[go: up one dir, main page]

Czech J. Genet. Plant Breed., 2023, 59(4):263-277 | DOI: 10.17221/14/2023-CJGPB

Identification and functional analysis of the HvWRKY1 gene associated with Qingke (Hordeum vulgare L. var. nudum Hook. f.) leaf stripe diseaseOriginal Paper

Gang Jing1, Youhua Yao1,2,3,4, Likun An1,2,3,4, Yongmei Cui1,2,3,4, Yixiong Bai1,2,3,4, Xin Li2,3,4, Xiaohua Yao1,2,3,4*, Kunlun Wu1,2,3,4*
1 Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
2 Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
3 Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
4 Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China

To explore the role of WRKY transcription factors (TFs) in the resistance process of Qingke (Hordeum vulgare L. var. nudum Hook. f.), leaves of the leaf stripe disease-resistant variety Kunlun 14 and the susceptible variety Z1141 were sequenced by transcriptome sequencing (RNA-seq). A differentially expressed gene HvnWKRY1 was identified, and its disease-resistance function was preliminarily analysed. The result showed that the open reading frame (ORF) of the gene was 1 062 bp and encoded 354 amino acids. It contained the conserved WRKY domain (273–351) and belonged to the WRKY protein family. The phylogenetic tree results showed that HvWRKY1 was most closely related to Hordeum vulgare L. The WRKY family of Qingke, barley, maize and rice were divided into categories I, II, and III, among which HvWRKY1 was located in group III. Results of the quantitative real-time fluorescence PCR (qRT-PCR) showed that the expression of HvWRKY1 was significantly (P < 0.01) higher in leaf stripe infected leaves of Kunlun 14 than that of Z1141. In Arabidopsis thaliana transformed with HvWRKY1, resistance to Botrytis cinerea was enhanced. The RNA-seq analysis showed there were 824 differentially expressed genes (DEGs). Data of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated, that a plant-pathogen interaction pathway was enriched. This study is expected to provide a theoretical basis for further studies of functioning of  the Qingke gene HvWRKY1 in resistance to the leaf stripe disease.

Keywords: barley leaf stripe disease; HvWRKY1 gene; Qingke; RNA-seq; transgenic

Received: February 10, 2023; Revised: April 4, 2023; Accepted: April 13, 2023; Prepublished online: June 15, 2023; Published: September 11, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Jing G, Yao Y, An L, Cui Y, Bai Y, Li X, et al.. Identification and functional analysis of the HvWRKY1 gene associated with Qingke (Hordeum vulgare L. var. nudum Hook. f.) leaf stripe disease. Czech J. Genet. Plant Breed.. 2023;59(4):263-277. doi: 10.17221/14/2023-CJGPB.
Download citation

Supplementary files:

