Skip to main content
Gil Goobes
  • Israel

Gil Goobes

  • Professor Gil Goobes completed his undergraduate studies in chemistry in Tel Aviv University in 1993. He received bot... moreedit
not Available.
Practical implementation of alkali metal batteries currently still faces formidable challenges because of the dendrite growth upon continuous charge/discharge processes and the associated unstable solid–electrolyte interphase. Herein, it... more
Practical implementation of alkali metal batteries currently still faces formidable challenges because of the dendrite growth upon continuous charge/discharge processes and the associated unstable solid–electrolyte interphase. Herein, it is reported that dendrites can be fundamentally mitigated in lithium and sodium metal batteries by regulating the Li+ and Na+ flux using a glass fiber (GF) separator impregnated with polytetrafluoroethylene nanospheres (PTFE‐NSs), which results in homogeneous deposition of Li and Na during charging. The COMSOL Multiphysics simulations reveal that the introduction of negatively charged PTFE‐NSs into the GF separator enhances the local electric field near the anode, thereby boosting the transfer of cations. It is demonstrated that Li//Li and Na//Na symmetric cells utilising a PTFE‐GF separator show outstanding cycle stability of 1245 and 2750 h, respectively, at 0.5 mA cm−2. Moreover, the Li//LiFePO4 and Na//Na3V2(PO4)2F3 full cells exhibit remarkably improved capacity retention when cycled at 1 C, in the presence of a PTFE‐GF separator. The nuclear magnetic resonance spectroscopy studies suggest that the impregnation of PTFE‐NSs into GF helps “liberate” more Li+ and Na+ and changes the coordination interaction between ions and solvents, contributing to the enhanced electrochemical performance.
Many life forms generate intricate submicron biosilica structures with various important biological functions. The formation of such structures, from the silicic acid in the waters and in the soil, is thought to be regulated by unique... more
Many life forms generate intricate submicron biosilica structures with various important biological functions. The formation of such structures, from the silicic acid in the waters and in the soil, is thought to be regulated by unique proteins with high repeats of specific amino acids and unusual sidechain modifications. Some silicifying proteins are characterized by high prevalence of basic amino acids in their primary structures. Lysine-rich domains are found, for instance, in diatom silaffin proteins and in the sorghum grass siliplant protein. These domains exhibit catalytic activity in silica chain condensation, owing to molecular interactions of the lysine amine groups with the forming mineral. The use of amine chemistry by two very remote organisms has motivated us to seek other molecular biosilicification processes that may be common to the two life forms. In diatom silaffins, domains rich in phosphoserine residues are thought to assist the assembly of silaffin molecules into an organic supra-structure which serves as a template for the silica to precipitate on. This mold, held by salt bridges between serine phosphates and lysine amines, dictates the shape of the silica particles formed. Yet, silica synthesized with the dephosphorylated silaffin in phosphate buffer showed similar morphology to the one prepared with the native protein, suggesting that a defined spatial arrangement of serine phosphates is not required to generate silica with the desired shape. Concurrently, free phosphates enhanced the activity of siliplant1 in silica formation. It is therefore beneficial to characterize the involvement of these anions as co-factors in regulated silicification by functional peptides from the two proteins and to understand whether they play similar molecular role in the mechanism of mineralization. Here we analyze the molecular interactions of free phosphate ions with silica and the silaffin peptide PL12 and separately with silica and siliplant1 peptide SLP1 in the two biomimetic silica products generated by the two peptides. MAS NMR measurements show that the phosphate ions interact with the peptides and at the same time may be forming bonds with the silica mineral. This bridging capability may add another avenue by which the structure of the silica material is influenced. A model for the molecular/ionic interactions at the bio-inorganic interface is described, which may have bearings for the role of phosphorylated residues beyond the function as intermolecular cross linkers or free phosphate ions as co-factors in regulation of silicification.
