[go: up one dir, main page]

Czech J. Genet. Plant Breed., 2016, 52(3):83-93 | DOI: 10.17221/22/2016-CJGPB

Association of SNP markers with agronomic and quality traits of field pea in ItalyOriginal Paper

Barbara Ferrari1, Massimo Romani1, Gregoire Aubert2, Karen Boucherot2, Judith Burstin2, Luciano Pecetti1, Myriam Huart-Naudet2, Anthony Klein2, Paolo Annicchiarico1
1 Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie, Lodi, Italy
2 Institut National de la Recherche Agronomique, Unité Mixte de Recherches en Agroécologie, Dijon, France

Only a few studies on pea (Pisum sativum) investigated the association of single nucleotide polymorphisms (SNP) markers with key agronomic traits. This study aimed to explore the association of a standard set of 384 SNP with grain yield, seed protein content, seed weight, onset of flowering, plant height and lodging susceptibility, in three connected bi-parental recombinant inbred line (RIL) populations including 90 lines each. These RIL originated from crosses between three cultivars that displayed high and stable grain yield across Italian environments, namely, Attika (A), Isard (I), and Kaspa (K). The 270 lines were phenotyped in a spring-sown environment of Lodi (northern Italy; 45°19'N, 9°30'E). Variation among lines within the populations was significant (P < 0.01) in all cases except lodging susceptibility in one cross and, when expressed in terms of the genetic coefficient of variation, proved moderately large for most traits (including grain yield and seed protein content). Overall, we detected six quantitative trait loci (QTL) in the A × I linkage map, eight QTL in K × A, and nine QTL in K × I. Among them, there were three QTL in K × A and two QTL in K × I for grain yield, and one QTL in A × I and two QTL in both K × A and K × I for seed protein content. The consensus map, which included 130 markers (covering about 1094 cM), retained one QTL for grain yield and one for flowering time that co-located on LGII, and three for seed weight on LGIII, LGVI and LGVII. The QTL co-locating for yield and flowering time explained 8% and 31% of the overall phenotypic variation, respectively, for the two traits, and could be exploited in marker-assisted selection for adaptation to the target region.

Keywords: grain yield; marker-assisted selection; Pisum sativum; protein content; QTL

Published: September 30, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ferrari B, Romani M, Aubert G, Boucherot K, Burstin J, Pecetti L, et al.. Association of SNP markers with agronomic and quality traits of field pea in Italy. CAAS Agricultural Journals. 2016;52(3):83-93. doi: 10.17221/22/2016-CJGPB.
Download citation

