development of shrimp farming. Environ. Develop. Sustain. 2002, 4, 185–200. [Google Scholar] [CrossRef]
- Sulong, I.; Mohd-Lokman, H.; Mohd-Tarmizi, K.; Ismail, A. Mangrove mapping using Landsat imagery and aerial photographs: Kemaman District; Terengganu; Malaysia. Environ. Develop. Sustain. 2002, 4, 135–152. [Google Scholar] [CrossRef]
- Benfield, S.L.; Guzman, H.M.; Mair, J.M. Temporal mangrove dynamics in relation to coastal developmentin Pacific Panama. J. Environ. Manage. 2005, 76, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Dahdouh-Guebas, F.; Van Pottelbergh, I.; Kairo, J.G.; Cannicci, S.; Koedam, N. Human-impacted mangroves in Gazi (Kenya): predicting future vegetation based on retrospective remote sensing; social surveys; and distribution of trees. Mar. Ecol. Progr. Ser. 2004, 272, 77–92. [Google Scholar] [CrossRef]
- Calzadilla Pérez, A.; Damen, M.C.J.; Geneletti, D.; Hobma, T.W. Monitoring a recent delta formation in a tropical coastal wetland using remote sensing and GIS. Case study: Guapo River delta, Laguna de Tacarigua, Venezuela. Environ. Develop. Sustain. 2002, 4, 201–219. [Google Scholar] [CrossRef]
- Kairo, J.G.; Kivyatu, B.; Koedam, N. Application of remote sensing and GIS in the management of mangrove forests within and adjacent to Kiunga Marine Protected Area, Lamu, Kenya. Environ. Develop. Sustain. 2002, 4, 153–166. [Google Scholar] [CrossRef]
- Lucas, R.M.; Mitchell, A.; Proisy, C. The Use of Polarimetric AIRSAR (POLSAR) Data for Characterising Mangrove Communities. In Proceedings of AIRSAR Earth Science and Application Workshop, Pasadena, CA, USA, 4–6 March 2002.
- Binh, T.; Vromant, N.; Hung, N.T.; Hens, L.; Boon, E.K. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau Peninsula, Vietnam. Environ. Develop. Sustain. 2005, 7, 519–536. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Almeida-Guerra, P. Use of SPOT images as a tool for coastal zone management and monitoring of environmental impacts in the coastal zone. Opt. Eng. 2002, 41, 2144–2151. [Google Scholar] [CrossRef]
- Béland, M.; Goïta, K.; Bonn, F.; Pham, T.T. Assessment of land-cover changes related to shrimp aquaculture using remote sensing data: A case in the Giao Thury District, Vietnam. Int. J. Remote Sens. 2006, 27, 1491–1510. [Google Scholar] [CrossRef]
- Berlanga-Robles, C.A.; Ruiz-Luna, A. Land use mapping and change detection in the coastal zone of northwest Mexico using remote sensing techniques. J. Coast. Res. 2002, 18, 514–522. [Google Scholar]
- Chatterjee, B.; Prowal, M.C.; Hussin, Y.A. Assessment of Tsunami Damage to Mangrove in India Using Remote Sensing and GIS. In Proceedings of XXI ISPRS Congress, Beijing, China, 3–11 July 2008; In IAPRS. ISPRS: Vienna, Austria, 2008; Volume 37. Part B8. [Google Scholar]
- Conchedda, G.; Durieux, L.; Mayaux, P. An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS J. Photogramm. Remote Sens. 2008, 63, 578–589. [Google Scholar] [CrossRef]
- Giri, C.; Muhlhausen, J. Mangrove forest distribution and dynamics in Madagascar (1975–2005). Sensors 2008, 8, 2104–2117. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Wang, J.; Blanco-Correa, M. Mapping disturbances in a mangrove forest using multi-date Landsat TM imagery. Environ. Manage. 2001, 27, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Muttitanon, W.; Tripathi, N.K. Land use/land cover changes in coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. Int. J. Remote Sens. 2005, 26, 2311–2323. [Google Scholar] [CrossRef]
- Ramasubramanian, R.; Gnanappazham, L.; Ravishankar, T.; Navamuniyammal, M. Mangroves of Godavari—Analysis through remote sensing approach. Wetlands Ecol. Manage. 2006, 14, 29–37. [Google Scholar] [CrossRef]
