[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting common disease pathomechanisms to treat amyotrophic lateral sclerosis

Abstract

The motor neuron disease amyotrophic lateral sclerosis (ALS) is a devastating condition with limited treatment options. The past few years have witnessed a ramping up of translational ALS research, offering the prospect of disease-modifying therapies. Although breakthroughs using gene-targeted approaches have shown potential to treat patients with specific disease-causing mutations, the applicability of such therapies remains restricted to a minority of individuals. Therapies targeting more general mechanisms that underlie motor neuron pathology in ALS are therefore of considerable interest. ALS pathology is associated with disruption to a complex array of key cellular pathways, including RNA processing, proteostasis, metabolism and inflammation. This Review details attempts to restore cellular homeostasis by targeting these pathways in order to develop effective, broadly-applicable ALS therapeutics.

Key points

  • Amyotrophic lateral sclerosis (ALS) is a complex clinico-pathological syndrome with multiple pathways contributing to disease pathogenesis that are potentially suitable for therapeutic targeting.

  • RNA-binding protein mislocalisation results in changes to RNA splicing, particularly cryptic exon inclusion, which can be therapeutically targeted by antisense oligonucleotides.

  • Improving protein homeostasis, from folding to transport to degradation, can decrease protein aggregates.

  • Boosting cellular bioenergetics can support neuronal health by correcting dysregulation of metabolic pathways, including mitochondrial dysfunction.

  • Targeting neuronal and/or systemic inflammation has the potential to confer neuroprotection.

  • A combination of therapies is likely to be required to address ALS pathogenesis using a personalized medicine approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Therapeutic targeting of cryptic exon inclusion.
Fig. 2: Suspected mechanisms that lead to the formation of protein aggregates in amyotrophic lateral sclerosis.
Fig. 3: Key cellular metabolic pathways and potential therapeutic targets in amyotrophic lateral sclerosis.
Fig. 4: Molecular pathways of neuroinflammation associated with amyotrophic lateral sclerosis.

Similar content being viewed by others

References

  1. Feldman, E. L. et al. Amyotrophic lateral sclerosis. Lancet 400, 1363–1380 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Marin, B. et al. Age-specific ALS incidence: a dose-response meta-analysis. Eur. J. Epidemiol. 33, 621–634 (2018).

    PubMed  Google Scholar 

  3. Mejzini, R. et al. ALS genetics, mechanisms, and therapeutics: where are we now? Front. Neurosci. 13, 1310 (2019).

    PubMed  PubMed Central  Google Scholar 

  4. Andrews, J. A. et al. Real-world evidence of riluzole effectiveness in treating amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 509–518 (2020).

    CAS  PubMed  Google Scholar 

  5. The Writing Group, Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 16, 505–512 (2017).

    Google Scholar 

  6. Pioro, E. P. et al. Dextromethorphan plus ultra low-dose quinidine reduces pseudobulbar affect. Ann. Neurol. 68, 693–702 (2010).

    CAS  PubMed  Google Scholar 

  7. Finkel, R. S. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388, 3017–3026 (2016).

    CAS  PubMed  Google Scholar 

  8. Miller, T. M. et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 387, 1099–1110 (2022).

    CAS  PubMed  Google Scholar 

  9. Chaytow, H., Faller, K. M. E., Huang, Y. T. & Gillingwater, T. H. Spinal muscular atrophy: from approved therapies to future therapeutic targets for personalized medicine. Cell Rep. Med. 2, 100346 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Day, J. W. et al. Advances and limitations for the treatment of spinal muscular atrophy. BMC Pediatr. 22, 632 (2022).

    PubMed  PubMed Central  Google Scholar 

  11. Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 3, 17071 (2017).

    PubMed  Google Scholar 

  12. Goutman, S. A. et al. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 21, 465–479 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Fernandopulle, M. S., Lippincott-Schwartz, J. & Ward, M. E. RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nat. Neurosci. 24, 622–632 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nikom, D. & Zheng, S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat. Rev. Neurosci. 24, 457–473 (2023).

    CAS  PubMed  Google Scholar 

  16. Butti, Z. & Patten, S. A. RNA dysregulation in amyotrophic lateral sclerosis. Front. Genet. 9, 712 (2018).

    CAS  PubMed  Google Scholar 

  17. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar, V., Hasan, G. M. & Hassan, M. I. Unraveling the role of RNA mediated toxicity of C9orf72 repeats in C9-FTD/ALS. Front. Neurosci. 11, 711 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Freibaum, B. D., Chitta, R. K., High, A. A. & Taylor, J. P. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J. Proteome Res. 9, 1104–1120 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ling, J. P., Pletnikova, O., Troncoso, J. C. & Wong, P. C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349, 650–655 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang, K. et al. Loss of TDP-43 splicing repression occurs early in the aging population and is associated with Alzheimer’s disease neuropathologic changes and cognitive decline. Acta Neuropathol. 147, 4 (2023).

    PubMed  Google Scholar 

  24. Irwin, K. E. et al. A fluid biomarker reveals loss of TDP-43 splicing repression in presymptomatic ALS-FTD. Nat. Med. 30, 382–393 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Uemura, Y. et al. Matrin3 binds directly to intronic pyrimidine-rich sequences and controls alternative splicing. Genes. Cell 22, 785–798 (2017).

    CAS  Google Scholar 

  26. Koike, Y. et al. TDP-43 and other hnRNPs regulate cryptic exon inclusion of a key ALS/FTD risk gene, UNC13A. PLoS Biol. 21, e3002028 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Humphrey, J. et al. FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Res. 48, 6889–6905 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Donde, A. et al. Splicing repression is a major function of TDP-43 in motor neurons. Acta Neuropathol. 138, 813–826 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Klim, J. R. et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat. Neurosci. 22, 167–179 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Melamed, Z. et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat. Neurosci. 22, 180–190 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. López-Erauskin, J. et al. Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation. Nat. Neurosci. 27, 34–47 (2024).

