[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Imperatives and co-benefits of research into climate change and neurological disease

Abstract

Evidence suggests that anthropogenic climate change is accelerating and is affecting human health globally. Despite urgent calls to address health effects in the context of the additional challenges of environmental degradation, biodiversity loss and ageing populations, the effects of climate change on specific health conditions are still poorly understood. Neurological diseases contribute substantially to the global burden of disease, and the possible direct and indirect consequences of climate change for people with these conditions are a cause for concern. Unaccustomed temperature extremes can impair the systems of resilience of the brain, thereby exacerbating or increasing susceptibility to neurological disease. In this Perspective, we explore how changing weather patterns resulting from climate change affect sleep — an essential restorative human brain activity, the quality of which is important for people with neurological diseases. We also consider the pervasive and complex influences of climate change on two common neurological conditions: stroke and epilepsy. We highlight the urgent need for research into the mechanisms underlying the effects of climate change on the brain in health and disease. We also discuss how neurologists can respond constructively to the climate crisis by raising awareness and promoting mitigation measures and research — actions that will bring widespread co-benefits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of extreme temperature on the pyloric rhythm of Cancer borealis.
Fig. 2: Shared vulnerabilities and system disruptions.

Similar content being viewed by others

References

  1. Abbasi, K. et al. Editorial: Time to treat the climate and nature crisis as one indivisible global health emergency. J. Gen. Intern. Med. 39, 1283–1285 (2024).

    Article  CAS  Google Scholar 

  2. Romanello, M. et al. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms. Lancet 402, 2346–2394 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao, Q. et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet. Health 5, e415–e425 (2021).

    Article  PubMed  Google Scholar 

  4. Ballester, J. et al. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 29, 1857–1866 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khatana, S. A. M., Werner, R. M. & Groeneveld, P. W. Association of extreme heat with all-cause mortality in the contiguous US, 2008-2017. JAMA Netw. Open 5, e2212957 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rahman, M. M. et al. The effects of coexposure to extremes of heat and particulate air pollution on mortality in California: implications for climate change. Am. J. Respir. Crit. Care Med. 206, 1117–1127 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang, Y. et al. Have residents adapted to heat wave and cold spell in the 21st century? Evidence from 136 Chinese cities. Environ. Int. 173, 107811 (2023).

    Article  PubMed  Google Scholar 

  8. Wedler, M., Pinto, J. G. & Hochman, A. More frequent, persistent, and deadly heat waves in the 21st century over the Eastern Mediterranean. Sci. Total Environ. 870, 161883 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Lüthi, S. et al. Rapid increase in the risk of heat-related mortality. Nat. Commun. 14, 4894 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health 1, e360–e367 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ngcamu, B. S. Climate change effects on vulnerable populations in the Global South: a systematic review. Nat. Hazards 118, 977–991 (2023).

    Article  Google Scholar 

  12. Matlakala, F. K., Rantho, K. M. & Mapaling, C. Vulnerability of elderly people during climate-induced disasters in sub-Saharan Africa: a scoping review. Front. Hum. Dyn. https://doi.org/10.3389/fhumd.2024.1430667 (2024).

    Article  Google Scholar 

  13. Fouillet, A. et al. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health 80, 16–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Office for National Statistics & UK Health Security Agency. Excess Mortality During Heat-Periods: 1 June to 31 August 2022 (ONS, 2023).

  15. Owolabi, M. O. et al. Global synergistic actions to improve brain health for human development. Nat. Rev. Neurol. 19, 371–383 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Louis, S. et al. Impacts of climate change and air pollution on neurologic health, disease, and practice: a scoping review. Neurology 100, 474–483 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sisodiya, S. M. Hot brain: practical climate change advice for neurologists. Pract. Neurol. 24, 28–36 (2024).

    Article  PubMed  Google Scholar 

  18. World Health Organization. Intersectoral Global Action Plan on Epilepsy and Other Neurological Disorders 2022–2031 (WHO, 2021).

  19. Rost, N. S. et al. Cognitive impairment and dementia after stroke: design and rationale for the DISCOVERY study. Stroke 52, e499–e516 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wolff, B., Magiati, I., Roberts, R., Pellicano, E. & Glasson, E. J. Risk and resilience factors impacting the mental health and wellbeing of siblings of individuals with neurodevelopmental conditions: a mixed methods systematic review. Clin. Psychol. Rev. 98, 102217 (2022).

    Article  PubMed  Google Scholar 

  21. Tenison, E. & Henderson, E. J. Multimorbidity and frailty: tackling complexity in Parkinson’s disease. J. Parkinsons Dis. 10, S85–S91 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Weil, Z. M. & Karelina, K. Lifelong consequences of brain injuries during development: from risk to resilience. Front. Neuroendocrinol. 55, 100793 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sisodiya, S. M. et al. Climate change and disorders of the nervous system. Lancet Neurol. 23, 636–648 (2024).