- Ruiz-Luna, A.; Berlanga-Robles, C.A. Modifications in coverage patterns and land use around the Huizache-Caimanero lagoon system, Sinaloa, Mexico: A multi-temporal analysis using Landsat images. Estuar. Coast. Shelf Sci. 1999, 49, 37–44. [Google Scholar] [CrossRef]
- Singh, I.J.; Singh, S.K.; Kushwaha, S.P.; Ashutosh, S.; Singh, R.K. Assessment and monitoring of estuarine mangrove forests of Goa using satellite remote sensing. J. Ind. Soc. Remote Sens. 2004, 32, 167–174. [Google Scholar] [CrossRef]
- Gang, P.O.; Agatsiva, J.L. The current status of mangroves along the Kenyan coast: A case study of Mida Creek mangroves based on remote sensing. Hydrobiologia 1992, 247, 29–36. [Google Scholar] [CrossRef]
- Wang, Y.; Bonynge, G.; Nugranad, J.; Traber, M.; Ngusaru, A.; Tobey, J.; Hale, L.; Bowen, R.; Makota, V. Remote sensing of mangrove change along the Tanzania Coast. Marine Geodesy 2003, 26, 35–48. [Google Scholar] [CrossRef]
- Blasco, F.; Aizpuru, M. Mangroves along the coastal stretch of the Bay of Bengal: Present status. Ind. J. Mar. Sci. 2002, 31, 9–20. [Google Scholar]
- Sirikulchayanon, P.; Sun, W.; Oyana, T.J. Assessing the impact of the 2004 tsunami on magroves using remote sensing and GIS techniques. Int. J. Remote Sens. 2008, 29, 3553–3576. [Google Scholar] [CrossRef]
- Prasad, P.R.; Reddy, C.S.; Rajan, K.S.; Raza, S.H.; Dutt, C.B. Assessment of tsunami and anthropogenic impacts on the forest of the North Andaman Islands, India. Int. J. Remote Sens. 2009, 30, 1235–1249. [Google Scholar] [CrossRef]
- Vasconcelos, M.J.; Mussá Biai, J.C.; Araújo, A.; Diniz, M.A. Land cover change in two protected areas of Guinea-Bissau (1956–1998). Appl. Geogr. 2002, 22, 139–156. [Google Scholar] [CrossRef]
- Saito, H.; Bellan, M.F.; Al-Habshi, A.; Aizpuru, M.; Blasco, F. Mangrove research and coastal ecosystem studies with SPOT-4 HRVIR and TERRA ASTER in Arabian Gulf. Int. J. Remote Sens. 2003, 24, 4073–4092. [Google Scholar] [CrossRef]
- Gao, J.A. comparative study on spatial and spectral resolutions of satellite data in mapping mangrove forests. Int. J. Remote Sens. 1999, 20, 2823–2833. [Google Scholar] [CrossRef]
- Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D.; Ellis, A.C. Estimating leaf area index of mangroves from satellite data. Aquat. Bot. 1997, 58, 11–19. [Google Scholar] [CrossRef]
- Lee, T.-M.; Yeh, H.-C. Applying remote sensing techniques to monitor shifting wetland vegetation: A case study of Danshui River estuary mangrove communities, Taiwan. Ecol. Eng. 2009, 35, 487–496. [Google Scholar] [CrossRef]
- Jensen, J.R.; Lin, H.; Yang, X.; Ramsey III, E.W.; Davis, B.A.; Thoemke, C.W. The measurement of mangrove characteristics in southwest Florida using SPOT multispectral data. Geocarto Int. 1991, 6, 13–21. [Google Scholar] [CrossRef]
- Araújo, R.J.; Jaramillo, J.C.; Snedaker, S.C. LAI and leaf size differences in two red mangrove forest types in South Florida. Bull. Mar. Sci. 1997, 60, 643–647. [Google Scholar]
- Myint, S.W.; Giri, C.P.; Wang, L.; Zhu, Z.; Gillette, S.C. Identifiying mangrove species and their surrounding land use and land cover classes using an object-oriented approach with a lacunarity spatial measure. GISci. Remote Sens. 2008, 45, 188–208. [Google Scholar] [CrossRef]
- Giri, C.P.; Delsol, J.-P. Mangrove forest cover mapping in Phangnga Bay, Thailand, Using SPOT HRV and JERS-1 data in conjunction with GIS. In Proceedings of International Seminar on Remote Sensing for Coastal Zone and Coral Reef Applications, Bangkok, Thailand, 25 October–1 November 1993.