    PubMed  Google Scholar 

  32. Theunissen, F. et al. Novel STMN2 variant linked to amyotrophic lateral sclerosis risk and clinical phenotype. Front. Aging Neurosci. 13, 658226 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Prudencio, M. et al. Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. J. Clin. Invest. 130, 6080–6092 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gagliardi, D. et al. Stathmins and motor neuron diseases: pathophysiology and therapeutic targets. Biomedicines 10, 711 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Baughn, M. W. et al. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science 379, 1140–1149 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma, X. R. et al. TDP-43 represses cryptic exon inclusion in the FTD-ALS gene UNC13A. Nature 603, 124–130 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Varoqueaux, F., Sons, M. S., Plomp, J. J. & Brose, N. Aberrant morphology and residual transmitter release at the Munc13-deficient mouse neuromuscular synapse. Mol. Cell Biol. 25, 5973–5984 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl Acad. Sci. USA 99, 9037–9042 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Henstridge, C. M. et al. Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta Neuropathol. 135, 213–226 (2018).

    CAS  PubMed  Google Scholar 

  40. van Eijk, R. P. A. et al. Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials. Neurology 89, 1915–1922 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. QurAlis Press Team. QurAlis reveals newest program targeting UNC13A RNA mis-splicing incorporating its FlexASO™ platform. PR Newswire https://www.prnewswire.com/news-releases/quralis-reveals-newest-program-targeting-unc13a-rna-mis-splicing-incorporating-its-flexaso-platform-301775891.html (2023).

  42. Magana, J. J., Velazquez-Perez, L. & Cisneros, B. Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol. Neurobiol. 47, 90–104 (2013).

    CAS  PubMed  Google Scholar 

  43. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Scoles, D. R. et al. ALS-associated genes in SCA2 mouse spinal cord transcriptomes. Hum. Mol. Genet. 29, 1658–1672 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Becker, L. A. et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544, 367–371 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Scoles, D. R. et al. A quantitative high-throughput screen identifies compounds that lower expression of the SCA2-and ALS-associated gene ATXN2. J. Biol. Chem. 298, 102228 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zeballos, C. M. et al. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. Nat. Commun. 14, 6492 (2023).

    Google Scholar 

  48. Biogen Press Team. Biogen and ionis announce topline phase 1/2 study results of investigational drug in amyotrophic lateral sclerosis. Biogen https://investors.biogen.com/news-releases/news-release-details/biogen-and-ionis-announce-topline-phase-12-study-results (2024).

  49. Wilson, D. M. et al. Hallmarks of neurodegenerative diseases. Cell 186, 693–714 (2023).

    CAS  PubMed  Google Scholar 

  50. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    CAS  PubMed  Google Scholar 

  51. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    CAS  PubMed  Google Scholar 

  52. Zuo, X. et al. TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nat. Struct. Mol. Biol. 28, 132–142 (2021).

    CAS  PubMed  Google Scholar 

  53. Briese, M. et al. Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function. Acta Neuropathol. Commun. 8, 116 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fallini, C., Bassell, G. J. & Rossoll, W. The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum. Mol. Genet. 21, 3703–3718 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Herzog, J. J., Deshpande, M., Shapiro, L., Rodal, A. A. & Paradis, S. TDP-43 misexpression causes defects in dendritic growth. Sci. Rep. 7, 15656 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Yasuda, K., Clatterbuck-Soper, S. F., Jackrel, M. E., Shorter, J. & Mili, S. FUS inclusions disrupt RNA localization by sequestering kinesin-1 and inhibiting microtubule detyrosination. J. Cell Biol. 216, 1015–1034 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cicardi, M. E., Marrone, L., Azzouz, M. & Trotti, D. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO J. 40, e106389 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sontag, E. M., Samant, R. S. & Frydman, J. Mechanisms and functions of spatial protein quality control. Annu. Rev. Biochem. 86, 97–122 (2017).

    CAS  PubMed  Google Scholar 

  59. Pilla, E., Schneider, K. & Bertolotti, A. Coping with protein quality control failure. Annu. Rev. Cell Dev. Biol. 33, 439–465 (2017).

    CAS  PubMed  Google Scholar 

  60. Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86, 193–224 (2017).

    CAS  PubMed  Google Scholar 

  61. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    CAS  PubMed  Google Scholar 

  62. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    CAS  PubMed  Google Scholar 

  63. Kinger, S. et al. Molecular chaperones’ potential against defective proteostasis of amyotrophic lateral sclerosis. Cells 12, 1302 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Batulan, Z. et al. High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J. Neurosci. 23, 5789–5798 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Brehme, M. et al. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 9, 1135–1150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gutsmann-Conrad, A., Heydari, A. R., You, S. & Richardson, A. The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects. Exp. Cell Res. 241, 404–413 (1998).

    CAS  PubMed  Google Scholar 

  67. Katz, M. et al. Mutations in heat shock protein beta-1 (HSPB1) are associated with a range of clinical phenotypes related to different patterns of motor neuron dysfunction: a case series. J. Neurol. Sci. 413, 116809 (2020).

    CAS  PubMed  Google Scholar 

  68. San Gil, R. et al. A transient protein folding response targets aggregation in the early phase of TDP-43-mediated neurodegeneration. Nat. Commun. 15, 1508 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, F. et al. Proximity proteomics of C9orf72 dipeptide repeat proteins identifies molecular chaperones as modifiers of poly-GA aggregation. Acta Neuropathol. Commun. 10, 22 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu, S. et al. Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition. Nat. Cell Biol. 24, 1378–1393 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cristofani, R. et al. The small heat shock protein B8 (HSPB8) efficiently removes aggregating species of dipeptides produced in C9ORF72-related neurodegenerative diseases. Cell Stress. Chaperones 23, 1–12 (2018).

    CAS  PubMed  Google Scholar 

  72. Crippa, V. et al. The chaperone HSPB8 reduces the accumulation of truncated TDP-43 species in cells and protects against TDP-43-mediated toxicity. Hum. Mol. Genet. 25, 3908–3924 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Crippa, V. et al. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases. Sci. Rep. 6, 22827 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mandrioli, J. et al. Proteostasis and ALS: protocol for a phase II, randomised, double-blind, placebo-controlled, multicentre clinical trial for colchicine in ALS (Co-ALS). BMJ Open. 9, e028486 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. Gianferrari, G. et al. Safety profile, biological andclinical effects of colchicine in ALS: results from a phase 2 multicenter, randomized, controlled, double-blind clinical trial. 34th International Symposium on ALS/MND (Amyotroph. Lateral Scler. Frontotemporal Degener., 2023).

  76. Kuta, R. et al. Depending on the stress, histone deacetylase inhibitors act as heat shock protein co-inducers in motor neurons and potentiate arimoclomol, exerting neuroprotection through multiple mechanisms in ALS models. Cell Stress. Chaperones 25, 173–191 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kalmar, B. et al. Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. J. Neurochem. 107, 339–350 (2008).