Download fileJing_ESM.pdf

File size: 749.79 kB

References

  1. Bahrini I., Ogawa T., Kobayashi F., Kawahigashi H., Handa H. (2011): Overexpression of the pathogen-inducible wheat TaWRKY45 gene confers disease resistance to multiple fungi in transgenic wheat plants. Breeding Science, 61: 319-326. Go to original source... Go to PubMed...
  2. Bulgarelli D., Collins N.C., Tacconi G., Dellaglio E., Brueggeman R., Kleinhofs A., Stanca A.M., Valè G. (2004): High-resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley. Theoretical and Applied Genetics, 108: 1401-1408. Go to original source... Go to PubMed...
  3. Casamassimi A., Ciccodicola A. (2019): Transcriptional regulation: Molecules, involved mechanisms, and misregulation. International Journal of Molecular Sciences, 20: 1281. Go to original source... Go to PubMed...
  4. Chen L., Zhang L., Li D., Wang F., Yu D. (2013): WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 110: 1963-1971. Go to original source... Go to PubMed...
  5. Cheng H.T., Wang S.P. (2014): WRKY-type transcription factors: A significant factor in rice-pathogen interactions. Scientia Sinica Vitae, 44: 784-793. Go to original source...
  6. Deslandes L., Olivier J., Peeters N., Feng D.X., Khounlotham M., Boucher C., Somssich I., Genin S., Marco Y. (2003): Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the USA, 100: 8024-8029. Go to original source... Go to PubMed...
  7. Eulgem T., Rushton P.J., Robatzek S., Somssich I E. (2000): The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5: 199-206. Go to original source... Go to PubMed...
  8. Frerigmann H., Glawischnig E., Gigolashvili T. (2015): The role of MYB34, MYB51 and MYB122 in the regulation of camalexin biosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 6: 654. Go to original source... Go to PubMed...
  9. Gatti A., Rizza F., Delogu G., Terzi V., Porta-Puglia A., Vannacci G. (1992): Physiological and biochemical variability in a population of Drechslera graminea. Journal of Genetics & Breeding, 46: 179-186.
  10. Giese H., Holm-Jensen A.G., Jensen H.P., Jensen J. (1993): Localization of the laevigatum powdery mildew resistance gene to barley chromosome 2 by the use of RFLP markers. Theoretical and Applied Genetics, 85: 897-900. Go to original source... Go to PubMed...
  11. Hoskins R.A., Landolin J.M., Brown J.B., Sandler J.E., Takahashi H., Lassmann T., Yu C., Booth B.W., Zhang D., Wan K.H., Yang L., Boley N., Andrews J., Kaufman T.C., Graveley B.R., Bickel P.J., Carninci P., Carlson J.W. Celniker S.E. (2011): Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Research, 21: 182-192. Go to original source... Go to PubMed...
  12. Huang Y., Li M.Y., Wu P., Xu Z.S., Que F., Wang F., Xiong A.S. (2016): Members of WRKY group III transcription factors are important in TYLCV defense signaling pathway in tomato(Solanum lycopersicum). BMC Genomics, 17: 788. Go to original source... Go to PubMed...
  13. Jiang J., Ma S., Ye N., Ming J., Zhang J. (2017): WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 59: 86. Go to original source... Go to PubMed...
  14. Khoso M.A., Hussain A., Ritonga F.N., Ali Q., Channa M.M., Alshegaihi R.M., Meng Q., Ali M., Zaman W., Brohi R.D., Liu F., Manghwar H. (2022): WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. Frontiers in Plant Science, 13: 1039329. Go to original source... Go to PubMed...
  15. Manna M., Thakur T., Chirom O., Mandlik R., Deshmukh R., Salvi P. (2021): Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum, 172: 847-868. Go to original source... Go to PubMed...
  16. Pecchioni N., Faccioli P., Toubia-Rahme H., Valè G., Terzi V. (1996): Quantitative resistance to barley leaf stripe (Py-renophora graminea) is dominated by one major locus. Theoretical and Applied Genetics, 93: 97-101. Go to original source... Go to PubMed...
  17. Rushton D.L., Tripathi P., Rabara R.C., Lin J., Ringler P., Boken A.K., Langum T.J., Smidt L., Boomsma D.D., Emme N.J., Chen X.F., Finer J.J., Shen Q.J., Rushton P.J. (2012): WRKY transcription factors: Key components in abscisic acid signaling. Plant Biotechnology Journal, 10: 2-11. Go to original source... Go to PubMed...
  18. Rushton P.J., Somssich I.E., Ringler P., Shen Q.J. (2010): WRKY transcription factors. Trends Plant Science, 15: 247-258. Go to original source... Go to PubMed...
