Abstract
The seismic low-velocity zone (LVZ) of the upper mantle is generally associated with a low-viscosity asthenosphere that has a key role in decoupling tectonic plates from the mantle1. However, the origin of the LVZ remains unclear. Some studies attribute its low seismic velocities to a small amount of partial melt of minerals in the mantle2,3, whereas others attribute them to solid-state mechanisms near the solidus4,5,6 or the effect of its volatile contents6. Observations of shear attenuation provide additional constraints on the origin of the LVZ7. On the basis of the interpretation of global three-dimensional shear attenuation and velocity models, here we report partial melt occurring within the LVZ. We observe that partial melting down to 150–200 kilometres beneath mid-ocean ridges, major hotspots and back-arc regions feeds the asthenosphere. A small part of this melt (less than 0.30 per cent) remains trapped within the oceanic LVZ. Melt is mostly absent under continental regions. The amount of melt increases with plate velocity, increasing substantially for plate velocities of between 3 centimetres per year and 5 centimetres per year. This finding is consistent with previous observations of mantle crystal alignment underneath tectonic plates8. Our observations suggest that by reducing viscosity9 melt facilitates plate motion and large-scale crystal alignment in the asthenosphere.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The dataset generated during this study (three-dimensional Vs and Qs models and melt-fraction models) is available as an IRIS data product at https://doi.org/10.17611/dp/emc.2020.dbrdnature.1. Source data are provided with this paper.
Code availability
Numerical modelling codes related to this paper are available from https://doi.org/10.17611/dp/emc.2020.dbrdnature.1. Most figures were created using open software GMT 4.5.13.
Change history
19 January 2021
A Correction to this paper has been published: https://doi.org/10.1038/s41586-020-03103-9
References
Ricard, Y., Doglioni, C. & Sabadini, R. Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. J. Geophys. Res. 96, 8407–8415 (1991).
Kawakatsu, H. et al. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science 324, 499–502 (2009).
Chantel, J. et al. Experimental evidence supports mantle partial melting in the asthenosphere. Sci. Adv. 2, e1600246 (2016).
Takei, Y. Effects of partial melting on seismic velocity and attenuation: a new insight from experiments. Annu. Rev. Earth Planet. Sci. 45, 447–470 (2017).
Faul, U. H. & Jackson, I. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett. 234, 119–134 (2005).
Karato, S.-i. On the origin of the asthenosphere. Earth Planet. Sci. Lett. 321–322, 95–103 (2012).
Cobden, L., Trampert, J. & Fichtner, A. Insights on upper mantle melting, rheology, and anelastic behavior from seismic shear wave tomography. Geochem. Geophys. Geosyst. 19, 3892–3916 (2018).
Debayle, E. & Ricard, Y. Seismic observations of large-scale deformation at the bottom of fast-moving plates. Earth Planet. Sci. Lett. 376, 165–177 (2013).
Holtzman, B. K. Questions on the existence, persistence, and mechanical effects of a very small melt fraction in the asthenosphere. Geochem. Geophys. Geosyst. 17, 470–484 (2016).
Cline, C. J., Faul, U. H., David, E. C., Berry, A. J. & Jackson, I. Redox-influenced seismic properties of upper-mantle olivine. Nature 555, 355–358 (2018).
Deschamps, F., Konishi, K., Fuji, N. & Cobden, L. Radial thermo-chemical structure beneath western and northern Pacific from seismic waveform inversion. Earth Planet. Sci. Lett. 520, 153–163 (2019).
Shito, A., Karato, S.-i., Matsukage, K. N. & Nishihara, Y. in Earth’s Deep Water Cycle (eds Jacobsen, S. D. & Van Der Lee, S.) 255–236 (AGU, 2006).
Jackson, I., Fitz Gerald, J. D., Faul, U. H. & Tan, B. H. Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J. Geophys. Res. Solid Earth 107, 2360 (2002).
Romanowicz, B. A. & Mitchell, B. J. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 789–827 (Elsevier, 2015).