    CAS  PubMed  Google Scholar 

  78. Pelaez, M. C. et al. Reversal of cognitive deficits in FUSR521G amyotrophic lateral sclerosis mice by arimoclomol and a class I histone deacetylase inhibitor independent of heat shock protein induction. Neurotherapeutics 21, e00388 (2024).

    PubMed  PubMed Central  Google Scholar 

  79. Benatar, M. et al. Safety and efficacy of arimoclomol in patients with early amyotrophic lateral sclerosis (ORARIALS-01): a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Neurol. 23, 687–699 (2024).

    CAS  PubMed  Google Scholar 

  80. Shao, Q. et al. C9orf72 and smcr8 mutant mice reveal MTORC1 activation due to impaired lysosomal degradation and exocytosis. Autophagy 16, 1635–1650 (2020).

    CAS  PubMed  Google Scholar 

  81. Lan, Y., Sullivan, P. M. & Hu, F. SMCR8 negatively regulates AKT and MTORC1 signaling to modulate lysosome biogenesis and tissue homeostasis. Autophagy 15, 871–885 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Amick, J., Roczniak-Ferguson, A. & Ferguson, S. M. C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol. Biol. Cell 27, 3040–3051 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Beckers, J., Tharkeshwar, A. K. & Van Damme, P. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy 17, 3306–3322 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Beckers, J. et al. A toxic gain-of-function mechanism in C9orf72 ALS impairs the autophagy-lysosome pathway in neurons. Acta Neuropathol. Commun. 11, 151 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Deng, Z. et al. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 16, 917–931 (2020).

    CAS  PubMed  Google Scholar 

  86. Wong, Y. C. & Holzbaur, E. L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl Acad. Sci. USA 111, E4439–E4448 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Trist, B. G. et al. Co-deposition of SOD1, TDP-43 and p62 proteinopathies in ALS: evidence for multifaceted pathways underlying neurodegeneration. Acta Neuropathol. Commun. 10, 122 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Deng, H. X. et al. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann. Neurol. 67, 739–748 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gal, J., Strom, A. L., Kilty, R., Zhang, F. & Zhu, H. p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J. Biol. Chem. 282, 11068–11077 (2007).

    CAS  PubMed  Google Scholar 

  90. Caccamo, A. et al. Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J. Biol. Chem. 284, 27416–27424 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, I. F. et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc. Natl Acad. Sci. USA 109, 15024–15029 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Barmada, S. J. et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat. Chem. Biol. 10, 677–685 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Fox, J. H. et al. The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington’s disease. Mol. Neurodegener. 5, 26 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Ben-Sahra, I. & Manning, B. D. mTORC1 signaling and the metabolic control of cell growth. Curr. Opin. Cell Biol. 45, 72–82 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mandrioli, J. et al. Randomized, double-blind, placebo-controlled trial of rapamycin in amyotrophic lateral sclerosis. Nat. Commun. 14, 4970 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bahrami, F., Mekkawy, A. H., Badar, S., Morris, D. L. & Pourgholami, M. H. Monepantel antitumor activity is mediated through inhibition of major cell cycle and tumor growth signaling pathways. Am. J. Cancer Res. 11, 3098–3110 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Scarlatti, F. et al. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J. Biol. Chem. 279, 18384–18391 (2004).

    CAS  PubMed  Google Scholar 

  98. Thomas, S., Thurn, K. T., Bicaku, E., Marchion, D. C. & Munster, P. N. Addition of a histone deacetylase inhibitor redirects tamoxifen-treated breast cancer cells into apoptosis, which is opposed by the induction of autophagy. Breast Cancer Res. Treat. 130, 437–447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, I. F., Tsai, K. J. & Shen, C. K. Autophagy activation ameliorates neuronal pathogenesis of FTLD-U mice: a new light for treatment of TARDBP/TDP-43 proteinopathies. Autophagy 9, 239–240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bedlack, R. et al. ALSUntangled 59: tamoxifen. Amyotroph. Lateral Scler. Frontotemporal Degener. 22, 595–598 (2021).

    PubMed  Google Scholar 

  101. Li, Y. et al. Trehalose decreases mutant SOD1 expression and alleviates motor deficiency in early but not end-stage amyotrophic lateral sclerosis in a SOD1-G93A mouse model. Neuroscience 298, 12–25 (2015).

    CAS  PubMed  Google Scholar 

  102. Seelos Therapeutics Press Team. Seelos Therapeutics Provides Update on Top-Line Results from its Amyotrophic Lateral Sclerosis (ALS) Study with SLS-005 (IV Trehalose). Seelos https://seelos.irpass.com/profiles/investor/NewsPrint.asp?v=6&b=2376&ID=132175&m=rl&g=1201 (2024).

  103. Rojas-Prats, E. et al. Targeting nuclear protein TDP-43 by cell division cycle kinase 7 inhibitors: a new therapeutic approach for amyotrophic lateral sclerosis. Eur. J. Med. Chem. 210, 112968 (2021).

    CAS  PubMed  Google Scholar 

  104. Martinez-Gonzalez, L. et al. Tideglusib, a non-ATP competitive cnhibitor of GSK-3β as a drug candidate for the treatment of amyotrophic lateral sclerosis. Int. J. Mol. Sci. 22, e22168975 (2021).

    Google Scholar 

  105. Yang, W., Leystra-Lantz, C. & Strong, M. J. Upregulation of GSK3β expression in frontal and temporal cortex in ALS with cognitive impairment (ALSci). Brain Res. 1196, 131–139 (2008).

    CAS  PubMed  Google Scholar 

  106. Kametani, F. et al. Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem. Biophys. Res. Commun. 382, 405–409 (2009).