    Article  PubMed  Google Scholar 

  24. Amiri, M. et al. Global warming and neurological practice: systematic review. PeerJ 9, e11941 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Coulson, R. L., Mourrain, P. & Wang, G. X. Sleep deficiency as a driver of cellular stress and damage in neurological disorders. Sleep Med. Rev. 63, 101616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krause, A. J. et al. The sleep-deprived human brain. Nat. Rev. Neurosci. 18, 404–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang, L. S., Taylor, A. L., Rinberg, A. & Marder, E. Robustness of a rhythmic circuit to short- and long-term temperature changes. J. Neurosci. 32, 10075–10085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alonso, L. M. & Marder, E. Temperature compensation in a small rhythmic circuit. eLife 9, e55470 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tipton, M. J., Mekjavic, I. B. & Golden, F. St. in Bove and DavisDiving Medicine 4th edn (eds Bove, A. A. & Davis, J. C.) Ch. 13, 261–274 (2003).

  30. Gauer, R. & Meyers, B. K. Heat-related illnesses. Am. Fam. Physician 99, 482–489 (2019).

    PubMed  Google Scholar 

  31. Morrison, S. F. & Nakamura, K. Central neural pathways for thermoregulation. Front. Biosci. 16, 74–104 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  32. Petrou, G. et al. Home energy efficiency under net zero: time to monitor UK indoor air. BMJ 377, e069435 (2022).

    Article  PubMed  Google Scholar 

  33. UK Health Security Agency. Health Effects of Climate Change (HECC) in the UK: 2023 Report. Ch. 5 (UKHSA, 2023).

  34. Walsh, S., Merrick, R. & Brayne, C. The relevance of social and commercial determinants for neurological health. Lancet Neurol. 21, 1151–1160 (2022).

    Article  PubMed  Google Scholar 

  35. Krewski, D. et al. Determinants of neurological disease: synthesis of systematic reviews. Neurotoxicology 61, 266–289 (2017).

    Article  PubMed  Google Scholar 

  36. Lund, C. et al. Social determinants of mental disorders and the Sustainable Development Goals: a systematic review of reviews. Lancet Psychiatry 5, 357–369 (2018).

    Article  PubMed  Google Scholar 

  37. Clayton, S. Climate anxiety: psychological responses to climate change. J. Anxiety Disord. 74, 102263 (2020).

    Article  PubMed  Google Scholar 

  38. Doell, K. C. et al. Leveraging neuroscience for climate change research. Nat. Clim. Change 13, 1288–1297 (2023).

    Article  Google Scholar 

  39. ED Society. Sweat function. ED Society https://edsociety.co.uk/what-is-ed/symptoms-of-ed/sweat-function/ (2024).

  40. Lyall, L. M. et al. Subjective and objective sleep and circadian parameters as predictors of depression-related outcomes: a machine learning approach in UK Biobank. J. Affect. Disord. 335, 83–94 (2023).

    Article  PubMed  Google Scholar 

  41. Kanki, M. et al. Poor sleep and shift work associate with increased blood pressure and inflammation in UK Biobank participants. Nat. Commun. 14, 7096 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xue, B. et al. The impact of socioeconomic status and sleep quality on the prevalence of multimorbidity in older adults. Front. Public Health 10, 959700 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Harding, E. C., Franks, N. P. & Wisden, W. Sleep and thermoregulation. Curr. Opin. Physiol. 15, 7–13 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Adamantidis, A. R. & de Lecea, L. Sleep and the hypothalamus. Science 382, 405–412 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Landolt, H. P., Moser, S., Wieser, H. G., Borbély, A. A. & Dijk, D. J. Intracranial temperature across 24-hour sleep-wake cycles in humans. Neuroreport 6, 913–917 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Rzechorzek, N. M. et al. A daily temperature rhythm in the human brain predicts survival after brain injury. Brain 145, 2031–2048 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lo, Y. T. E., Vosper, E., Higgins, J. P. T. & Howard, G. Heat impacts on human health in the Western Pacific Region: an umbrella review. Lancet Reg. Health West Pac. 42, 100952 (2024).

    PubMed  Google Scholar 

  48. Bragazzi, N. L. et al. Planetary sleep medicine: studying sleep at the individual, population, and planetary level. Front. Public Health 10, 1005100 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Minor, K., Bjerre-Nielsen, A., Jonasdottir, S. S., Lehmann, S. & Obradovich, N. Rising temperatures erode human sleep globally. One Earth 5, 534–549 (2022).

    Article  Google Scholar 

  50. Cox, D. T. C., Maclean, I. M. D., Gardner, A. S. & Gaston, K. J. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 26, 7099–7111 (2020).

    Article  Google Scholar 

  51. Gaston, K. J., Gardner, A. S. & Cox, D. T. C. Anthropogenic changes to the nighttime environment. Bioscience 73, 280–290 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Obradovich, N., Migliorini, R., Mednick, S. C. & Fowler, J. H. Nighttime temperature and human sleep loss in a changing climate. Sci. Adv. 3, e1601555 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Weinreich, G. et al. Association of short-term ozone and temperature with sleep disordered breathing. Eur. Respir. J. 46, 1361–1369 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Staats, R. et al. Impact of temperature on obstructive sleep apnoea in three different climate zones of Europe: data from the European Sleep Apnoea Database (ESADA). J. Sleep Res. 30, e13315 (2021).