References

  1. Annicchiarico P. (2005): Variety choice for field pea and faba bean with respect to the environment and the end-use. L'Informatore Agrario, 61: 47-52.
  2. Annicchiarico P. (2008): Adaptation of cool-season grain legume species across climatically-contrasting environments of southern Europe. Agronomy Journal, 100: 1647-1654. Go to original source...
  3. Annicchiarico P., Iannucci A. (2007): Winter survival of pea, faba bean and white lupin cultivars across contrasting Italian locations and sowing times, and implications for selection. The Journal of Agricultural Science, 145: 611-622. Go to original source...
  4. Annicchiarico P., Iannucci A. (2008): Adaptation strategy, germplasm type and adaptive traits for field pea improvement in Italy based on variety responses across climatically contrasting environments. Field Crops Research, 108: 133-142. Go to original source...
  5. Arumingtyas E.L., Murfet L.C. (1994): Flowering in Pisum: A further gene controlling response to photoperiod. Journal of Heredity, 85: 12-17.
  6. Aubert G., Morin J., Jacquin F., Loridon K., Quillet M.C., Petit A., Rameau C., Lejeune-Hénaut I., Huguet T., Burstin J. (2006): Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theoretical and Applied Genetics, 112: 1024-1041. Go to original source... Go to PubMed...
  7. Bordat A., Savois V., Nicolas M., Salse J., Chauveau A., Bourgeois M., Potier J., Houtin H., Rond C., Murat F., Marget P., Aubert G., Burstin J. (2011): Translational genomics in legumes allowed placing in silico 5460 Unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 Genes Genomes Genetics, 1: 93-103. Go to original source... Go to PubMed...
  8. Burstin J., Marget P., Huart M., Moessner A., Mangin B., Duchene C., Desprez B., Munier-Jolain N., Duc G. (2007): Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiology, 144: 768-781. Go to original source... Go to PubMed...
  9. Burstin J., Salloignon P., Chabert-Martinello M.-C., Magnin-Robert J.-B., Siol M., Jacquin F., Chauveau A., Pont C., Aubert G., Delaitre C, Truntzer C., Duc G. (2015): Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics, 16: 105. Go to original source... Go to PubMed...
  10. Carrillo E., Satovic Z., Aubert G., Boucherot K., Rubiales D., Fondevilla S. (2014): Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Reports, 33: 1133-1145. Go to original source... Go to PubMed...
  11. Carrouée B., Crépon K., Peyronnet C. (2003): Interest for protein crops in the French and European forage production system. Fourrages, 174: 163-182.
  12. Cheng P., Holdsworth W., Ma Y., Coyne C.J., Mazourek M., Grusak M.A., Fuchs S., McGee R.J. (2015): Association mapping of agronomic and quality traits in USDA pea single-plant collection. Molecular Breeding, 35: 75. Go to original source...
  13. Deulvot C., Charrel H., Marty A., Jacquin F., Donnadieu C., Lejeune-Hénaut I., Burstin J., Aubert G. (2010): Highlymultiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genomics, 11: 468-477. Go to original source... Go to PubMed...
  14. Duarte J., Riviére N., Baranger A., Aubert G., Burstin J., Cornet L., Lavaud C., Lejeune-Hénaut I., Martinant J., Pichon J., Pilet-Nayel M., Boute G. (2014): Transcriptome sequencing for high throughput SNP development and genetic mapping in pea. BMC Genomics, 15: 126- 140. Go to original source... Go to PubMed...
  15. Duc G., Agrama H., Bao S., Berger J., Bourion V., De Ron A.M., Gowda C.L.L., Mikic A., Millot D., Singh K.B., Tullu A., Vanderberg A., Vaz Patto M.C., Warkentin T.D., Zong X. (2015): Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Critical Reviews in Plant Sciences, 34: 381-411. Go to original source...
  16. Ellis T.H.N., Poyser S.J. (2002): An integrated and comparative view of pea genetic and cytogenetic maps. New Phytologist, 153: 17-25. Go to original source...
  17. Elshire R.J., Glaubitz J.C., Sun Q., Poland J.A., Kawamoto K., Buckler E.S., Mitchell S.E. (2011): A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6: e19379. Go to original source... Go to PubMed...
  18. FAO (2013): FAO Statistical Yearbook. Available at http://www.fao.org
  19. Fondevilla S., Satovic Z., Rubiales D., Moreno M.T., Torres A.M. (2008): Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum. Molecular Breeding, 21: 439-454. Go to original source...
  20. Gupta P.K., Rustgi S., Mir R.R. (2008): Array-based highthroughput DNA markers for crop improvement. Heredity, 101: 5-18. Go to original source... Go to PubMed...