- Rodriguez, W.; Feller, I.C. Mangrove landscape characterization and change in Twin Cays, Belize using aerial photography and IKONOS satellite data. Atoll Res. Bull. 2004, 513, 1–22. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; van Hiel, E.; Chan, J.C.-W.; Jayatissa, L.P.; Koedam, N. Qualitative distinction of congeneric and introgressive mangrove species in mixed patchy forest assemblages using high spatial resolution remotely sensed imagery (IKONOS). Syst. Biodiver. 2005, 2, 113–119. [Google Scholar] [CrossRef]
- Neukermans, G.; Dahdouh-Guebas, F.; Kairo, J.G.; Koedam, N. Mangrove species and stand mapping in Gazi Bay (Kenya) using Quickbird satellite imagery. J. Spatial Sci. 2008, 53, 75–86. [Google Scholar] [CrossRef]
- Saleh, M.A. Mangrove vegetation on Abu Minqar island of the Red Sea. Int. J. Remote Sens. 2007, 28, 5191–5194. [Google Scholar] [CrossRef]
- Wang, L.; Sousa, W.P.; Gong, P. Integration of object-based and pixel-based classification for mangrove mapping with IKONOS imagery. Int. J. Remote Sens. 2004, 24, 5655–5668. [Google Scholar] [CrossRef]
- Proisy, C.; Couteron, P.; Fromard, F. Predicting and mapping mangrove biomass from canopy grain analoysis using Fourier-based tectural ordination of IKONOS images. Remote Sens. Environ. 2007, 109, 379–392. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Flores-Verdugo, F.; Wang, J.; Aspden, L.P. Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data. Aquat. Bot. 2004, 80, 13–22. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Wang, J.; Flores-Verdugo, F. Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuar. Coast. Shelf Sci. 2005, 62, 377–384. [Google Scholar] [CrossRef]
- Olwig, M.F.; Sørensen, M.K.; Rasmussen, M.S.; Danielsen, F.; Selvam, V.; Hansen, L.B.; Nyborg, L.; Vestergaard, K.B.; Parish, F.; Karunagaran, V.M. Using remote sensing to assess the protective role of coastal woody vegetation against tsunami waves. Int. J. Remote Sens. 2007, 28, 3153–3169. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Wai, N.S.; Shin, A.L.; Rasib, A.W. Per-pixel and sub-pixel classifications of high-resolution satellite data for mangrove species mapping. Appl. GIS 2007, 3, 1–22. [Google Scholar]
- Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.A.; Pavri, B.E.; Chovit, C.J.; Solis, M.; Olah, M.R.; Williams, O. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 1998, 65, 227–248. [Google Scholar] [CrossRef]
- Ong, C.C.; Cudahy, T.J.; Caccetta, M.S.; Piggott, M.S. Deriving quantitative dust measurements related to iron ore handling from airborne hyperspectral data. Mining Tech. Trans. Inst. Min. Metall. A 2003, 112, 158–163. [Google Scholar] [CrossRef]
- Dale, P.E.; Knight, J.; Ritchie, S.A.; Kay, B.H. A practical tool to identify water bodies with potential for mosquito habitat under mangrove canopy: Large-scale airborne scanning in the thermal band 8–13 µm. Wetlands Ecol. Manage. 2005, 13, 389–394. [Google Scholar] [CrossRef]
- Hirano, A.; Madden, M.; Welch, R. Hyperspectral image data for mapping wetland vegetation. Wetland 2003, 23, 436–448. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Fletcher, R.S.; Jensen, R.R.; Mausel, P.W. Evaluating AISA+ hyperspectral imagery for mapping black mangrove along the South Texas Gulf Coast. Photogramm. Eng. Remote Sensing 2009, 75, 425–435. [Google Scholar] [CrossRef]
- Demuro, M.; Chisholm, L. Assessment of Hyperion for Characterizing Mangrove Communities. In Proceedings of the 12th JPL AVIRIS Airborne Earth Science Workshop, Pasadena, CA, USA, 24–28 February 2003.
- Rao, B.R.; Dwivedi, R.S.; Kushwaha, S.P.; Bhattacharya, S.N.; Anand, J.B.; Dasgupta, S. Monitoring the spatial extent of coastal wetland using ERS-1 SAR data. Int. J. Remote Sens. 1999, 20, 2509–2517. [Google Scholar] [CrossRef]
- Lucas, R.M.; Carreiras, J.; Proisy, C.; Bunting, P. ALOS PALSAR Applications in the Tropics and Subtropics: Characterisation; Mapping and Detecting Change in Forests and Coastal Wetlands. In Proceedings of Second ALOS PI Symposium, Rhodes, Greece, 3–7 November 2008; Available online: http://amapmed.free.fr/AMAPMED_fichiers/Publications_fichiers/Lucas08.pdf (accessed on 30 October 2009).