    Article  PubMed  Google Scholar 

  55. Bohnen, N. I. & Hu, M. T. M. Sleep disturbance as potential risk and progression factor for Parkinson’s disease. J. Parkinsons Dis. 9, 603–614 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang, C. & Holtzman, D. M. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology 45, 104–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Hsiao, Y. H. et al. Sleep disorders and an increased risk of Parkinson’s disease in individuals with non-apnea sleep disorders: a population-based cohort study. J. Sleep Res. 26, 623–628 (2017).

    Article  PubMed  Google Scholar 

  58. Naidoo, N., Ferber, M., Master, M., Zhu, Y. & Pack, A. I. Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. J. Neurosci. 28, 6539–6548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Miao, A. et al. Brain clearance is reduced during sleep and anesthesia. Nat. Neurosci. 27, 1046–1050 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Spira, A. P. et al. Self-reported sleep and β-amyloid deposition in community-dwelling older adults. JAMA Neurol. 70, 1537–1543 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Gottesman, R. F. et al. Impact of sleep disorders and disturbed sleep on brain health: a scientific statement from the American Heart Association. Stroke 55, e61–e76 (2024).

    Article  PubMed  Google Scholar 

  64. Nuyen, J. et al. Comorbidity was associated with neurologic and psychiatric diseases: a general practice-based controlled study. J. Clin. Epidemiol. 59, 1274–1284 (2006).

    Article  PubMed  Google Scholar 

  65. Khraishah, H. et al. Climate change and cardiovascular disease: implications for global health. Nat. Rev. Cardiol. 19, 798–812 (2022).

    Article  PubMed  Google Scholar 

  66. Alahmad, B. et al. Associations between extreme temperatures and cardiovascular cause-specific mortality: results from 27 countries. Circulation 147, 35–46 (2023).

    Article  PubMed  Google Scholar 

  67. Feigin, V. L. et al. World Stroke Organization (WSO): global stroke fact sheet 2022. Int. J. Stroke 17, 18–29 (2022).

    Article  PubMed  Google Scholar 

  68. GBD 2019 Risk Factor Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Article  Google Scholar 

  69. Dentali, F., Manfredini, R. & Ageno, W. Seasonal variability of venous thromboembolism. Curr. Opin. Pulm. Med. 15, 403–407 (2009).

    Article  PubMed  Google Scholar 

  70. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20, 795–820 (2021).

    Article  Google Scholar 

  71. Qu, C. et al. Burden of stroke attributable to nonoptimal temperature in 204 countries and territories: a population-based study, 1990-2019. Neurology 102, e209299 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Greaney, J. L., Kenney, W. L. & Alexander, L. M. Sympathetic regulation during thermal stress in human aging and disease. Auton. Neurosci. 196, 81–90 (2016).

    Article  PubMed  Google Scholar 

  73. Huang, Q. et al. Meteorological variation is a predisposing factor for aneurismal subarachnoid hemorrhage: a 5-year multicenter study in Fuzhou, China. World Neurosurg. 132, e687–e695 (2019).

    Article  PubMed  Google Scholar 

  74. Crandall, C. G. & Wilson, T. E. Human cardiovascular responses to passive heat stress. Compr. Physiol. 5, 17–43 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Liu, C., Yavar, Z. & Sun, Q. Cardiovascular response to thermoregulatory challenges. Am. J. Physiol. Heart Circ. Physiol. 309, H1793–H1812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao, H. et al. Seasonal variation in the frequency of venous thromboembolism: an updated result of a meta-analysis and systemic review. Phlebology 35, 480–494 (2020).

    Article  PubMed  Google Scholar 

  77. Boulay, F. et al. Seasonal variations in hospital admission for deep vein thrombosis and pulmonary embolism: analysis of discharge data. BMJ 323, 601–602 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hong, J. et al. Prominent seasonal variation in pulmonary embolism than deep vein thrombosis incidence: a Korean venous thrombosis epidemiology study. Korean J. Intern. Med. 35, 682–691 (2020).

    Article  PubMed  Google Scholar 

  79. Salehi, G., Sarraf, P. & Fatehi, F. Cerebral venous sinus thrombosis may follow a seasonal pattern. J. Stroke Cerebrovasc. Dis. 25, 2838–2843 (2016).

    Article  PubMed  Google Scholar 

  80. Chiu, H. H. & Whittaker, P. Venous thromboembolism in an industrial North American city: temporal distribution and association with particulate matter air pollution. PLoS ONE 8, e68829 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Signorelli, S. S. et al. Venous thromboembolism in hospital emergency room. A retrospective study on climatic effect. Environ. Res. 197, 110950 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Karjalainen, J. & Viitasalo, M. Fever and cardiac rhythm. Arch. Intern. Med. 146, 1169–1171 (1986).