  21. Huyghe C. (1998): Genetics and genetic modifications of plant architecture in grain legumes: a review. Agronomie, 18: 383-411. Go to original source...
  22. Irzykowska L., Wolko B., ¦wiêcicki W. (2001): The genetic linkage map of pea (Pisum sativum L.) based on molecular, biochemical and morphological markers. Pisum Genetics, 33: 13-18.
  23. Jha A.B., Tar'an B., Diapari M., Warkentin T.D. (2015): SNP variation within genes associated with amylose, total starch and crude protein concentration in field pea. Euphytica, 206: 459-471. Go to original source...
  24. Jourion M., Jasson S., Marcel J., Ngom B., Mangin B. (2005): MCQTL: multiallelic QTL mapping in multi-cross design. Bioinformatics, 21: 128-130. Go to original source... Go to PubMed...
  25. Klein A., Houtin H., Rond C., Marget P., Jacquin F., Boucherot K., Huart M., Riviére N., Boutet G., Lejeune-Hénaut I., Burstin J. (2014): QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theoretical and Applied Genetics, 127: 1319-1330. Go to original source... Go to PubMed...
  26. Krajewski P., Bocianowski J., Gaw³owska M., Kaczmarek Z., Pniewski T., ¦wiêcicki W., Wolko B. (2012): QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica, 183: 323-336. Go to original source...
  27. Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newburg L. (1987): MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1: 174-181. Go to original source... Go to PubMed...
  28. Nemecek T., Von Richthofen J., Dubois G., Casta P., Charles R., Pahl H. (2008): Environmental impacts of introducing grain legumes into European crop rotations. European Journal of Agronomy, 28: 380-393. Go to original source...
  29. Rogers S.O., Bendich A.J. (1985): Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology, 5: 69-76. Go to original source... Go to PubMed...
  30. Schreuder R., De Visser C. (2014): Report EIP-AGRI Focus Group on Protein Crops. European Commission, Brussel.
  31. Sindhu A., Ramsay L., Sanderson L.-A., Stonehouse R., Li R., Condie J., Shunmugam A.S.K., Liu Y., Jha A.B., Diapari M., Burstin J., Aubert G., Tar'an B., Bett K.E., Warkentin D.K., Sharpe A.G. (2014): Gene-based SNP discovery and genetic mapping in pea. Theoretical and Applied Genetics, 127: 2225-2241. Go to original source... Go to PubMed...
  32. Smýkal P., Aubert G., Burstin J., Coyne C.J., Ellis N.T.H., Flavell A.J., Ford R., Hýbl M., Macas J., Neumann P., McPhee K.E., Redden R.J., Rubiales D., Weller J.L., Warkentin T.D. (2012): Pea (Pisum sativum L.) in the genomic era. Agronomy, 2: 74-115. Go to original source...
  33. Tar'an B., Warkentin T., Somers D.J., Miranda D., Vanderberg A., Blade S., Woods S., Bing D., Xue A., Dekoeyer D., Penner G. (2003): Quantitative trait loci for lodging tolerance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theoretical and Applied Genetics, 107: 1482-1491. Go to original source... Go to PubMed...
  34. Tar'an B., Warkentin T., Somers D.J., Miranda D., Vanderberg A., Blade S., Bing D. (2004): Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica, 136: 297-306. Go to original source...
  35. Tayeh N., Klein A., Le Paslier M.-C., Jacquin F., Houtin H., Rond C., Chabert-Martinello M., Magnin-Robert J.-B., Marget P., Aubert G., Burstin J. (2015): Genomic prediction in pea: effect of marker density and training population size and composition on prediction accuracy. Frontiers in Plant Science, 6: 941. Go to original source... Go to PubMed...
  36. Timmerman-Vaughan G.M., Mills A., Whitfield C., Frew T., Butler R., Murray S., Lakeman M., Mccallum J., Russell A., Wilson D. (2005): Linkage mapping of QTL for seed yield, yield components, and developmental traits in pea. Crop Science, 45: 1336-1344. Go to original source...
  37. Von Richthofen J.S., Pahl H., Casta P., Dubois G., Lafarga A., Nemecek T., Pedersen J.B. (2006): Economic impact of grain legumes in European crop rotations. Grain Legumes, 45: 16-19.
  38. Voorrips R.E. (2002): MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93: 77-78. Go to original source... Go to PubMed...
  39. Weeden N.F., Ellis T.H.N., Timmerman-Vaughan G.M., Swiecicki W.K., Rozov S.M., Berdnikov V.A. (1998): A consensus linkage map for Pisum sativum. Pisum Genetics, 30: 1-3.
  40. Weller J.L., Hecht V., Liew L.C., Sussmilch F.C., Wenden B., Knowles C.L., Vander Schoor J.K. (2009): Update on the genetic control of flowering in garden pea. Journal of Experimental Botany, 60: 2493-2499. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.