    CAS  PubMed  Google Scholar 

  107. Iguchi, Y. et al. IκB kinase phosphorylates cytoplasmic TDP-43 and promotes its proteasome degradation. J. Cell Biol. 223, e202302048 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Taylor, L. M. et al. Pathological phosphorylation of tau and TDP-43 by TTBK1 and TTBK2 drives neurodegeneration. Mol. Neurodegener. 13, 7 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Nonaka, T. et al. Phosphorylation of TAR DNA-binding protein of 43 kDa (TDP-43) by truncated casein kinase 1δ triggers mislocalization and accumulation of TDP-43. J. Biol. Chem. 291, 5473–5483 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gruijs da Silva, L. A. et al. Disease-linked TDP-43 hyperphosphorylation suppresses TDP-43 condensation and aggregation. EMBO J. 41, e108443 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Freibaum, B. D. et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129–133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, K. et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chou, C. C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228–239 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lin, Y. C. et al. Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway. Nat. Neurosci. 24, 1077–1088 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Yang, Y. et al. Nuclear transport proteins: structure, function, and disease relevance. Signal. Transduct. Target. Ther. 8, 425 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Coyne, A. N. et al. Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. Sci. Transl. Med. 13, eabe1923 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Grima, J. C. et al. Mutant huntingtin disrupts the nuclear pore complex. Neuron 94, 93–107 e106 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ederle, H. et al. Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1. Sci. Rep. 8, 7084 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Janse van Mantgem, M. R. et al. Prognostic value of weight loss in patients with amyotrophic lateral sclerosis: a population-based study. J. Neurol. Neurosurg. Psychiatry 91, 867–875 (2020).

    PubMed  Google Scholar 

  120. Peter, R. S. et al. Life course body mass index and risk and prognosis of amyotrophic lateral sclerosis: results from the ALS registry Swabia. Eur. J. Epidemiol. 32, 901–908 (2017).

    PubMed  Google Scholar 

  121. Mezoian, T. et al. Loss of appetite in amyotrophic lateral sclerosis is associated with weight loss and decreased calorie consumption independent of dysphagia. Muscle Nerve 61, 230–234 (2020).

    PubMed  Google Scholar 

  122. Ludolph, A. et al. Nutritional and metabolic factors in amyotrophic lateral sclerosis. Nat. Rev. Neurol. 19, 511–524 (2023).

    PubMed  Google Scholar 

  123. Gorges, M. et al. Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 88, 1033–1041 (2017).

    PubMed  Google Scholar 

  124. Marin, B. et al. Population-based evidence that survival in amyotrophic lateral sclerosis is related to weight loss at diagnosis. Neurodegener. Dis. 16, 225–234 (2016).

    PubMed  Google Scholar 

  125. Kasarskis, E. J., Berryman, S., Vanderleest, J. G., Schneider, A. R. & McClain, C. J. Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. Am. J. Clin. Nutr. 63, 130–137 (1996).

    CAS  PubMed  Google Scholar 

  126. Pagani, M. et al. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology 83, 1067–1074 (2014).

    CAS  PubMed  Google Scholar 

  127. Van Laere, K. et al. Value of 18fluorodeoxyglucose-positron-emission tomography in amyotrophic lateral sclerosis: a prospective study. JAMA Neurol. 71, 553–561 (2014).

    PubMed  Google Scholar 

  128. Garbuzova-Davis, S. et al. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS ONE 2, e1205 (2007).

    PubMed  PubMed Central  Google Scholar 

  129. Aronica, E. et al. Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex. Neurobiol. Dis. 74, 359–376 (2015).

    CAS  PubMed  Google Scholar 

  130. Lederer, C. W., Torrisi, A., Pantelidou, M., Santama, N. & Cavallaro, S. Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics 8, 26 (2007).

    PubMed  PubMed Central  Google Scholar 

  131. Raman, R. et al. Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxia-response and RNA processing functions. Neuropathol. Appl. Neurobiol. 41, 201–226 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, X. S., Simmons, Z., Liu, W., Boyer, P. J. & Connor, J. R. Differential expression of genes in amyotrophic lateral sclerosis revealed by profiling the post mortem cortex. Amyotroph. Lateral Scler. 7, 201–210 (2006).

    CAS  PubMed  Google Scholar 

  133. Scaricamazza, S. et al. Skeletal-muscle metabolic reprogramming in ALS-SOD1G93A mice predates disease onset and is a promising therapeutic target. iScience 23, 101087 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Matveeva, A. et al. Integrated analysis of transcriptomic and proteomic alterations in mouse models of ALS/FTD identify early metabolic adaptions with similarities to mitochondrial dysfunction disorders. Amyotroph. Lateral Scler. Frontotemporal Degener. 25, 135–149 (2024).

    CAS  PubMed  Google Scholar 

  135. Schonfeld, P. & Reiser, G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J. Cereb. Blood Flow. Metab. 33, 1493–1499 (2013).

    PubMed  PubMed Central  Google Scholar 

  136. Trabjerg, M. S. et al. Downregulating carnitine palmitoyl transferase 1 affects disease progression in the SOD1 G93A mouse model of ALS. Commun. Biol. 4, 509 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Manzo, E. et al. Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS. eLife 8, e45114 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Cai, R. et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J. Clin. Invest. 129, 4539–4549 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. Boyd, P. J. et al. Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy. PLoS Genet. 13, e1006744 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Chaytow, H. et al. Targeting phosphoglycerate kinase 1 with terazosin improves motor neuron phenotypes in multiple models of amyotrophic lateral sclerosis. EBioMedicine 83, 104202 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Palamiuc, L. et al. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol. Med. 7, 526–546 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Miquel, E. et al. Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. PLoS ONE 7, e34776 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tataranni, T. & Piccoli, C. Dichloroacetate (DCA) and cancer: an overview towards clinical applications. Oxid. Med. Cell Longev. 2019, 8201079 (2019).

    PubMed  PubMed Central  Google Scholar 

  144. Stacpoole, P. W., Martyniuk, C. J., James, M. O. & Calcutt, N. A. Dichloroacetate-induced peripheral neuropathy. Int. Rev. Neurobiol. 145, 211–238 (2019).

    CAS  PubMed  Google Scholar 

  145. Saddik, M., Gamble, J., Witters, L. A. & Lopaschuk, G. D. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J. Biol. Chem. 268, 25836–25845 (1993).

    CAS  PubMed  Google Scholar 

  146. Genin, E. C. et al. CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis. EMBO Mol. Med. 8, 58–72 (2016).

    CAS  PubMed  Google Scholar 

  147. Wang, T. et al. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metab. 33, 531–546 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Chung, M. J. & Suh, Y. L. Ultrastructural changes of mitochondria in the skeletal muscle of patients with amyotrophic lateral sclerosis. Ultrastruct. Pathol. 26, 3–7 (2002).

    PubMed  Google Scholar 

  149. Kong, J. & Xu, Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J. Neurosci. 18, 3241–3250 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Magrane, J., Cortez, C., Gan, W. B. & Manfredi, G. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum. Mol. Genet. 23, 1413–1424 (2014).