    Article  CAS  PubMed  Google Scholar 

  83. Epstein, Y. & Yanovich, R. Heatstroke. N. Engl. J. Med. 380, 2449–2459 (2019).

    Article  PubMed  Google Scholar 

  84. Katayama, Y. et al. Increased plaque rupture forms peak incidence of acute myocardial infarction in winter. Int. J. Cardiol. 320, 18–22 (2020).

    Article  PubMed  Google Scholar 

  85. Niu, Z., Liu, F., Yu, H., Wu, S. & Xiang, H. Association between exposure to ambient air pollution and hospital admission, incidence, and mortality of stroke: an updated systematic review and meta-analysis of more than 23 million participants. Environ. Health Prev. Med. 26, 15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alexeeff, S. E., Liao, N. S., Liu, X., Van Den Eeden, S. K. & Sidney, S. Long-term PM2.5 exposure and risks of ischemic heart disease and stroke events: review and meta-analysis. J. Am. Heart Assoc. 10, e016890 (2021).

    Article  PubMed  Google Scholar 

  87. Wolf, K. et al. Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: a pooled analysis of six European cohorts within the ELAPSE project. Lancet Planet. Health 5, e620–e632 (2021).

    Article  PubMed  Google Scholar 

  88. Zhang, Z. et al. Long-term particulate matter exposure and incidence of arrhythmias: a cohort study. J. Am. Heart Assoc. 9, e016885 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. GBD 2019 Diabetes and Air Pollution Collaborators. Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2.5 air pollution, 1990-2019: an analysis of data from the Global Burden of Disease Study 2019. Lancet Planet. Health 6, e586–e600 (2022).

    Article  Google Scholar 

  90. Zhang, S. et al. Exposure to air pollution during pre-hypertension and subsequent hypertension, cardiovascular disease, and death: a trajectory analysis of the UK Biobank cohort. Environ. Health Perspect. 131, 17008 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Sun, Q. et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation 119, 538–546 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Schwartz, J. et al. Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax 60, 455–461 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gulcebi, M. I. et al. Climate change and epilepsy: insights from clinical and basic science studies. Epilepsy Behav. 116, 107791 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wandschneider, B., Thompson, P. J., Vollmar, C. & Koepp, M. J. Frontal lobe function and structure in juvenile myoclonic epilepsy: a comprehensive review of neuropsychological and imaging data. Epilepsia 53, 2091–2098 (2012).

    Article  PubMed  Google Scholar 

  95. Abarrategui, B., Parejo-Carbonell, B., García García, M. E., Di Capua, D. & García-Morales, I. The cognitive phenotype of idiopathic generalized epilepsy. Epilepsy Behav. 89, 99–104 (2018).

    Article  PubMed  Google Scholar 

  96. McNicholas, O. C. et al. The influence of temperature and genomic variation on intracranial EEG measures in people with epilepsy. Brain Commun. 6, fcae269 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Fan, Y. et al. Ambient temperature and the risk of childhood epilepsy hospitalizations: potentially neglected risk of temperature extremes and modifying effects of air pollution. Epilepsy Behav. 159, 109992 (2024).

    Article  PubMed  Google Scholar 

  98. Barzon, L. et al. Early start of seasonal transmission and co-circulation of West Nile virus lineage 2 and a newly introduced lineage 1 strain, northern Italy, June 2022. Eur. Surveill. 27, 2200548 (2022).

    Article  CAS  Google Scholar 

  99. Ma, Y. et al. Linking climate and infectious disease trends in the Northern/Arctic Region. Sci. Rep. 11, 20678 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Song, S. et al. Epidemic changes and spatio-temporal analysis of Japanese encephalitis in Shaanxi Province, China, 2005-2018. Front. Public Health 8, 380 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Karki, S., Brown, W. M., Uelmen, J., Ruiz, M. O. & Smith, R. L. The drivers of West Nile virus human illness in the Chicago, Illinois, USA area: fine scale dynamic effects of weather, mosquito infection, social, and biological conditions. PLoS ONE 15, e0227160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mallya, S. et al. Factors associated with human West Nile virus infection in Ontario: a generalized linear mixed modelling approach. BMC Infect. Dis. 18, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Vezzani, A. et al. Infections, inflammation and epilepsy. Acta Neuropathol. 131, 211–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Misra, U. K., Tan, C. T. & Kalita, J. Viral encephalitis and epilepsy. Epilepsia 49 (Suppl. 6), 13–18 (2008).

    Article  PubMed  Google Scholar 

  105. Carrizosa Moog, J., Kakooza-Mwesige, A. & Tan, C. T. Epilepsy in the tropics: emerging etiologies. Seizure 44, 108–112 (2017).

    Article  PubMed  Google Scholar 

  106. Burrows, L. et al. Exploring epilepsy attendance at the emergency department and interventions which may reduce unnecessary attendances: a scoping review. Seizure 76, 39–46 (2020).