Aluminum doped mixed metal oxides are popular positive electrode materials for Li-ion batteries. They are used extensively in many applications, yet their operation and limitations are not entirely understood. This work shows the... more
Aluminum doped mixed metal oxides are popular positive electrode materials for Li-ion batteries. They are used extensively in many applications, yet their operation and limitations are not entirely understood. This work shows the advantage of using solid-state 7Li and 27Al NMR for monitoring the electrochemical properties of the doped nickel–cobalt oxide cathode material, LiNi0.8Co0.15Al0.05O2 (NCA), particularly during the first few charge/discharge cycles. The changes in the state of the material as lithium ions are intercalated and deintercalated during discharge and charge, respectively, are highlighted via the Li nuclei as a dynamic reporter and the Al nuclei as a static, material-embedded reporter. In particular, the NMR view of the cyclic change of Ni ions between paramagnetic and diamagnetic oxidation states is enhanced by monitoring both nuclei. Two protocols of cycling the NCA electrode are compared: one employing a smaller voltage window, cycled against graphite as anode, and one using a wider ...
Abstract Atomic deposition of a thin layer of alumina on amorphous carbon materials was recently established to improve their electrochemical properties as anodes in sodium-ion batteries. It is shown that the highest performance for these... more
Abstract Atomic deposition of a thin layer of alumina on amorphous carbon materials was recently established to improve their electrochemical properties as anodes in sodium-ion batteries. It is shown that the highest performance for these materials can be achieved by pre-sodiation of the electrode before coating it. The basis for the enhanced performance is illuminated by 13C and 23Na MAS NMR analysis showing that this specific procedure diminishes parasitic reactions and preserves reversible access to active sodiation sites.
Bone is a fascinating biomaterial comprised mostly of type-I collagen fibers as an organic phase, apatite as an inorganic phase, with water molecules residing at the interfaces between these phases. They are hierarchically organized with... more
Bone is a fascinating biomaterial comprised mostly of type-I collagen fibers as an organic phase, apatite as an inorganic phase, with water molecules residing at the interfaces between these phases. They are hierarchically organized with minor constituents such as non-collagenous proteins, citrate ions and glycosaminoglycans into a composite structure that is mechanically durable yet contains enough porosity to accommodate cells and blood vessels. The nanometer scale organization of the collagen fibrous structure and the mineral constituents in bone were recently extensively scrutinized. However, molecular details at the lowest hierarchical level still need to be unraveled to better understand the exact atomic-level arrangement of all these important components in the context of the integral structure of the bone. In this report, we unfold some of the molecular characteristics differentiating between two load-bearing (cleithrum) bones, one from sturgeon fish, where the matrix contains osteocytes and one from pike fish where the bone tissue is devoid of these bone cells. Using enhanced solid-state NMR measurements, we underpin disparities in the collagen fibril structure and dynamics, the mineral phases, the citrate content at the organic-inorganic interface and water penetrability in the two bones. These findings suggest that different strategies are undertaken in the erection of the mineral-organic interfaces in various bones characterized by dissimilar osteogenesis or remodeling pathways and may have implications to the mechanical properties of the particular bone. STATEMENT OF SIGNIFICANCE: Bone boasts unique interactions between collagen fibers and mineral phases through interfaces holding together this bio-composite structure. Over evolution, fish have gone from mineralizing their bones aided by certain bone cells called osteocytes, like tetrapod, to mineralization without these cells. Here, we report atomic level differences in collagen fiber cross linking and organization, porosity of the mineral phases and content of citrate molecules at the bio-mineral interface in bones from modern versus ancient fish. The dissimilar structural features may suggest disparate mechanical properties for the two bones. Fundamental level understanding of the organic and inorganic components in bone and the interfacial interactions holding them together is essential for successful bone repair and for treating better tissue pathologies.