    CAS  PubMed  Google Scholar 

  151. Sasaki, S. & Iwata, M. Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 66, 10–16 (2007).

    PubMed  Google Scholar 

  152. Wang, W. et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 22, 869–878 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Shteinfer-Kuzmine, A. et al. A VDAC1-derived N-terminal peptide inhibits mutant SOD1-VDAC1 interactions and toxicity in the SOD1 model of ALS. Front. Cell Neurosci. 13, 346 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Borthwick, G. M., Johnson, M. A., Ince, P. G., Shaw, P. J. & Turnbull, D. M. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann. Neurol. 46, 787–790 (1999).

    CAS  PubMed  Google Scholar 

  155. Wiedemann, F. R., Manfredi, G., Mawrin, C., Beal, M. F. & Schon, E. A. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J. Neurochem. 80, 616–625 (2002).

    CAS  PubMed  Google Scholar 

  156. Tsai, Y. L. et al. ALS/FTD-associated protein FUS induces mitochondrial dysfunction by preferentially sequestering respiratory chain complex mRNAs. Genes. Dev. 34, 785–805 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jung, C., Higgins, C. M. & Xu, Z. Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J. Neurochem. 83, 535–545 (2002).

    CAS  PubMed  Google Scholar 

  158. Kirkinezos, I. G. et al. Cytochrome c association with the inner mitochondrial membrane is impaired in the CNS of G93A-SOD1 mice. J. Neurosci. 25, 164–172 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Mattiazzi, M. et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J. Biol. Chem. 277, 29626–29633 (2002).

    CAS  PubMed  Google Scholar 

  160. Deng, J. et al. FUS interacts with ATP synthase β subunit and induces mitochondrial unfolded protein response in cellular and animal models. Proc. Natl Acad. Sci. USA 115, E9678–E9686 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Niedzielska, E. et al. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol. 53, 4094–4125 (2016).

    CAS  PubMed  Google Scholar 

  162. Chang, Y. et al. Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS ONE 3, e2849 (2008).

    PubMed  PubMed Central  Google Scholar 

  163. Shaw, P. J., Ince, P. G., Falkous, G. & Mantle, D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann. Neurol. 38, 691–695 (1995).

    CAS  PubMed  Google Scholar 

  164. Shibata, N. et al. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res. 917, 97–104 (2001).

    CAS  PubMed  Google Scholar 

  165. Deng, J. et al. FUS interacts with HSP60 to promote mitochondrial damage. PLoS Genet. 11, e1005357 (2015).

    PubMed  PubMed Central  Google Scholar 

  166. Dafinca, R. et al. Impairment of mitochondrial calcium buffering links mutations in C9ORF72 and TARDBP in iPS-derived motor neurons from patients with ALS/FTD. Stem Cell Rep. 14, 892–908 (2020).

    CAS  Google Scholar 

  167. Parone, P. A. et al. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J. Neurosci. 33, 4657–4671 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Walters, G. C. & Usachev, Y. M. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front. Cell Dev. Biol. 11, 1094356 (2023).

    PubMed  PubMed Central  Google Scholar 

  169. Evans, C. S. & Holzbaur, E. L. F. Autophagy and mitophagy in ALS. Neurobiol. Dis. 122, 35–40 (2019).

    CAS  PubMed  Google Scholar 

  170. Matthews, R. T., Yang, L., Browne, S., Baik, M. & Beal, M. F. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc. Natl Acad. Sci. USA 95, 8892–8897 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Miquel, E. et al. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free. Radic. Biol. Med. 70, 204–213 (2014).

    CAS  PubMed  Google Scholar 

  172. Cassina, P. et al. Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J. Neurosci. 28, 4115–4122 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Kaufmann, P. et al. Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann. Neurol. 66, 235–244 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Bhagavan, H. N. & Chopra, R. K. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion 7, S78–S88 (2007).

    CAS  PubMed  Google Scholar 

  175. Lenglet, T. et al. A phase II-III trial of olesoxime in subjects with amyotrophic lateral sclerosis. Eur. J. Neurol. 21, 529–536 (2014).

    CAS  PubMed  Google Scholar 

  176. Roy, A. et al. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson’s disease. PLoS ONE 7, e38113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ryu, H. et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J. Neurochem. 93, 1087–1098 (2005).

    CAS  PubMed  Google Scholar 

  178. Rodrigues, C. M., Sola, S., Sharpe, J. C., Moura, J. J. & Steer, C. J. Tauroursodeoxycholic acid prevents Bax-induced membrane perturbation and cytochrome c release in isolated mitochondria. Biochemistry 42, 3070–3080 (2003).

    CAS  PubMed  Google Scholar 

  179. Paganoni, S. et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N. Engl. J. Med. 383, 919–930 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. van den Berg, L. H. et al. Results from a global phase 3 trial evaluating an oral, fixed-dose combination of sodium phenylbutyrate and taurursodiol in amyotrophic lateral sclerosis (PHOENIX). American Academy of Neurology Annual Meeting. (2024).

  181. Zhang, H. et al. Role of Sirtuin 3 in degenerative diseases of the central nervous system. Biomolecules 13, 735 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Hor, J. H. et al. ALS motor neurons exhibit hallmark metabolic defects that are rescued by SIRT3 activation. Cell Death Differ. 28, 1379–1397 (2021).

    CAS  PubMed  Google Scholar 

  183. Zhang, W., Xiao, D., Mao, Q. & Xia, H. Role of neuroinflammation in neurodegeneration development. Signal. Transduct. Target. Ther. 8, 267 (2023).

    PubMed  PubMed Central  Google Scholar 

  184. Swarup, V. et al. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J. Exp. Med. 208, 2429–2447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Olesen, M. N. et al. Inflammatory profiles relate to survival in subtypes of amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm 7, e697 (2020).

    PubMed  PubMed Central  Google Scholar 

  186. Hu, Y. et al. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: a meta-analysis study. Sci. Rep. 7, 9094 (2017).

    PubMed  PubMed Central  Google Scholar 

  187. Schiffer, D., Cordera, S., Cavalla, P. & Migheli, A. Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis. J. Neurol. Sci. 139, 27–33 (1996).

    PubMed  Google Scholar 

  188. Kushner, P. D., Stephenson, D. T. & Wright, S. Reactive astrogliosis is widespread in the subcortical white matter of amyotrophic lateral sclerosis brain. J. Neuropathol. Exp. Neurol. 50, 263–277 (1991).