  19. Scarboro C.G., Ruzsa S.M., Doherty C.J., Kudenov M.W. (2021): Quantification of gray mold infection in lettuce using a bispectral imaging system under laboratory conditions. Plant Direct, 5: e00317. Go to original source... Go to PubMed...
  20. Shim J.S., Choi Y.D. (2013): Direct regulation of WRKY70 by AtMYB44 in plant defense responses. Plant Signaling & Behavior, 8: e20783. Go to original source... Go to PubMed...
  21. Si E., Meng Y., Ma X., Li B., Wang J., Ren P., Yao L., Yang K., Zhang Y., Shang X., Wang H. (2019): Development and characterization of microsatellite markers based on whole-genome sequences and pathogenicity differentiation of Pyrenophora graminea, the causative agent of barley leaf stripe. European Journal of Plant Pathology, 154: 227-241. Go to original source...
  22. Si E., Meng Y., Ma X., Li B., Wang H. (2020): Genome resource for barley leaf stripe pathogen Pyrenophora graminea. Plant Disease, 104: 320-322. Go to original source... Go to PubMed...
  23. Turck F., Zhou A., Somssich I.E. (2004): Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to Its native promoter and the defense-related gene PcPR1-1 in Parsley. Plant Cell, 16: 2573-2585. Go to original source... Go to PubMed...
  24. Ulmasov T., Hagen G., Guilfoyle T.J. (1997): ARF1, a transcription factor that binds to auxin response elements. Science, 276: 1865-1868. Go to original source... Go to PubMed...
  25. van Leeuwen F., Steensel B.V. (2005): Histone modifications: From genome-wide maps to functional insights. Genome Biology, 6: 113. Go to original source... Go to PubMed...
  26. Walters D.R., Avrova A., Bingham I.J., Burnett F.J., Fountaine J., Havis N.D., Hoad S.P., Hughes G., Looseley M., Oxley S.J.P., Renwick A., Topp C.F.E., Newton A.C. (2012): Control of foliar diseases in barley: towards an integrated approach. European Journal of Plant Pathology, 133: 33-73. Go to original source...
  27. Wang C., Deng P., Chen L., Wang X., Ma H., Hu W., Yao N., Feng Y., Chai R., Yang G., He G. (2013): A wheat WRKY transcription tactor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS ONE, 8: e65120. Go to original source... Go to PubMed...
  28. Wang H.Y., Zheng Y.S., Xiao D., Li Y., Liu T.K., Hou X.L. (2022): BcWRKY33A enhances resistance to Botrytis cinerea via activating BcMYB51-3 in non-heading Chinese Cabbage. International Journal of Molecular Sciences, 23: 8222. Go to original source... Go to PubMed...
  29. Yao X.H., Wu K.L., Yao Y.H., Bai Y.X., Ye J.X., Chi D.Z. (2018): Construction of a high-density genetic map: Genotyping by sequencing (GBS) to map purple seed coat color (Psc) in hulless barley. Hereditas, 155: 37. Go to original source... Go to PubMed...
  30. Yao X.H., Wang Y., Yao Y.H., Bai Y.X., Wu K.L., Qiao Y.M. (2021a): Identification microRNAs and target genes in Tibetan hulless barley to BLS infection. Agronomy Journal, 113: 2273-2292. Go to original source...
  31. Yao X.H., Wang Y., Yao Y.H., An L.K., Bai Y.X., Li X., Wu K.L., Qiao Y.M. (2021b): Use of gene family analysis to discover argonaut (AGO) genes for increasing the resistance of Tibetan hull-less barley to leaf stripe disease. Plant Protection Science, 57: 226-239. Go to original source...
  32. Yokotani N., Shikata M., Ichikawa H., Mitsuda N., Ohme-Takagi M., Minami E., Nishizawa Y. (2018): OsWRKY24, a blast-disease responsive transcription factor, positively regulates rice disease resistance. Journal of General Plant Pathology, 84: 85-91. Go to original source...
  33. Zeng T., Liu H.B., Qiu D.Y., Zhou Y., Li X.H., Xu C.G., Wang S.P. (2009): A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant and Cell Physiology, 151: 936-948. Go to original source... Go to PubMed...
  34. Zeng X., Guo Y., Xu Q., Mascher M., Guo G., Li S., Mao L., Liu Q., Xia Z., Zhou J., Yuan H., Tai S., Wang Y., Wei Z., Song L., Zha S., Li S., Tang Y., Bai L., Zhuang Z., He W., Zhao S., Fang X., Gao Q., Yin Y., Wang J., Yang H., Zhang J., Henry R.J., Stein N., Tashi N. (2018): Origin and evolution of Qingke barley in Tibet. Nature Communications, 9: 5433-5444. Go to original source... Go to PubMed...
  35. Zhu Q., Li C., Zhang W. (2016): WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana. Plant Molecular Biology, 91: 53-65. Go to original source... Go to PubMed...
  36. Zhu Y., Hu X., Wang P., Wang H., Ge X., Li F., Hou Y. (2022): GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway. International Journal of Biological Macromolecules, 201: 580-591. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.