- Simard, M.; Zhang, K.Q.; Rivera-Monroy, V.H.; Ross, M.S.; Ruiz, P.L.; Castañeda-Moya, E.; Twilley, R.R.; Rodriguez, E. Mapping height and biomass of mangrove forests in everglades national park with SRTM elevation data. Photogramm. Eng. Remote Sensing 2006, 72, 299–311. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Vandenberg, C.V.; Flores-Verdugo, F. Assessing fine beam RADARSAT-1 backscatter from a white mangrove (Laguncularia racemosa (Gaertner)) canopy. Wetlands Ecol. Manage. 2006, 14, 401–408. [Google Scholar] [CrossRef]
- Pasqualini, V.; Iltis, J.; Dessay, N.; Lointier, M.; Guelorget, O.; Polidori, L. Mangrove mapping in North-Western Madagascar using SPOT-XS and SIR-C radar data. Hydrobiologica 1999, 413, 127–133. [Google Scholar] [CrossRef]
- Dwivedi, R.S.; Rao, B.R.; Bhattacharya, S. Mapping wetlands of the Sundaban Delta and its environs using ERS-1 SAR data. Int. J. Remote Sens. 1999, 20, 2235–2247. [Google Scholar] [CrossRef]
- Shanmugam, P.; Manjunath, A.S.; Ahn, Y.H.; Sanjeevi, S.; Ryu, J.H. Application of mulitsensor fusion techniques in remote sensing of coastal mangrove wetlands. Int. J. Geoinf. 2005, 1, 1–17. [Google Scholar]
- Souza Filho, P.W.; Paradella, W.R. Recognition of the main geobotanical features along the Braganca mangrove coast (Brazilian Amazon Region) from Landsat TM and RADARSAT-1 data. Wetlands 2002, 10, 123–132. [Google Scholar]
- Souza Filho, P.W.; Paradella, W.R. Use of RADARSAT-1 fine mode and Landsat-5 TM selective principal component analysis for geomorphological mapping in a macrotidal mangrove coast in the Amazon Region. Can. J. Remote Sens. 2005, 31, 214–224. [Google Scholar] [CrossRef]
- Simard, M.; De Grandi, G.; Saatchi, S.; Mayaux, P. Mapping tropical coastal vegetation using JERS-1 and ERS-1 radar data with a decision tree classifier. Int. J. Remote Sens. 2002, 23, 1461–1474. [Google Scholar] [CrossRef]
- Hess, L.L.; Melack, J.M.; Simonett, D.S. Radar detection of flooding beneath the forest canopy: A review. Int. J. Remote Sens. 1990, 11, 1313–1325. [Google Scholar] [CrossRef]
- MacKay, H.; Finlayson, C.M.; Fernández-Prieto, D.; Davidson, N.; Pritchard, D.; Rebelo, L.-M. The role of Earth Observation (EO) technologies in supporting implementation of the Ramsar Convention on Wetlands. J. Environ. Manage. 2009, 90, 2234–2242. [Google Scholar] [CrossRef] [PubMed]
- Souza Filho, P.W.; Paradella, W.R. Use of RADARSAT-1 fine mode and Landsat-5 TM selective principal component analysis for geomorphological mapping in a macrotidal mangrove coast in the Amazon Region. Can. J. Remote Sens. 2005, 31, 214–224. [Google Scholar] [CrossRef]
- de Groot, R. Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landscape Urban Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- de Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions; goods and services. Ecol. Economics 2002, 41, 393–408. [Google Scholar] [CrossRef]
- Pearce, D. Economic Values and the Natural World; Earthscan Publications Limited: London, UK, 1993; p. 129. [Google Scholar]
- Turner, D.P.; Koerper, G.K.; Gucinski, H.; Peterson, C.; Dixon, R.K. Monitoring global change: Comparison of forest cover estimates using remote sensing and inventory approaches. Environ. Monitor. Assess. 1993, 26, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Bingham, G.; Bishop, R.; Brody, M.; Bromley, B.; Clark, E.; Cooper, W.; Costanza, R.; Hale, T.; Hayden, G.; Kellert, S.; Norgaard, R.; Norton, B.; Payne, J.; Russell, C.; Suter, G. Issues in ecosystem valuation: improving information for decision making. Ecol. Economics 1995, 14, 73–90. [Google Scholar] [CrossRef]
- Daily, G.C. Introduction: What are ecosystem services. In Nature’s Services: Societal Dependence on Natural Ecosystems; Daily, G.C., Ed.; Island Press: Washington, DC, USA, 1997; pp. 1–10. [Google Scholar]
- Limburg, K.E.; Folke, C. The ecology of ecosystem services: Introduction to the special issue. Ecol. Economics 1999, 29, 179–182. [Google Scholar] [CrossRef]