Li-rich cathode materials of the formula xLi2MnO3·yLiNiaCobMncO2 (x + y = 1, a + b + c = 1) boast very high discharge capacity, ca. 250 mAh/g. Yet, they suffer capacity decrease and average voltage fade during cycling in Li-ion batteries... more
Li-rich cathode materials of the formula xLi2MnO3·yLiNiaCobMncO2 (x + y = 1, a + b + c = 1) boast very high discharge capacity, ca. 250 mAh/g. Yet, they suffer capacity decrease and average voltage fade during cycling in Li-ion batteries that prohibit their commercialization. Treatment of the materials with NH3(g) at high temperatures produces improved electrodes with higher stability of capacity and average voltage. The present study follows the changes occurring in the materials upon treatment with ammonia gas, through 6Li and 7Li solid-state NMR investigations of the untreated and ammonia treated 0.35Li2MnO3·0.65LiNi0.35Mn0.45Co0.20O2 as well as its constituent phases, Li2MnO3 and LiNi0.4Co0.2Mn0.4O2. The NMR analysis demonstrates the biphasic nature of these materials. Furthermore, it shows that the Li2MnO3 component phase in the integrated material is the phase mostly being affected by the gas treatment. A thickening of a protective surface film in the integrated material, with the right exposure tim...
Solid state 6,7Li NMR can distinguish between nominally identical materials synthesized via different methods to understand differences in electrochemical behaviors.
The self-assembly of the cyclic d,l-α-peptide generates amyloid-like structures and this process can be arrested at the level of the dimer giving insights into early-stage aggregation and polymorphism.
Osteonectin is a regulator of bone mineralization. It interacts specifically with collagen and apatite through its N-terminal domain, inhibiting crystal growth. In this work, we investigated the interface formed between the mineral and an... more
Osteonectin is a regulator of bone mineralization. It interacts specifically with collagen and apatite through its N-terminal domain, inhibiting crystal growth. In this work, we investigated the interface formed between the mineral and an acidic peptide, ON29, derived from the protein’s apatite binding domain. The structural properties of the peptide bound to the mineral and the mineral–peptide interface are characterized using NMR and computational methods. A biomaterial complex is formed by precipitation of the mineral in the presence of the acidic peptide. The peptide gets embedded between mineral particles, which comprise a disordered hydrated coat covering apatite-like crystals. 31P SEDRA measurements show that the peptide does not affect the overall proximity between phosphate ions in the mineral. {15N}13C REDOR measurements reveal an α-turn in the center of the free peptide, which is unchanged when it is bound to the mineral. {31P}13C REDOR and 1H–13C HETCOR measurements show that Glu/Asp carboxyla...
Extracting the theoretically high capacity of LiCoO2 (LCO) is desirable for enhancing the energy density of currently used lithium‐ion batteries (LIBs) for portable devices. The bottleneck for exhibiting the high capacity is associated... more
Extracting the theoretically high capacity of LiCoO2 (LCO) is desirable for enhancing the energy density of currently used lithium‐ion batteries (LIBs) for portable devices. The bottleneck for exhibiting the high capacity is associated with the limited cut‐off positive voltages beyond which degradation of electrode/electrolyte takes place. In this work, we apply hybrid organic‐inorganic alucone thin film grown directly on LCO by a molecular layer deposition (MLD) method, using sequential exposure to Al‐based and organic‐based precursors. The alucone thin films enabled the high voltage operation of the LCO cathode (>4.5 V), acting as a protection layer. Electrochemical studies proved that alucone coated LCO show enhanced electrochemical performances with improved cycling stability and enhanced specific capacity, relative to uncoated LCO. Amongst the studied films, 10 nm ethylene glycol/Al coated LCO have shown the best results.
Herod “the Great”, king of Judea in the second half of the first century BC, was known for his building projects, wealth, and political power. Two of his personal calcite-alabaster bathtubs, found in the Kypros fortress and the palace of... more
Herod “the Great”, king of Judea in the second half of the first century BC, was known for his building projects, wealth, and political power. Two of his personal calcite-alabaster bathtubs, found in the Kypros fortress and the palace of Herodium, are among the very limited archaeological evidence of his private life. It seemed plausible that they were imported from Egypt, the main source of calcite-alabaster in ancient periods. Yet, the recent identification of a calcite quarry in the Te’omim cave, Israel, challenges this hypothesis. Here, we developed an approach for identification of the source of calcite-alabaster, by combination of four analytical methods: ICP, FTIR, ssNMR and isotope ratio. These methods were then applied to Herod’s bathtubs demonstrating that they were indeed quarried in Israel rather than in Egypt.