    Article  PubMed  Google Scholar 

  107. Brooks, K., Landeg, O., Kovats, S., Sewell, M. & OConnell, E. Heatwaves, hospitals and health system resilience in England: a qualitative assessment of frontline perspectives from the hot summer of 2019. BMJ Open 13, e068298 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Erens, B. et al. Public attitudes to, and behaviours taken during, hot weather by vulnerable groups: results from a national survey in England. BMC Public Health 21, 1631 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kiyohara, T., Hirata, M., Hori, T. & Akaike, N. Hypothalamic warm-sensitive neurons possess a tetrodotoxin-sensitive sodium channel with a high Q10. Neurosci. Res. 8, 48–53 (1990).

    Article  CAS  PubMed  Google Scholar 

  110. Fletcher, E. V., Kullmann, D. M. & Schorge, S. Alternative splicing modulates inactivation of type 1 voltage-gated sodium channels by toggling an amino acid in the first S3-S4 linker. J. Biol. Chem. 286, 36700–36708 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Peters, C., Rosch, R. E., Hughes, E. & Ruben, P. C. Temperature-dependent changes in neuronal dynamics in a patient with an SCN1A mutation and hyperthermia induced seizures. Sci. Rep. 6, 31879 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sahai, N., Bard, A. M., Devinsky, O. & Kalume, F. Disordered autonomic function during exposure to moderate heat or exercise in a mouse model of Dravet syndrome. Neurobiol. Dis. 147, 105154 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Teran, F. A. et al. Seizures cause prolonged impairment of ventilation, CO2 chemoreception and thermoregulation. J. Neurosci. 43, 4959–4971 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pollandt, S. & Bleck, T. P. Thermoregulation in epilepsy. Handb. Clin. Neurol. 157, 737–747 (2018).

    Article  PubMed  Google Scholar 

  115. Marchal, R. & Rheims, S. Assessing epilepsy-related autonomic manifestations: beyond cardiac and respiratory investigations. Neurophysiol. Clin. 53, 102850 (2023).

    Article  PubMed  Google Scholar 

  116. Fountain, N. B., Kim, J. S. & Lee, S. I. Sleep deprivation activates epileptiform discharges independent of the activating effects of sleep. J. Clin. Neurophysiol. 15, 69–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Gibbon, F. M., Maccormac, E. & Gringras, P. Sleep and epilepsy: unfortunate bedfellows. Arch. Dis. Child. 104, 189–192 (2019).

    Article  PubMed  Google Scholar 

  118. Keezer, M. R., Sisodiya, S. M. & Sander, J. W. Comorbidities of epilepsy: current concepts and future perspectives. Lancet Neurol. 15, 106–115 (2016).

    Article  PubMed  Google Scholar 

  119. Cerulli Irelli, E. et al. Frailty as a comprehensive health measure beyond seizure control in patients with epilepsy: a cross-sectional study. Epilepsia 65, 1658–1667 (2024).

    Article  PubMed  Google Scholar 

  120. Subota, A. et al. Risk factors for dementia development, frailty, and mortality in older adults with epilepsy — a population-based analysis. Epilepsy Behav. 120, 108006 (2021).

    Article  PubMed  Google Scholar 

  121. Wilhelm-Leen, E. R., Hall, Y. N., Deboer, I. H. & Chertow, G. M. Vitamin D deficiency and frailty in older Americans. J. Intern. Med. 268, 171–180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Masterson, V. 9 ways AI is helping tackle climate change. World Economic Forum https://www.weforum.org/agenda/2024/02/ai-combat-climate-change/ (2024).

  123. Explainer: how AI helps combat climate change. United Nations https://news.un.org/en/story/2023/11/1143187 (2023).

  124. Bloomfield, P. S., Clutton-Brock, P., Pencheon, E., Magnusson, J. & Karpathakis, K. Artificial intelligence in the NHS: climate and emissions. J. Clim. Change Health 4, 100056 (2021).

    Article  Google Scholar 

  125. Au Yeung, J., Wang, Y. Y., Kraljevic, Z. & Teo, J. T. H. Artificial intelligence (AI) for neurologists: do digital neurones dream of electric sheep? Practical Neurol. 23, 476 (2023).

    Article  Google Scholar 

  126. Wang, M. et al. Application of neuroscience tools in building construction — an interdisciplinary analysis. Front. Neurosci. 16, 895666 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bud Craig, A. D. Central neural substrates involved in temperature discrimination, thermal pain, thermal comfort, and thermoregulatory behavior. Handb. Clin. Neurol. 156, 317–338 (2018).

    Article  PubMed  Google Scholar 

  128. Nagashima, K., Tokizawa, K. & Marui, S. Thermal comfort. Handb. Clin. Neurol. 156, 249–260 (2018).

    Article  PubMed  Google Scholar 

  129. Flouris, A. D. Functional architecture of behavioural thermoregulation. Eur. J. Appl. Physiol. 111, 1–8 (2011).

    Article  PubMed  Google Scholar 

  130. Maintaining thermal comfort in a changing climate. CIBSE Journal https://www.cibsejournal.com/technical/ensuring-thermal-comfort-in-a-warming-climate/ (2020).