- Wilson, M.A.; Carpenter, S.R. Economic valuation of freshwater ecosystem services in the United States, 1977–1997. Ecol. Appl. 1999, 9, 772–783. [Google Scholar]
- Daily, G.C.; Söderqvist, T.; Aniyar, S.; Arrow, K.; Dasgupta, P.; Ehrlich, P.R.; Folke, C.; Jansson, A.; Jansson, B.; Kautsky, N.; Levin, S.; Lubchenco, J.; Mäler, K.; Simpson, D.; Starrett, D.; Tilman, D.; Walker, B. The value of nature and the nature of value. Science 2000, 289, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Tallis, H.; Kareiva, P.; Chang, M. An ecosystem services framework to support both practical conservation and economic development. Proc. Nat. Acad. Sci. USA 2008, 105, 9457–9466. [Google Scholar] [CrossRef] [PubMed]
- Lal, P.N. Conservation or Conversion of Mangroves in Fiji: An Ecological Economic Analysis; Occasional Paper No. 11; East-West Center, Environment and Policy Institute: Honolulu, HI, USA, 1990; p. 108. [Google Scholar]
- Ruitenbeck, J. The rainforest supply price: A tool for evaluating rainforest conservation expenditures. Ecol. Economics 1992, 6, 57–78. [Google Scholar] [CrossRef]
- Barbier, E.B. Valuing environmental functions: tropical wetlands. Land Economics 1994, 70, 155–173. [Google Scholar] [CrossRef]
- Sathirathai, S. Economic Valuation of Mangroves and the Roles of Local Communities in the Conservation of the Resources: Case Study of Surat Thani, South of Thailand; EEPSEA Research Report Series; Economy and Environment Program for Southeast Asia (EEPSEA): Singapore, 1998. [Google Scholar]
- Sathirathai, S.; Barbier, B. Valuing mangrove conservation in southern Thailand. Contemp. Economic Policy 2001, 19, 109–122. [Google Scholar] [CrossRef]
- Clough, B.F.; Ong, J.E.; Gong, W.K. Estimating leaf area index and photosynthetic production in canopies of the mangrove Rhizophora apiculata. Mar. Ecol. Progr. Ser. 1997, 159, 285–292. [Google Scholar] [CrossRef]
- Jusoff, K. Individual mangrove species identification and mapping in Port Klang using airborne hyperspectral imaging. J. Sustain. Sci. Manage. 2006, 1, 27–36. [Google Scholar]
- Chaudhury, M.U. Digital Analysis of Remote Sensing Data for Monitoring the Ecological Status of the Mangrove Forests of Sunderbans in Bangladesh. In Proceedings of the 23rd International Symposium on Remote Sensing of the Environmen, Bangkok, Thailand, 18–25 April 1990; pp. 493–497.
- Vibulsresth, S.; Downreang, D.; Ratanasermpong, S.; Silapathong, C. Mangrove Forest Zonation by Using High Resolution Satellite Data. In Proceedings of the 11th Asian Conference on Remote Sensing, Guangzhou, China, 15–21 November 1990. D-1-6.
- Long, B.G.; Skewes, T.D. A technique for mapping mangroves with Landsat TM satellite data and geographic information system. Estuar. Coast. Shelf Sci. 1996, 43, 373–381. [Google Scholar] [CrossRef]
- Lal, P. Economic valuation of mangroves and decision-making in the Pacific. Ocean Coast. Manage. 2003, 46, 823–844. [Google Scholar] [CrossRef]
- Manson, F.J.; Loneragan, N.R.; Phinn, S.R. Spatial and temporal variation in distribution of mangroves in Moreton Bay, subtropical Australia: A comparison of pattern metrics and change detection analyses based on aerial photographs. Estuar. Coast. Shelf Sci. 2003, 57, 653–666. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sens. 2011, 3, 878-928. https://doi.org/10.3390/rs3050878
Kuenzer C, Bluemel A, Gebhardt S, Quoc TV, Dech S. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing. 2011; 3(5):878-928. https://doi.org/10.3390/rs3050878
Chicago/Turabian StyleKuenzer, Claudia, Andrea Bluemel, Steffen Gebhardt, Tuan Vo Quoc, and Stefan Dech. 2011. "Remote Sensing of Mangrove Ecosystems: A Review" Remote Sensing 3, no. 5: 878-928. https://doi.org/10.3390/rs3050878
APA StyleKuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing, 3(5), 878-928. https://doi.org/10.3390/rs3050878