Dalton, C. A., Ekström, G. & Dziewonski, A. M. Global seismological shear velocity and attenuation: a comparison with experimental observations. Earth Planet. Sci. Lett. 284, 65–75 (2009).
Xu, W., Lithgow-Bertelloni, C., Stixrude, L. & Ritsema, J. The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett. 275, 70–79 (2008).
Hammond, W. C. & Humphreys, E. D. Upper mantle seismic wave velocity: effects of realistic partial melt geometries. J. Geophys. Res. Solid Earth 105, 10975–10986 (2000).
Bruneton, M. et al. Layered lithospheric mantle in the central Baltic Shield from surface waves and xenolith analysis. Earth Planet. Sci. Lett. 226, 41–52 (2004).
Lin, P. Y. P. et al. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere. Nature 535, 538–541 (2016).
Yang, Y., Forsyth, D. W. & Weeraratne, D. S. Seismic attenuation near the East Pacific Rise and the origin of the low-velocity zone. Earth Planet. Sci. Lett. 258, 260–268 (2007).
Wallace, P. J. Water and partial melting in mantle plumes: Inferences from the dissolved H20 concentrations of Hawaiian basaltic magmas. Geophys. Res. Lett. 25, 3639–3642 (1998).
Sieminski, A., Debayle, E. & Lévêque, J.-J. Seismic evidence for deep low-velocity anomalies in the transition zone beneath West Antarctica. Earth Planet. Sci. Lett. 216, 645–661 (2003).
Key, K., Constable, S., Liu, L. & Pommier, A. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495, 499–502 (2013).
Faul, U. H. Melt retention and segregation beneath mid-ocean ridges. Nature 410, 920–923 (2001).
Selway, K. & O’Donnell, J. P. A small, unextractable melt fraction as the cause for the low velocity zone. Earth Planet. Sci. Lett. 517, 117–124 (2019).
Hier-Majumder, S., Ricard, Y. & Bercovici, D. Role of grain boundaries in magma migration and storage. Earth Planet. Sci. Lett. 248, 735–749 (2006).
Ni, H., Keppler, H. & Behrens, H. Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib. Mineral. Petrol. 162, 637–650 (2011).
Chang, S.-J. J., Ferreira, A. M. G. G., Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. J. Geophys. Res. Solid Earth 120, 4278–4300 (2015).
DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Effect of recent revisions to the geomagnetic reversal time-scale on estimates of current plate motions. Geophys. Res. Lett. 21, 2191–2194 (1994).
Adenis, A., Debayle, E. & Ricard, Y. Attenuation tomography of the upper mantle. Geophys. Res. Lett. 44, 7715–7724 (2017).
Debayle, E. & Ricard, Y. A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements. J. Geophys. Res. Solid Earth 117, B10308 (2012).
Adenis, A., Debayle, E. & Ricard, Y. Seismic evidence for broad attenuation anomalies in the asthenosphere beneath the Pacific Ocean. Geophys. J. Int. 209, 1677–1698 (2017).
Hirschmann, M. M. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosyst. 1, 1042 (2000).
Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).
Karato, S. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623–1626 (1993).
Zaroli, C. Global seismic tomography using Backus-Gilbert inversion. Geophys. J. Int. 207, 876–888 (2016).
Resovsky, J., Trampert, J. & der Hilst, R. D. Error bars for the global seismic Q profile. Earth Planet. Sci. Lett. 230, 413–423 (2005).
French, S., Lekic, V. & Romanowicz, B. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342, 227–230 (2013).
Kustowski, B., Ekstrom, G. & Dziewonski, A. M. Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. J. Geophys. Res. Solid Earth 113, B06306 (2008).
Karato, S. I., Olugboji, T. & Park, J. Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents. Nat. Geosci. 8, 509–514 (2015).
Ghahremani, F. Effect of grain boundary sliding on anelasticity of polycrystals. Int. J. Solids Struct. 16, 825–845 (1980).
Hirschmann, M. M. & Stolper, E. M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124, 185–208 (1996).
Lambart, S., Laporte, D. & Schiano, P. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: review of the experimental constraints. Lithos 160–161, 14–36 (2013).