  131. Malik, A. et al. The potential for indoor fans to change air conditioning use while maintaining human thermal comfort during hot weather: an analysis of energy demand and associated greenhouse gas emissions. Lancet Planet. Health 6, e301–e309 (2022).

    Article  PubMed  Google Scholar 

  132. Jay, O. et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 398, 709–724 (2021).

    Article  PubMed  Google Scholar 

  133. Jiang, W. I. et al. Early-life stress triggers long-lasting organismal resilience and longevity via tetraspanin. Sci. Adv. 10, eadj3880 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kisliouk, T., Rosenberg, T., Ben-Nun, O., Ruzal, M. & Meiri, N. Early-life m6A RNA demethylation by fat mass and obesity-associated protein (FTO) influences resilience or vulnerability to heat stress later in life. eNeuro 7, ENEURO.0549-19.2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Abuhussain, M. A. et al. Bibliometric analysis and literature review of occupant thermal comfort in naturally ventilated buildings (1995-2021). Environ. Sci. Pollut. Res. Int. 31, 56983–57001 (2024).

    Article  PubMed  Google Scholar 

  136. Schweiker, M. et al. The scales project, a cross-national dataset on the interpretation of thermal perception scales. Sci. Data 6, 289 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Van Someren, E. J. et al. The experienced temperature sensitivity and regulation survey. Temperature 3, 59–76 (2016).

    Article  Google Scholar 

  138. Christogianni, A., Bibb, R. & Filingeri, D. Body temperatures, thermal comfort, and neuropsychological responses to air temperatures ranging between 12 °C and 39 °C in people with multiple sclerosis. Physiol. Behav. 266, 114179 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. McCabe, S. M., Abbiss, C. R., Libert, J. P. & Bach, V. Functional links between thermoregulation and sleep in children with neurodevelopmental and chronic health conditions. Front. Psychiatry 13, 866951 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Buoite Stella, A. et al. Effects of a cooling vest with sham condition on walking capacity in heat-sensitive people with multiple sclerosis. Eur. J. Appl. Physiol. 120, 2467–2476 (2020).

    Article  PubMed  Google Scholar 

  141. Mneimneh, F., Moussalem, C., Ghaddar, N., Ghali, K. & Omeis, I. Experimental study on the effectiveness of the PCM cooling vest in persons with paraplegia of varying levels. J. Therm. Biol. 91, 102634 (2020).

    Article  PubMed  Google Scholar 

  142. Christogianni, A., Bibb, R. & Filingeri, D. High-density thermal sensitivity maps of the body of people with multiple sclerosis: implications for inclusive personal comfort systems. J. Therm. Biol. 123, 103887 (2024).

    Article  PubMed  Google Scholar 

  143. Tartarini, F., Cooper, P., Fleming, R. & Batterham, M. Indoor air temperature and agitation of nursing home residents with dementia. Am. J. Alzheimers Dis. Other Dement. 32, 272–281 (2017).

    Article  Google Scholar 

  144. Coon, E. A. & Low, P. A. Thermoregulation in Parkinson disease. Handb. Clin. Neurol. 157, 715–725 (2018).

    Article  PubMed  Google Scholar 

  145. Fealey, R. D. Thermoregulation in neuropathies. Handb. Clin. Neurol. 157, 777–787 (2018).

    Article  PubMed  Google Scholar 

  146. Cramer, M. N., Gagnon, D., Laitano, O. & Crandall, C. G. Human temperature regulation under heat stress in health, disease, and injury. Physiol. Rev. 102, 1907–1989 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. van Gils-Schmidt, H. J. & Salloch, S. Physicians’ duty to climate protection as an expression of their professional identity: a defence from Korsgaard’s neo-Kantian moral framework. J. Med. Ethics 50, 368 (2024).

    Article  PubMed  Google Scholar 

  148. Stevenson, T. J. et al. Disrupted seasonal biology impacts health, food security and ecosystems. Proc. Biol. Sci. 282, 20151453 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Fuller, R. et al. Pollution and health: a progress update. Lancet Planet. Health 6, e535–e547 (2022).

    Article  PubMed  Google Scholar 

  150. Omary, M. B. et al. World gastroenterology organisation — gut commentary series on digestive health and climate change. Gut 72, 2193–2196 (2023).

    Article  PubMed  Google Scholar 

  151. Yonezawa, S. & Bono, H. Meta-analysis of heat-stressed transcriptomes using the public gene expression database from human and mouse samples. Int. J. Mol. Sci. 24, 13444 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Duarte, C. M., Jaremko, Ł. & Jaremko, M. Hypothesis: potentially systemic impacts of elevated CO2 on the human proteome and health. Front. Public Health 8, 543322 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Powers, T. The origin story of rapamycin: systemic bias in biomedical research and Cold War politics. Mol. Biol. Cell 33, pe7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Qiu, Y. et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science 378, 523–532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Abela, L. et al. Neurodevelopmental and synaptic defects in DNAJC6 parkinsonism, amenable to gene therapy. Brain 147, 2023–2037 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  156. GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 23, 344–381 (2024).