ABSTRACT
Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological... more
Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological functionality is crucial to the design process and is dependent on the ability to maintain its structural and dynamical integrity while removed from the natural surroundings. The scientific techniques to validate the structure of immobilized proteins are scarce and usually provide limited information as a result of poor resolution. In this work, we benchmarked the ability of standard solid-state NMR techniques to resolve the effects of binding to dissimilar silica materials on a model protein. In particular, the interactions between ubiquitin and the surfaces of MCM41, SBA15, and silica formed in situ were tested for their influence on the structure and dynamics of the protein. It is shown that the protein's globular fold in the free state is only slightly perturbed in the three silica materials. Local motions on a residue level that are quenched by immobilization or, conversely, that arise from the process are also detailed. NMR measurements show that these perturbations are unique to each silica material and can serve as reporters of the characteristic surface chemistry.
Herod “the Great”, king of Judea in the second half of the first century BC, was known for his building projects, wealth, and political power. Two of his personal calcite-alabaster bathtubs, found in the Kypros fortress and the palace of... more
Herod “the Great”, king of Judea in the second half of the first century BC, was known for his building projects, wealth, and political power. Two of his personal calcite-alabaster bathtubs, found in the Kypros fortress and the palace of Herodium, are among the very limited archaeological evidence of his private life. It seemed plausible that they were imported from Egypt, the main source of calcite-alabaster in ancient periods. Yet, the recent identification of a calcite quarry in the Te’omim cave, Israel, challenges this hypothesis. Here, we developed an approach for identification of the source of calcite-alabaster, by combination of four analytical methods: ICP, FTIR, ssNMR and isotope ratio. These methods were then applied to Herod’s bathtubs demonstrating that they were indeed quarried in Israel rather than in Egypt.
Abstract This work is part of ongoing and systematic investigations by our groups on the synthesis, electrochemical behavior, structural investigations, and computational modeling of the Ni-rich materials Li[NixCoyMnz]O2 (x+y+z=1; x≥0.8)... more
Abstract This work is part of ongoing and systematic investigations by our groups on the synthesis, electrochemical behavior, structural investigations, and computational modeling of the Ni-rich materials Li[NixCoyMnz]O2 (x+y+z=1; x≥0.8) for advanced lithium-ion batteries. This study focuses on the LiNi0.85Co0.10Mn0.05O2 (NCM85) material and its improvement upon doping with B3+ cations. The data demonstrate the substantial improvement of the doped electrodes in terms of cycling performance, lower voltage hysteresis and reduced self-discharge upon high temperature storage. The electronic structure of the undoped and B-doped material was modelled using density functional theory (DFT), which identified interstitial positions as the preferential location of the dopant. DFT models were also used to shed light on the influence of boron on surface segregation, surface stability, and oxygen binding energy in NCM85 material. Experimental evidence supports the suggestion that the boron segregates at the surface, effectively reducing the surface energy and increasing the oxygen binding energy, and possibly, as a result, inhibiting oxygen release. Additionally, the presence of borate species near the surface can reduce the nucleophilicity of surface oxygens. Cycling of the Li-cells did not cause noticeable changes in the microstructure of the B-doped materials, whereas significant microstructural changes, like a propagating network of cracks, was observed across all grains in the cycled undoped NCM85 cathodes. Analysis by high-resolution microscopy and 6Li and 11B solid-state nuclear magnetic resonance (ss NMR) allowed for the correlation of capacity fade and degradation of the different NCM85 materials with their structural characteristics.
Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological... more
Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological functionality is crucial to the design process and is dependent on the ability to maintain its structural and dynamical integrity while removed from the natural surroundings. The scientific techniques to validate the structure of immobilized proteins are scarce and usually provide limited information as a result of poor resolution. In this work, we benchmarked the ability of standard solid-state NMR techniques to resolve the effects of binding to dissimilar silica materials on a model protein. In particular, the interactions between ubiquitin and the surfaces of MCM41, SBA15, and silica formed in situ were tested for their influence on the structure and dynamics of the protein. It is shown that the protein's globular fold in the free state is only slightly perturbed in the three silica materials. Local motions on a residue level that are quenched by immobilization or, conversely, that arise from the process are also detailed. NMR measurements show that these perturbations are unique to each silica material and can serve as reporters of the characteristic surface chemistry.
not Available.
Following the success of Li-ion batteries, Na-ion batteries are becoming an important economical alternative, particularly where weight and density considerations are not of primary importance. Graphite, the anode of choice for nearly all... more
Following the success of Li-ion batteries, Na-ion batteries are becoming an important economical alternative, particularly where weight and density considerations are not of primary importance. Graphite, the anode of choice for nearly all commercial Li-ion battery applications, has only recently been successfully used as such in Na systems. This unprecedented success was due to the proper choice of solvent, e.g., diglyme. Interestingly, lithium performs poorly under such conditions, which is the converse of their respective behavior in standard carbonate solvents. These phenomena have been attributed to co-intercalation of the alkali ions upon their complexation with the smaller solvent molecules. In the case of Li, the use of such solvents leads to deterioration, while in the case of Na, it improves its electrochemical performance so substantially as to make the previously irrelevant Na–graphite system viable. Several studies have since followed, mainly focusing on the Na–diglyme intercalation; however, ...
Protein-biomineral interactions are paramount to materials fabrication in biology. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution NMR. Solid-state NMR (ssNMR)... more
Protein-biomineral interactions are paramount to materials fabrication in biology. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution NMR. Solid-state NMR (ssNMR) remains the only method for determining the relative distance between atoms at the protein-biomineral interface. However, the amount of data acquired during protein structure determination by solution NMR, typically 10-15 measurements at each residue, is not tractable by ssNMR methods. We have previously reported a computational structure-prediction method, called RosettaSurface, which is capable of generating ensembles of candidate structures of protein adsorbed states. Here we report a method for determining the structure of biomineral-associated proteins by combining ssNMR and RosettaSurface in an iterative fashion. Nave structure predictions can guide the selection of sites for radioisotope labeling for measurement by ssNMR. These measurements are th...
Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological... more
Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological functionality is crucial to the design process and is dependent on the ability to maintain its structural and dynamical integrity while removed from the natural surroundings. The scientific techniques to validate the structure of immobilized proteins are scarce and usually provide limited information as a result of poor resolution. In this work, we benchmarked the ability of standard solid-state NMR techniques to resolve the effects of binding to dissimilar silica materials on a model protein. In particular, the interactions between ubiquitin and the surfaces of MCM41, SBA15, and silica formed in situ were tested for their influence on the structure and dynamics of the protein. It is shown that the protein's globular fold in the free state is only slightly perturbed in the three silica materials. Local motions on a residue level that are quenched by immobilization or, conversely, that arise from the process are also detailed. NMR measurements show that these perturbations are unique to each silica material and can serve as reporters of the characteristic surface chemistry.
Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological... more
Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological functionality is crucial to the design process and is dependent on the ability to maintain its structural and dynamical integrity while removed from the natural surroundings. The scientific techniques to validate the structure of immobilized proteins are scarce and usually provide limited information as a result of poor resolution. In this work, we benchmarked the ability of standard solid-state NMR techniques to resolve the effects of binding to dissimilar silica materials on a model protein. In particular, the interactions between ubiquitin and the surfaces of MCM41, SBA15, and silica formed in situ were tested for their influence on the structure and dynamics of the protein. It is shown that the protein's globular fold in the free state is only slightly perturbed in the three silica materials. Local motions on a residue level that are quenched by immobilization or, conversely, that arise from the process are also detailed. NMR measurements show that these perturbations are unique to each silica material and can serve as reporters of the characteristic surface chemistry.