Stixrude, L. & Lithgow-Bertelloni, C. Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. J. Geophys. Res. Solid Earth 110, B03204 (2005).
Behn, M. D., Hirth, G. & Elsenbeck, J. R. Implications of grain size evolution on the seismic structure of the oceanic upper mantle. Earth Planet. Sci. Lett. 282, 178–189 (2009).
Hirschmann, M. M. Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34, 629–653 (2006).
Faul, U. H., Fitz Gerald, J. D. & Jackson, I. Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. J. Geophys. Res. Solid Earth 109, B06202 (2004).
Eilon, Z. C. & Abers, G. A. High seismic attenuation at a mid-ocean ridge reveals the distribution of deep melt. Sci. Adv. 3, e1602829 (2017).
Abers, G. A. et al. Reconciling mantle attenuation-temperature relationships from seismology, petrology, and laboratory measurements. Geochem. Geophys. Geosyst. 15, 3521–3542 (2014).
Dunn, R. A. & Forsyth, D. W. Imaging the transition between the region of mantle melt generation and the crustal magma chamber beneath the southern East Pacific Rise with short-period Love waves. J. Geophys. Res. Solid Earth 108, 2352 (2003).
Hammond, W. C. & Humphreys, E. D. Upper mantle seismic wave attenuation: effects of realistic partial melt distribution. J. Geophys. Res. Solid Earth 105, 10987–10999 (2000).
Turcotte, D. L. & Schubert, G. Geodynamics: Applications of Continuum Physics to Geological Problems Ch. 4 (John Wiley & Sons, 1982).
Stein, C. A. & Stein, S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–129 (1992).
Katsura, T. et al. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 183, 212–218 (2010).
Curbelo, J. et al. Numerical solutions of compressible convection with an infinite Prandtl number: comparison of the anelastic and anelastic liquid models with the exact equations. J. Fluid Mech. 873, 646–687 (2019).
Pommier, A. & Garnero, E. J. Petrology-based modeling of mantle melt electrical conductivity and joint interpretation of electromagnetic and seismic results. J. Geophys. Res. Solid Earth 119, 4001–4016 (2014).
Freitas, D., Manthilake, G., Chantel, J., Bouhifd, M. A. & Andrault, D. Simultaneous measurements of electrical conductivity and seismic-wave velocity of partially molten geological materials: effect of evolving melt texture. Phys. Chem. Miner. 46, 535–551 (2019).
Acknowledgements
We thank the Iris and Geoscope data centres for providing seismological data. We thank J. P. Perrillat and M. Behn for discussions on mineralogy and attenuation models, and F. Dubuffet for preparing data for sharing as IRIS data products. The European Union Horizon 2020 research and innovation programme funds T.B. under grant agreement 716542. The LABEX Lyon Institute of Origins (LIO, ANR-10-LABX-0066) of the University of Lyon funded a beowulf cluster hosted and maintained at ENSL and used in this study. The world map figures were created using open software GMT 4.5.13.
Author information
Authors and Affiliations
Contributions
E.D. and T.B. developed the concept for this paper. E.D. wrote the codes for the interpretation of the seismic models and drafted the manuscript. E.D. wrote the tomography code for Vs; Y.R. adapted this code for Qs. T.B. contributed to the design of the figures and to writing the manuscript. Y.R. developed preliminary codes for interpreting the seismic models, contributed to all mineralogical aspects and to writing the manuscript. S.D. realized the tests of the effect of composition and contributed to writing the revised manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
This file contains 1 Table (reference parameters for Eq. A.1) and 19 Figures. Figures S1-12 test the sensibility to radial anisotropy, EAGBS, composition or anelasticity model. Figures S14 and S19 depict the predicted temperatures. Other Figures illustrate the effect of changing sensitivity to melt content, shear modulus or grain size.
Source data
Rights and permissions
About this article
Cite this article
Debayle, E., Bodin, T., Durand, S. et al. Seismic evidence for partial melt below tectonic plates. Nature 586, 555–559 (2020). https://doi.org/10.1038/s41586-020-2809-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-020-2809-4