    Article  Google Scholar 

  157. The Lancet Digital Health.Curbing the carbon footprint of health care. Lancet Digit. Health 5, e848 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Delivering a net zero NHS. NHS England https://www.england.nhs.uk/greenernhs/a-net-zero-nhs/ (2022).

  159. Sustainability of health systems. PGEU https://www.pgeu.eu/sustainability-of-health-systems/ (2024).

  160. EuroHealthNet: mission and vision. EuroHealthNet https://eurohealthnet.eu/about-us/mission-and-vision/ (2024).

  161. Wyns, A. et al. A review of sustainable healthcare: policy, practice, and research with a focus on safety and quality. Australian Commission on Safety and Quality in Health Care https://www.safetyandquality.gov.au/sites/default/files/2022-10/a_review_of_sustainable_healthcare_-_june_2022.pdf (2022).

  162. Harris, M., Dadwal, V. & Syed, S. B. Review of the reverse innovation series in globalization and health — where are we and what else is needed? Glob. Health 16, 26 (2020).

    Article  Google Scholar 

  163. Grealey, J. et al. The carbon footprint of bioinformatics. Mol. Biol. Evol. 39, msac034 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Karliner, J., Slotterback, S., Boyd, R. Ashby, B. & Steele, K. Health care’s climate footprint: how the health sector contributes to the global climate crisis and opportunities for action. Health Care Without Harm https://global.noharm.org/media/4370/download?inline=1 (2019).

  165. Picano, E., Mangia, C. & D’Andrea, A. Climate change, carbon dioxide emissions, and medical imaging contribution. J. Clin. Med. 12, 215 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Walkley, S. The carbon cost of AI. Carbon Literacy Project https://carbonliteracy.com/the-carbon-cost-of-ai/ (2023).

  167. Subaiya, S., Hogg, E. & Roberts, I. Reducing the environmental impact of trials: a comparison of the carbon footprint of the CRASH-1 and CRASH-2 clinical trials. Trials 12, 31 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Lannelongue, L. et al. GREENER principles for environmentally sustainable computational science. Nat. Comput. Sci. 3, 514–521 (2023).

    Article  PubMed  Google Scholar 

  169. Atwoli, L. et al. Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. N. Engl. J. Med. 385, 1134–1137 (2021).

    Article  PubMed  Google Scholar 

  170. Beggs, P. J. & Zhang, Y. The Lancet Countdown on health and climate change: Australia a world leader in neglecting its responsibilities. Med. J. Aust. 219, 528–529 (2023).

    Article  PubMed  Google Scholar 

  171. Ginn, S. Environmental impact of journal distribution is complex. BMJ 343, d7374 (2011).

    Article  PubMed  Google Scholar 

  172. Li, C., Pagani, K., Eberhart, Z., Plumptre, I. & Wiss, K. The environmental impact of printed journals in dermatology. J. Am. Acad. Dermatol. https://doi.org/10.1016/j.jaad.2023.11.010 (2023).

  173. Ralph, O., Sullivan, G., Chan, E. & Olaitan, O. K. Environmental benefits of electronic table of contents of journals over print. Cureus 15, e47907 (2023).

    PubMed  PubMed Central  Google Scholar 

  174. Dhawan, A., Rammelkamp, Z., Kayandabila, J. & Surapaneni, V. L. Ethical considerations of climate justice and international air travel in short-term electives in global health. Am. J. Trop. Med. Hyg. 109, 506–510 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Concordat for the environmental sustainability of research and innovation practice. Wellcome https://wellcome.org/what-we-do/our-work/environmental-sustainability-concordat (2024).

  176. LEAF — Laboratory Efficiency Assessment Framework. Sustainable UCL https://www.ucl.ac.uk/sustainable/take-action/staff-action/leaf-laboratory-efficiency-assessment-framework (2024).

  177. Maibach, E. W. et al. Do Americans understand that global warming is harmful to human health? Evidence from a national survey. Ann. Glob. Health 81, 396–409 (2015).

    Article  PubMed  Google Scholar 

  178. Maibach, E. W., Sarfaty, M., Mitchell, M. & Gould, R. Limiting global warming to 1.5 to 2.0 °C — a unique and necessary role for health professionals. PLoS Med. 16, e1002804 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Sustainability Q&A. General Medical Council https://www.gmc-uk.org/professional-standards/learning-materials/sustainability-questions-and-answers (2024).

  180. Kotcher, J., Patel, L., Wheat, S., Philipsborn, R. & Maibach, E. How to communicate about climate change with patients. BMJ 385, e079831 (2024).

    Article  PubMed  Google Scholar 

  181. Behl, K. Alternating hemiplegia of childhood: challenges in a changing climate. Nat. Rev. Neurol. https://doi.org/10.1038/s41582-024-01054-7 (2025).