Aragonite skeletons in corals are key contributors to the storage of atmospheric CO worldwide. Hence, understanding coral biomineralization/calcification processes is crucial for evaluating and predicting the effect of environmental... more
Aragonite skeletons in corals are key contributors to the storage of atmospheric CO worldwide. Hence, understanding coral biomineralization/calcification processes is crucial for evaluating and predicting the effect of environmental factors on this process. While coral biomineralization studies have focused on adult corals, the exact stage at which corals initiate mineralization remains enigmatic. Here, we show that minerals are first precipitated as amorphous calcium carbonate and small aragonite crystallites, in the pre-settled larva, which then evolve into the more mature aragonitic fibers characteristic of the stony coral skeleton. The process is accompanied by modulation of proteins and ions within these minerals. These findings may indicate an underlying bimodal regulation tactic adopted by the animal, with important ramification to its resilience or vulnerability toward a changing environment.
Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological... more
Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological functionality is crucial to the design process and is dependent on the ability to maintain its structural and dynamical integrity while removed from the natural surroundings. The scientific techniques to validate the structure of immobilized proteins are scarce and usually provide limited information as a result of poor resolution. In this work, we benchmarked the ability of standard solid-state NMR techniques to resolve the effects of binding to dissimilar silica materials on a model protein. In particular, the interactions between ubiquitin and the surfaces of MCM41, SBA15, and silica formed in situ were tested for their influence on the structure and dynamics of the protein. It is shown that the protein's globular fold in the free state is only slightly perturbed in the three silica materials. Local motions on a residue level that are quenched by immobilization or, conversely, that arise from the process are also detailed. NMR measurements show that these perturbations are unique to each silica material and can serve as reporters of the characteristic surface chemistry.
Silicon is absorbed by plant roots as silicic acid. The acid moves with the transpiration stream to the shoot, and mineralizes as silica. In grasses, leaf epidermal cells called silica cells deposit silica in most of their volume using an... more
Silicon is absorbed by plant roots as silicic acid. The acid moves with the transpiration stream to the shoot, and mineralizes as silica. In grasses, leaf epidermal cells called silica cells deposit silica in most of their volume using an unknown biological factor. Using bioinformatics tools, we identified a previously uncharacterized protein in Sorghum bicolor, which we named Siliplant1 (Slp1). Slp1 is a basic protein with seven repeat units rich in proline, lysine, and glutamic acid. We found Slp1 RNA in sorghum immature leaf and immature inflorescence. In leaves, transcription was highest just before the active silicification zone (ASZ). There, Slp1 was localized specifically to developing silica cells, packed inside vesicles and scattered throughout the cytoplasm or near the cell boundary. These vesicles fused with the membrane, releasing their content in the apoplastic space. A short peptide that is repeated five times in Slp1 precipitated silica in vitro at a biologically rele...
Details of apatite formation and development in bone below the nanometer scale remain enigmatic. Regulation of mineralization was shown to be governed by the activity of non-collagenous proteins with many bone diseases stemming from... more
Details of apatite formation and development in bone below the nanometer scale remain enigmatic. Regulation of mineralization was shown to be governed by the activity of non-collagenous proteins with many bone diseases stemming from improper activity of these proteins. Apatite crystal growth inhibition or enhancement is thought to involve direct interaction of these proteins with exposed faces of apatite crystals. However, experimental evidence of the molecular binding events that occur and that allow these proteins to exert their functions are lacking. Moreover, recent high-resolution measurements of apatite crystallites in bone have shown that individual crystallites are covered by a persistent layer of amorphous calcium phosphate. It is therefore unclear whether non-collagenous proteins can interact with the faces of the mineral crystallites directly and what are the consequences of the presence of a disordered mineral layer to their functionality. In this work, the regulatory ef...

And 54 more