    CAS  PubMed  Google Scholar 

  189. Henkel, J. S. et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann. Neurol. 55, 221–235 (2004).

    CAS  PubMed  Google Scholar 

  190. Turner, M. R. et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol. Dis. 15, 601–609 (2004).

    CAS  PubMed  Google Scholar 

  191. Kia, A., McAvoy, K., Krishnamurthy, K., Trotti, D. & Pasinelli, P. Astrocytes expressing ALS-linked mutant FUS induce motor neuron death through release of tumor necrosis factor-alpha. Glia 66, 1016–1033 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615–622 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhao, C. et al. Mutant C9orf72 human iPSC-derived astrocytes cause non-cell autonomous motor neuron pathophysiology. Glia 68, 1046–1064 (2020).

    PubMed  Google Scholar 

  194. Meyer, K. et al. Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc. Natl Acad. Sci. USA 111, 829–832 (2014).

    CAS  PubMed  Google Scholar 

  195. Vahsen, B. F. et al. C9orf72-ALS human iPSC microglia are pro-inflammatory and toxic to co-cultured motor neurons via MMP9. Nat. Commun. 14, 5898 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Arredondo, C. et al. Excessive release of inorganic polyphosphate by ALS/FTD astrocytes causes non-cell-autonomous toxicity to motoneurons. Neuron 110, 1656–1670 e1612 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Cuyvers, E. et al. Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s disease and frontotemporal dementia. Neurobiol. Aging 35, 726.e711–729 (2014).

    Google Scholar 

  199. Brettschneider, J. et al. Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol. 123, 395–407 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Guttenplan, K. A. et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat. Commun. 11, 3753 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Frakes, A. E. et al. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81, 1009–1023 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    CAS  PubMed  Google Scholar 

  203. Jagtap, Y. A. et al. Disturb mitochondrial associated proteostasis: neurodegeneration and imperfect ageing. Front. Cell Dev. Biol. 11, 1146564 (2023).

    PubMed  PubMed Central  Google Scholar 

  204. Mészáros, Á. et al. Neurovascular inflammaging in health and disease. Cells 9, 1614 (2020).

    PubMed  PubMed Central  Google Scholar 

  205. Johann, S. et al. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia 63, 2260–2273 (2015).

    PubMed  Google Scholar 

  206. Deora, V. et al. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia 68, 407–421 (2020).

    PubMed  Google Scholar 

  207. Shu, X. et al. Negative regulation of TREM2-mediated C9orf72 poly-GA clearance by the NLRP3 inflammasome. Cell Rep. 42, 112133 (2023).

    CAS  PubMed  Google Scholar 

  208. Ventyx Press Team. Ventyx Biosciences Announces Initiation of Dosing in a Phase I Trial of VTX3232, a Novel CNS-Penetrant NLRP3 Inhibitor. Ventyx Biosciences https://ir.ventyxbio.com/news-releases/news-release-details/ventyx-biosciences-announces-initiation-dosing-phase-1-trial (2023).

  209. Li, H. et al. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur. J. Pharmacol. 928, 175091 (2022).

    CAS  PubMed  Google Scholar 

  210. Zhao, W. et al. Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia 58, 231–243 (2010).

    PubMed  PubMed Central  Google Scholar 

  211. Gelevski, D. et al. Safety and activity of anti-CD14 antibody IC14 (atibuclimab) in ALS: experience with expanded access protocol. Muscle Nerve 67, 354–362 (2023).

    CAS  PubMed  Google Scholar 

  212. Henderson, R. D. et al. Phase 1b dose-escalation, safety, and pharmacokinetic study of IC14, a monoclonal antibody against CD14, for the treatment of amyotrophic lateral sclerosis. Medicine 100, e27421 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Mifflin, L. et al. A RIPK1-regulated inflammatory microglial state in amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 118, e2025102118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Mifflin, L., Ofengeim, D. & Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug. Discov. 19, 553–571 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Ito, Y. et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353, 603–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Xu, D. et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell 174, 1477–1491 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Wang, H. et al. NEK1-mediated retromer trafficking promotes blood-brain barrier integrity by regulating glucose metabolism and RIPK1 activation. Nat. Commun. 12, 4826 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Riebeling, T. et al. Primidone blocks RIPK1-driven cell death and inflammation. Cell Death Differ. 28, 1610–1626 (2021).

    CAS  PubMed  Google Scholar 

  219. Wei, J. et al. Elevated peripheral levels of receptor-interacting protein kinase 1 (RIPK1) and IL-8 as biomarkers of human amyotrophic lateral sclerosis. Signal. Transduct. Target. Ther. 8, 451 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Vissers, M. et al. Safety, pharmacokinetics and target engagement of novel RIPK1 inhibitor SAR443060 (DNL747) for neurodegenerative disorders: randomized, placebo-controlled, double-blind phase I/Ib studies in healthy subjects and patients. Clin. Transl. Sci. 15, 2010–2023 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. McCauley, M. E. et al. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature 585, 96–101 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Yu, C. H. et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183, 636–649 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Brenner, D. et al. Heterozygous Tbk1 loss has opposing effects in early and late stages of ALS in mice. J. Exp. Med. 216, 267–278 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Humphries, F. et al. Targeting STING oligomerization with small-molecule inhibitors. Proc. Natl Acad. Sci. USA 120, e2305420120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Zamiri, K. et al. Therapy of autoimmune inflammation in sporadic amyotrophic lateral sclerosis: dimethyl fumarate and H-151 downregulate inflammatory cytokines in the cGAS–STING pathway. FASEB J. 37, e23068 (2023).

    CAS  PubMed  Google Scholar 

  227. McCombe, P. A., Lee, J. D., Woodruff, T. M. & Henderson, R. D. The peripheral immune system and amyotrophic lateral sclerosis. Front. Neurol. 11, 279 (2020).

    PubMed  PubMed Central  Google Scholar 

  228. Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    CAS  PubMed  Google Scholar 

  229. Engelhardt, J. I., Tajti, J. & Appel, S. H. Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis. Arch. Neurol. 50, 30–36 (1993).

    CAS  PubMed  Google Scholar 

  230. Troost, D., van den Oord, J. J., de Jong, J. M. & Swaab, D. F. Lymphocytic infiltration in the spinal cord of patients with amyotrophic lateral sclerosis. Clin. Neuropathol. 8, 289–294 (1989).

    CAS  PubMed  Google Scholar 

  231. Garofalo, S. et al. Natural killer cells modulate motor neuron-immune cell cross talk in models of amyotrophic lateral sclerosis. Nat. Commun. 11, 1773 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Steinruecke, M. et al. Blood–CNS barrier dysfunction in amyotrophic lateral sclerosis: proposed mechanisms and clinical implications. J. Cereb. Blood Flow. Metab. 43, 642–654 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Chiu, I. M. et al. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc. Natl Acad. Sci. USA 105, 17913–17918 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Coque, E. et al. Cytotoxic CD8+ T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons. Proc. Natl Acad. Sci. USA 116, 2312–2317 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Garofalo, S. et al. Blocking immune cell infiltration of the central nervous system to tame neuroinflammation in amyotrophic lateral sclerosis. Brain Behav. Immun. 105, 1–14 (2022).

    CAS  PubMed  Google Scholar 

  236. Mantovani, S. et al. Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. J. Neuroimmunol. 210, 73–79 (2009).

    CAS  PubMed  Google Scholar 

  237. Murdock, B. J. et al. Correlation of peripheral immunity with rapid amyotrophic lateral sclerosis progression. JAMA Neurol. 74, 1446–1454 (2017).

    PubMed  PubMed Central  Google Scholar 

  238. Du, Y. et al. Increased activation ability of monocytes from ALS patients. Exp. Neurol. 328, 113259 (2020).

    CAS  PubMed  Google Scholar 

  239. Zhao, W. et al. Characterization of gene expression phenotype in amyotrophic lateral sclerosis monocytes. JAMA Neurol. 74, 677–685, (2017).

    PubMed  PubMed Central  Google Scholar 

  240. Milligan, C. et al. Tocilizumab is safe and tolerable and reduces C-reactive protein concentrations in the plasma and cerebrospinal fluid of ALS patients. Muscle Nerve 64, 309–320 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Maier, A. et al. Interleukin-1 antagonist anakinra in amyotrophic lateral sclerosis-a pilot study. PLoS ONE 10, e0139684 (2015).

    PubMed  PubMed Central  Google Scholar 

  242. Carpanini, S. M., Torvell, M. & Morgan, B. P. Therapeutic inhibition of the complement system in diseases of the central nervous system. Front. Immunol. 10, 362 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Sta, M. et al. Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation. Neurobiol. Dis. 42, 211–220 (2011).

    CAS  PubMed  Google Scholar 

  244. Donnenfeld, H., Kascsak, R. J. & Bartfeld, H. Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. J. Neuroimmunol. 6, 51–57 (1984).

    CAS  PubMed  Google Scholar 

  245. Bahia El Idrissi, N. et al. Complement activation at the motor end-plates in amyotrophic lateral sclerosis. J. Neuroinflammation 13, 72 (2016).

    PubMed  PubMed Central  Google Scholar 

  246. Kjaeldgaard, A. L. et al. Complement profiles in patients with amyotrophic lateral sclerosis: a prospective observational cohort study. J. Inflamm. Res. 14, 1043–1053 (2021).

    PubMed  PubMed Central  Google Scholar 

  247. Lobsiger, C. S. et al. C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice. Proc. Natl Acad. Sci. USA 110, E4385–E4392 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Genge, A. et al. Efficacy and safety of ravulizumab, a complement C5 inhibitor, in adults with amyotrophic lateral sclerosis: a randomized clinical trial. JAMA Neurol. 80, 1089–1097 (2023).

    PubMed  PubMed Central  Google Scholar 

  249. Olson, K. E., Mosley, R. L. & Gendelman, H. E. The potential for treg-enhancing therapies in nervous system pathologies. Clin. Exp. Immunol. 211, 108–121 (2023).

    PubMed  Google Scholar 

  250. Beers, D. R. et al. ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight 2, e89530 (2017).

    PubMed  PubMed Central  Google Scholar 

  251. Sheean, R. K. et al. Association of regulatory T-cell expansion with progression of amyotrophic lateral sclerosis: a study of humans and a transgenic mouse model. JAMA Neurol. 75, 681–689, (2018).

    PubMed  PubMed Central  Google Scholar 

  252. Henkel, J. S. et al. Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol. Med. 5, 64–79 (2013).

    CAS  PubMed  Google Scholar 

  253. Harris, F., Berdugo, Y. A. & Tree, T. IL-2-based approaches to Treg enhancement. Clin. Exp. Immunol. 211, 149–163 (2023).

    PubMed  Google Scholar 

  254. Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924–1927 (2006).

    CAS  PubMed  Google Scholar 

  255. Camu, W. et al. Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): a phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine 59, 102844 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Giovannelli, I. et al. Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2. Brain Commun. 3, fcab141 (2021).

    PubMed  PubMed Central  Google Scholar 

  257. Nigel, L. & The MIROCALS consortium. Low-dose interleukin-2 extends survival in ALS: results of the MIROCALS study. Association of British Neurologists: annual meeting. (J. Neurol. Neurosurg. Psychiatry, 2023).

  258. Bomprezzi, R. Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: an overview. Ther. Adv. Neurol. Disord. 8, 20–30 (2015).

    PubMed  PubMed Central  Google Scholar 

  259. Vucic, S. et al. Safety and efficacy of dimethyl fumarate in ALS: randomised controlled study. Ann. Clin. Transl. Neurol. 8, 1991–1999 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Beers, D. R. et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134, 1293–1314 (2011).

    PubMed  PubMed Central  Google Scholar 

  261. Alsuliman, A. et al. A robust, good manufacturing practice-compliant, clinical-scale procedure to generate regulatory T cells from patients with amyotrophic lateral sclerosis for adoptive cell therapy. Cytotherapy 18, 1312–1324 (2016).

    CAS  PubMed  Google Scholar 

  262. Thonhoff, J. R. et al. Expanded autologous regulatory T-lymphocyte infusions in ALS: a phase I, first-in-human study. Neurol. Neuroimmunol. Neuroinflamm 5, e465 (2018).

    PubMed  PubMed Central  Google Scholar 

  263. Thonhoff, J. R. et al. Combined regulatory T-lymphocyte and IL-2 treatment is safe, tolerable, and biologically active for 1 year in persons with amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000200019 (2022).

  264. Meucci, N., Nobile-Orazio, E. & Scarlato, G. Intravenous immunoglobulin therapy in amyotrophic lateral sclerosis. J. Neurol. 243, 117–120 (1996).

    CAS  PubMed  Google Scholar 

  265. Beghi, E. et al. Effect of RNS60 in amyotrophic lateral sclerosis: a phase II multicentre, randomized, double-blind, placebo-controlled trial. Eur. J. Neurol. 30, 69–86 (2023).

    PubMed  Google Scholar 

  266. Miller, R. G. et al. Phase 2B randomized controlled trial of NP001 in amyotrophic lateral sclerosis: pre-specified and post hoc analyses. Muscle Nerve 66, 39–49 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Crisafulli, S. G., Brajkovic, S., Cipolat Mis, M. S., Parente, V. & Corti, S. Therapeutic strategies under development targeting inflammatory mechanisms in amyotrophic lateral sclerosis. Mol. Neurobiol. 55, 2789–2813 (2018).

    CAS  PubMed  Google Scholar 

  268. Trias, E. et al. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis. J. Neuroinflammation 13, 177 (2016).

    PubMed  PubMed Central  Google Scholar 

  269. Mora, J. S. et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 5–14 (2020).

    CAS  PubMed  Google Scholar 

  270. Mora, J. S. et al. Long-term survival analysis of masitinib in amyotrophic lateral sclerosis. Ther. Adv. Neurol. Disord. 14, 17562864211030365 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Morata-Tarifa, C., Azkona, G., Glass, J., Mazzini, L. & Sanchez-Pernaute, R. Looking backward to move forward: a meta-analysis of stem cell therapy in amyotrophic lateral sclerosis. NPJ Regen. Med. 6, 20 (2021).

    PubMed  PubMed Central  Google Scholar 

  272. Wang, Y., Chen, X., Cao, W. & Shi, Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat. Immunol. 15, 1009–1016 (2014).

    CAS  PubMed  Google Scholar 

  273. Sasaki, M. et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J. Neurosci. 29, 14932–14941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Cudkowicz, M. E. et al. A randomized placebo-controlled phase 3 study of mesenchymal stem cells induced to secrete high levels of neurotrophic factors in amyotrophic lateral sclerosis. Muscle Nerve 65, 291–302 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Oh, K. W. et al. Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann. Neurol. 84, 361–373 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/search?cond=Amyotrophic%20Lateral%20Sclerosis (2024)

  277. Motor Neurone Disease Association. Treatment trials. MND Association. https://www.mndassociation.org/research/clinical-trials/treatment-trials (accessed 6 September 2024).

  278. Vahsen, B. F. et al. Non-neuronal cells in amyotrophic lateral sclerosis — from pathogenesis to biomarkers. Nat. Rev. Neurol. 17, 333–348 (2021).

    PubMed  Google Scholar 

  279. Bendotti, C. et al. Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 485–495 (2020).

    CAS  PubMed  Google Scholar 

  280. Maranzano, A. et al. Regional spreading pattern is associated with clinical phenotype in amyotrophic lateral sclerosis. Brain 146, 4105–4116 (2023).

    PubMed  PubMed Central  Google Scholar 

  281. Goyal, N. A. et al. Addressing heterogeneity in amyotrophic lateral sclerosis clinical trials. Muscle Nerve 62, 156–166 (2020).

    PubMed  PubMed Central  Google Scholar 

  282. Ramamoorthy, D. et al. Identifying patterns in amyotrophic lateral sclerosis progression from sparse longitudinal data. Nat. Comput. Sci. 2, 605–616 (2022).

    PubMed  PubMed Central  Google Scholar 

  283. Richards, D., Morren, J. A. & Pioro, E. P. Time to diagnosis and factors affecting diagnostic delay in amyotrophic lateral sclerosis. J. Neurol. Sci. 417, 117054 (2020).

    PubMed  Google Scholar 

  284. McMackin, R., Bede, P., Ingre, C., Malaspina, A. & Hardiman, O. Biomarkers in amyotrophic lateral sclerosis: current status and future prospects. Nat. Rev. Neurol. 19, 754–768 (2023).

    PubMed  Google Scholar 

  285. Blair, H. A. Tofersen: first approval. Drugs 83, 1039–1043 (2023).

    CAS  PubMed  Google Scholar 

  286. Jiang, J. et al. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90, 535–550 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Liu, Y. et al. Preclinical evaluation of WVE-004, aninvestigational stereopure oligonucleotide forthe treatment of C9orf72-associated ALS or FTD. Mol. Ther. Nucleic Acids 28, 558–570 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Sareen, D. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5, 208ra149 (2013).

    PubMed  PubMed Central  Google Scholar 

  289. Rothstein, J. D. et al. G2C4 targeting antisense oligonucleotides potently mitigate TDP-43 dysfunction in human C9orf72 ALS/FTD induced pluripotent stem cell derived neurons. Acta Neuropathol. 147, 1 (2023).

    PubMed  PubMed Central  Google Scholar 

  290. Sattler, R. et al. Roadmap for C9ORF72 in frontotemporal dementia and amyotrophic lateral sclerosis: report on the C9ORF72 FTD/ALS summit. Neurol. Ther. 12, 1821–1843 (2023).

    PubMed  PubMed Central  Google Scholar 

  291. Pallmann, P. et al. Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Med. 16, 29 (2018).

    PubMed  PubMed Central  Google Scholar 

  292. Kiernan, M. C. et al. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat. Rev. Neurol. 17, 104–118 (2021).

    PubMed  Google Scholar 

  293. Hop, P. J. et al. Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Sci. Transl. Med. 14, eabj0264 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Gatto, N. et al. Directly converted astrocytes retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease. Aging Cell 20, e13281 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the funders for their support. K.M.E.F. is supported by an Academy of Medical Sciences Starter Grant for Clinical Lecturers and a Medical Research Council Clinician Scientist Fellowship/Motor Neurone Disease Association Lady Edith Wolfson Clinical Fellowship. H.C. is funded by a LifeArc pathfinder grant. T.H.G. acknowledges funding support relevant to the topic of this Review from Motor Neuron Disease Scotland, My Name’5 Doddie Foundation and LifeArc.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Thomas H. Gillingwater.

Ethics declarations

Competing interests

T.H.G. has provided advisory services to Novartis and Roche and serves on motor neuron disease advisory boards for LifeArc.

Peer review

Peer review information

Nature Reviews Neurology thanks Merit Cudkowicz, Letizia Mazzini, who co-reviewed with Fabiola De Marchi, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faller, K.M.E., Chaytow, H. & Gillingwater, T.H. Targeting common disease pathomechanisms to treat amyotrophic lateral sclerosis. Nat Rev Neurol 21, 86–102 (2025). https://doi.org/10.1038/s41582-024-01049-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-024-01049-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing