Vibrotactile Display of Flight Attitude with Combination of Multiple Coding Parameters
<p>Vibrotactile actuator.</p> "> Figure 2
<p>The arrangement of distribution of tactors around the torso and prototype of hlthe designed vibrotactile vest. In frontal of body, five tactors are located on the lower abdomen, upper abdomen, slightly below the chest, middle of chest and below of the clavicle respectively. In back of body, five tactors are located on the hip above, central spine, right shoulder, left shoulder, and cervical spine respectively. In the left or right side of body, five tactors, from down to up, are located on hipbone above, rib, oxter, chest and shoulder respectively.</p> "> Figure 3
<p>Overview of vibrotactile system for cueing flight attitude. (<b>a</b>) System block diagram of vibrotactile TSAS and Tactor arrangement around the torso of pilot. The controller receive flight attitude information from the geomagnetic sensor and activate vibrotactile vest to vibrate in the pattern corresponding to the attitude; (<b>b</b>) Schematic diagram of encoding flight states for different tactor columns; (<b>c</b>) Definition of Flight attitude information of aircraft.</p> "> Figure 4
<p>Schematic diagram of tactile apparent motion.</p> "> Figure 5
<p>A subject during the experiment.</p> "> Figure 6
<p>Schematic diagram of coding methods with combination of two parameters: (<b>a</b>) location and intensity (LI); (<b>b</b>) location and rhythm(LR); (<b>c</b>) location andmode(LM). For the convenience of labelling angel intervals, five degrees in vertical coordinate indicates interval [5, 10) in Table 3, 10 indicates [10, 15), and so forth. The cueing time is maximum time to convey a vibrotactile pattern. Different colour blocks represent tactors locating at different sites in a column.</p> "> Figure 7
<p>Recognition accuracy and reaction time (s) for each coding method in Experiment 1. Error bars indicate standard error.</p> "> Figure 8
<p>Schematic diagram of coding methods with combination of three parameters: (<b>a</b>) location, rhythm of times and intensity (LRI1); (<b>b</b>) location, rhythm of duration and intensity (LRI2); (<b>c</b>) location, rhythm of times and intensity (LRI3); (<b>d</b>) location, rhythm and mode (LRM). For the convenience of labelling angel intervals, five degrees in vertical coordinate indicates the interval [5, 10) in <a href="#applsci-07-01291-t003" class="html-table">Table 3</a>, 10 indicates [10, 15) and so forth.</p> "> Figure 9
<p>Recognition accuracy and reaction time (s) for each coding method in experiment 2. Error bars indicate standard error.</p> "> Figure 10
<p>Information transfer rate for different coding methods; the error bars indicate standard error.</p> "> Figure 11
<p>The curve of recognition accuracy change with set angle in preferred coding method. Error bars indicate standard error.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vibrotactile Actuators
2.2. Design of Wearing Vest
2.3. Tactile Coding Parameters
3. Psychophysical Experiments
3.1. Participants
3.2. Experimental Design
3.3. General Procedures
3.4. Experiment 1
3.4.1. Vibrotactile Coding Design
3.4.2. Experimental Results
3.5. Experiment 2
3.5.1. Vibrotactile Coding Design
3.5.2. Experimental Results
4. Discussion
4.1. Comparisons with Previous Work
4.2. Limitations of our Work
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Newman, D.G.; FAICD, A. An Overview of Spatial Disorientation as a Factor in Aviation Accidents and Incidents; Australian Transport Safety Bureau: Canberra, Australia, 2007.
- Van Erp, J.B.; Self, B.P. Tactile Displays for Orientation, Navigation and Communication in Air, Sea and Land Environments; North Atlantic Treaty Organisation, Research & Technology Organisation: Neuilly sur Seine, France, 2008. [Google Scholar]
- Rupert, A.H. An instrumentation solution for reducing spatial disorientation mishaps. IEEE Eng. Med. Biol. Mag. 2000, 19, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kaber, D.B. Examining the Effects of Conformal Terrain Features in Advanced Head-Up Displays on Flight Performance and Pilot Situation Awareness. Hum. Factors Ergon. Manuf. Serv. Ind. 2014, 24, 386–402. [Google Scholar] [CrossRef]
- Rupert, A.H.; Lawson, B.D.; Basso, J.E. Tactile Situation Awareness System Recent Developments for Aviation. Proc. Hum. Factors Ergon. Soc. Ann. Meet. 2016, 60, 722–726. [Google Scholar] [CrossRef]
- Payette, J.; Hayward, V.; Ramstein, C.; Bergeron, D. Evaluation of a force feedback (haptic) computer pointing device in zero gravity. In Proceedings of the ASME Dynamcis Systems and Control Division; American Society of Mechanical Engineers: New York, NY, USA, 1996; Volume 58, pp. 547–553. [Google Scholar]
- Traylor, R.; Tan, H.Z. Development of a wearable haptic display for situation awareness in altered-gravity environment: Some initial findings. In Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Orlando, FL, USA, 24–25 March 2002; pp. 159–164. [Google Scholar]
- Van Erp, J.B.; van Veen, H.A. Touch down: the effect of artificial touch cues on orientation in microgravity. Neurosci. Lett. 2006, 404, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Wickens, C.D. Processing resources and attention. In Multiple-Task Performance; CRC Press: Boca Raton, FL, USA, 1991; pp. 3–34. [Google Scholar]
- Wickens, C.D.; Liu, Y. Codes and modalities in multiple resources: A success and a qualification. Hum. Factors J. Hum. Factors Ergon. Soc. 1988, 30, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Heuten, W.; Henze, N.; Boll, S.; Pielot, M. Tactile wayfinder: A non-visual support system for wayfinding. In Proceedings of the 5th Nordic Conference on Human—Computer Interaction: Building Bridges, Lund, Sweden, 20–22 October 2008; ACM: New York, NY, USA, 2008; pp. 172–181. [Google Scholar]
- Van Erp, J.B.; Van Veen, H.A. Vibrotactile in-vehicle navigation system. Transp. Res. Part F Traffic Psychol. Behav. 2004, 7, 247–256. [Google Scholar] [CrossRef]
- Ho, C.; Tan, H.Z.; Spence, C. Using spatial vibrotactile cues to direct visual attention in driving scenes. Transp. Res. Part F Traffic Psychol. Behav. 2005, 8, 397–412. [Google Scholar] [CrossRef]
- Carrera, A.; Alonso, A.; Rosa, R.D.L.; Abril, E. Sensing Performance of a Vibrotactile Glove for Deaf-Blind People. Appl. Sci. 2017, 7, 317. [Google Scholar] [CrossRef]
- Scott, J.J.; Gray, R. A Comparison of Tactile, Visual, and Auditory Warnings for Rear-End Collision Prevention in Simulated Driving. Hum. Factors J. Hum. Factors Ergon. Soc. 2008, 50, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.; Wasilewski, K. Design and evaluation of a vibrotactile seat to improve spatial awareness while driving. In Proceedings of the 2010 IEEE Haptics Symposium, Waltham, MA, USA, 25–26 March 2010. [Google Scholar]
- Flores, G.; Kurniawan, S.; Manduchi, R.; Martinson, E.; Morales, L.M.; Sisbot, E.A. Vibrotactile Guidance for Wayfinding of Blind Walkers. IEEE Trans. Haptics 2015, 8, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Cardin, S.; Vexo, F.; Thalmann, D. Vibro-tactile interface for enhancing piloting abilities during long term flight. J. Robot. Mechatron. 2006, 18, 381–391. [Google Scholar] [CrossRef]
- Kim, Y.; Harders, M.; Gassert, R. Identification of Vibrotactile Patterns Encoding Obstacle Distance Information. IEEE Trans. Haptics 2015, 8, 298–305. [Google Scholar] [CrossRef] [PubMed]
- McGrath, B.J.; Estrada, A.; Braithwaite, M.G.; Raj, A.K.; Rupert, A.H. Tactile Situation Awareness System Flight Demonstration; Technical Report, DTIC Document; Defense Technical Information Center: Fort Belvoir, VA, USA, 2004. [Google Scholar]
- Tan, H.Z.; Durlach, N.I.; Reed, C.M.; Rabinowitz, W.M. Information transmission with a multifinger tactual display. Atten. Percept. Psychophys. 1999, 61, 993–1008. [Google Scholar] [CrossRef]
- Tan, H.Z. A Haptic Back Display for Attentional and Directional Cueing. Haptics-e 2003, 3, 1–20. [Google Scholar]
- Novich, S.D.; Eagleman, D.M. Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput. Exp. Brain Res. 2015, 233, 2777–2788. [Google Scholar] [CrossRef] [PubMed]
- Saddiki-Traki, F.; Tremblay, N.; Tremblay, R.W.; Derraz, S.; El-Khamlichi, A.; Harrisson, M. Differences between the tactile sensitivity on the anterior torso of normal individuals and those having suffered complete transection of the spinal cord. Somatosens. Mot. Res. 1999, 16, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S. Intensive and Extensive Aspects of Tactile Sensitivity as a Function of Body Part, Sex and Laterality. In Proceedings of the first International Symposium on the Skin Senses, Tallahassee, FL, USA, March 1966; pp. 195–218. [Google Scholar]
- Van Erp, J.B. Vibrotactile spatial acuity on the torso: Effects of location and timing parameters. In Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Pisa, Italy, 18–20 March 2005; pp. 80–85. [Google Scholar]
- Van Erp, J.B. Presenting directions with a vibrotactile torso display. Ergonomics 2005, 48, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Van Erp, J.B.; Van Veen, H.A.; Jansen, C.; Dobbins, T. Waypoint navigation with a vibrotactile waist belt. ACM Trans. Appl. Percept. 2005, 2, 106–117. [Google Scholar] [CrossRef]
- Alluisi, E.A.; Warm, J.S. Things that go together: A review of stimulus-response compatibility and related effects. Adv. Psychol. 1990, 65, 3–30. [Google Scholar]
- Cholewiak, R.W.; Collins, A.A. The generation of vibrotactile patterns on a linear array: Influences of body site, time, and presentation mode. Percept. Psychophys. 2000, 62, 1220–1235. [Google Scholar] [CrossRef] [PubMed]
- Na, L. Optimization of Vibrotactile Device Experimental Study on Perception Characteristics. Ph.D. Thesis, Southeast University, Nanjing, China, 2016. [Google Scholar]
- Sachs, R.M.; Miller, J.D.; Grant, K.W. Perceived magnitude of multiple electrocutaneous pulses. Atten. Percept. Psychophys. 1980, 28, 255–262. [Google Scholar] [CrossRef]
- Kirman, J.H. Tactile apparent movement: The effects of interstimulus onset interval and stimulus duration. Atten. Percept. Psychophys. 1974, 15, 1–6. [Google Scholar] [CrossRef]
- Hayward, V. A brief taxonomy of tactile illusions and demonstrations that can be done in a hardware store. Brain Res. Bull. 2008, 75, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Lederman, S.J.; Jones, L.A. Tactile and Haptic Illusions. IEEE Trans. Haptics 2011, 4, 273–294. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.R.; Ramoser, H.; McFarland, D.J.; Pfurtscheller, G. EEG-based communication: improved accuracy by response verification. IEEE Trans. Rehabil. Eng. 1998, 6, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Gescheider, G. The Classical Psychophysical Methods. In Psychophysics: The Fundamentals, 3rd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1997; Chapter 3. [Google Scholar]
- Eriksson, L.; van Erp, J.; Carlander, O.; Levin, B.; van Veen, H.; Veltman, H. Vibrotactile and visual threat cueing with high G threat intercept in dynamic flight simulation. Proc. Hum. Factors Ergon. Soc. Ann. Meet. 2006, 50, 1547–1551. [Google Scholar] [CrossRef]
- Hoh, R.H.; Mitchell, D.G. Handling-qualities specification-a functional requirement for the flight control system. In Advances in Aircraft Flight Control; CRC Press: Boca Raton, FL, USA, 1996; pp. 3–33. [Google Scholar]
Group | Ranges of Angle (Degree) | Flight Status |
---|---|---|
≥90 | Emergency | |
5 | [70, 80) [80, 90) | Acrobatic flight |
4 | [50, 60) [60, 70) | |
3 | [35, 40) [40, 45) [45, 50) | |
2 | [20, 25) [25, 30) [30, 35) | Normal flight |
1 | [05, 10) [10, 15) [15,20) | |
[0, 5) | Steady flight |
Parameters for Single Tactor | Vibrating location (P), Intensity (I), Rhythm (R) |
Parameters for Multiple Tactors | Vibrating mode (M) |
CM(I) | CM(J) | Mean Difference/I-J(Z) | Sig |
---|---|---|---|
LI | LR | −0.3580 * | 0.000 |
LI | LM | −0.2420 * | 0.005 |
LR | LM | 0.1160 * | 0.122 |
CM(I) | CM(J) | Mean Difference/I-J(Z) | Sig |
---|---|---|---|
LR | LRI1 | −0.17367 * | 0.004 |
LR | LRI2 | −0.00610 | 0.916 |
LR | LRI3 | −0.11890 * | 0.043 |
LRI1 | LRI2 | 0.17976 * | 0.000 |
LRI1 | LRI3 | 0.05476 | 0.219 |
LRI2 | LRI3 | −0.12500 * | 0.007 |
PRM | PRI1 | 0.01424 | 0.694 |
Source | Quadratic Sum | Dof | Mean Square | F | Sig |
---|---|---|---|---|---|
States | 0.019 | 3 | 0.006 | 0.197 | 0.898 |
Locations | 0.281 | 3 | 0.094 | 2.970 | 0.032 |
Rhythms | 0.109 | 2 | 0.054 | 1.721 | 0.181 |
States × Locations | 0.323 | 9 | 0.036 | 1.136 | 0.337 |
States × Rhythms | 0.121 | 6 | 0.020 | 0.638 | 0.700 |
Locations × Rhythms | 0.049 | 4 | 0.012 | 0.385 | 0.819 |
States × Locations × Rhythms | 0.292 | 12 | 0.024 | 0.770 | 0.681 |
TSASs | Tactor Arrangement | Number of Used Tactors | Coding Methods | Resolution /Degree |
---|---|---|---|---|
This work | 4 × 5 matrix vest | 20 | Coding with LRM | 5 |
[3] | 8 × 5 matrix vest | 40 | Coding with LI | 5 |
[18] | 8-tactor belt | 8 | Coding with L | Simple information |
[39] | 60-tactor jacket | 60 | Coding with L | 30 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Q.; Wu, J.; Wu, M. Vibrotactile Display of Flight Attitude with Combination of Multiple Coding Parameters. Appl. Sci. 2017, 7, 1291. https://doi.org/10.3390/app7121291
Ouyang Q, Wu J, Wu M. Vibrotactile Display of Flight Attitude with Combination of Multiple Coding Parameters. Applied Sciences. 2017; 7(12):1291. https://doi.org/10.3390/app7121291
Chicago/Turabian StyleOuyang, Qiangqiang, Juan Wu, and Miao Wu. 2017. "Vibrotactile Display of Flight Attitude with Combination of Multiple Coding Parameters" Applied Sciences 7, no. 12: 1291. https://doi.org/10.3390/app7121291
APA StyleOuyang, Q., Wu, J., & Wu, M. (2017). Vibrotactile Display of Flight Attitude with Combination of Multiple Coding Parameters. Applied Sciences, 7(12), 1291. https://doi.org/10.3390/app7121291