  182. Climate Change Commission: terms of reference. International League Against Epilepsy (ILAE) https://www.ilae.org/about-ilae/structure-and-working-groups/commissions-and-sections/climate-change-commission (2022).

  183. Rodrigues, P. et al. Passive heat therapy: a promising preventive measure for people at risk of adverse health outcomes during heat extremes. J. Appl. Physiol. 136, 677–694 (2024).

    Article  PubMed  Google Scholar 

  184. Parsons, I. T. et al. Improvements in orthostatic tolerance with exercise are augmented by heat acclimation: a randomized controlled trial. Med. Sci. Sports Exerc. 56, 644–654 (2024).

    CAS  PubMed  Google Scholar 

  185. Deshayes, T. A., Sodabi, D. G. A., Dubord, M. & Gagnon, D. Shifting focus: time to look beyond the classic physiological adaptations associated with human heat acclimation. Exp. Physiol. 109, 335–349 (2024).

    Article  PubMed  Google Scholar 

  186. Brown, H. A. et al. Seasonal heat acclimatisation in healthy adults: a systematic review. Sports Med. 52, 2111–2128 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Waldock, K. A. M. et al. Exercise heat acclimation and post-exercise hot water immersion improve resting and exercise responses to heat stress in the elderly. J. Sci. Med. Sport 24, 774–780 (2021).

    Article  PubMed  Google Scholar 

  188. Lewandowski, R. E. et al. Climate emotions, thoughts, and plans among US adolescents and young adults: a cross-sectional descriptive survey and analysis by political party identification and self-reported exposure to severe weather events. Lancet Planet. Health 11, e879–e893 (2024).

    Article  Google Scholar 

  189. Nowak, P. M., Bis, A., Rusin, M. & Woźniakiewicz, M. Carbon footprint of the analytical laboratory and the three-dimensional approach to its reduction. Green Anal. Chem. 4, 100051 (2023).

    Article  Google Scholar 

  190. Roletto, A. et al. The environmental impact of energy consumption and carbon emissions in radiology departments: a systematic review. Eur. Radiol. Exp. 8, 35 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Sengupta, R. World needs to rethink internet use post COVID-19. Down To Earth https://www.downtoearth.org.in/environment-news/world-needs-to-rethink-internet-use-post-covid-19-75256 (2021).

  192. Lindsey, R. Climate change: atmospheric carbon dioxide. Climate.gov https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (2024).

  193. United Nations Environment Programme & Climate and Clean Air Coalition. Global Methane Assessment: 2030 Baseline Report Summary For Policymakers (UNEP, 2022).

  194. Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C (IPCC, 2018).

  195. Allan, R. P. et al. Frequently asked questions. IPCC https://www.ipcc.ch/report/ar6/wg1/downloads/faqs/IPCC_AR6_WGI_FAQ_Chapter_01.pdf (2021).

  196. Copernicus: 2023 is the hottest year on record, with global temperatures close to the 1.5 °C limit. Copernicus. https://climate.copernicus.eu/copernicus-2023-hottest-year-record (2024).

  197. 2024 was the world’s warmest year on record. National Oceanic and Atmospheric Administration https://www.noaa.gov/news/2024-was-worlds-warmest-year-on-record (2025).

  198. Masson-Delmotte, V. et al. Climate change 2021: the physical science basis. IPCC https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FullReport.pdf (2022).

  199. Pörtner, H.-O. et al. Climate change 2022: impacts, adaptation and vulnerability. IPCC https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FullReport.pdf (2023).

Download references

Acknowledgements

M.I.G., S.L. and S.M.S. are supported by the Epilepsy Society. S.L. is also supported by the National Brain Appeal Innovation Fund. S.M.S. and A.M. were supported by a University College London Grand Challenges Climate Crisis Special Initiative award (number 156425). E.M. is supported by National Institutes of Health grant R35 NS 097343. D.-J.D. is supported by the UK Dementia Research Institute (award number UKDRI-7005) through the UK Dementia Research Institute, principally funded by the UK Medical Research Council and the National Institute for Health and Care Research Oxford Health Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

S.M.S. conceptualized the article. M.I.G., S.L. and S.M.S. researched data for the article. S.M.S. wrote the original draft with contributions from the other authors. K.B., D.-J.D., E.M., M.M., A.M., M.T., D.J.W. and S.M.S. reviewed and/or edited the manuscript before submission. M.I.G., S.L. and E.M. prepared the figures.

Corresponding author

Correspondence to Sanjay M. Sisodiya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks M. Wasay, A. Ranta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Carbon Footprint Calculator: https://calculator.carbonfootprint.com/calculator.aspx

UK Health Alliance on Climate Change: https://ukhealthalliance.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulcebi, M.I., Leddy, S., Behl, K. et al. Imperatives and co-benefits of research into climate change and neurological disease. Nat Rev Neurol (2025). https://doi.org/10.1038/s41582-024-01055-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41582-024-01055-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing