A Three-Axis Magnetic Field Microsensor Fabricated Utilizing a CMOS Process
<p>The MF microsensor structure: (<b>a</b>) tap view; (<b>b</b>) cross-sectional view.</p> "> Figure 2
<p>Equivalent circuit of the MF microsensor.</p> "> Figure 3
<p>MF microsensor carrier density with (<b>a</b>) 0 mT and (<b>b</b>) 200 mT in the <span class="html-italic">x</span>-direction MF.</p> "> Figure 4
<p>Carrier density of the MF microsensor with (<b>a</b>) 0 mT and (<b>b</b>) 200 mT in the <span class="html-italic">z</span>-direction MF.</p> "> Figure 5
<p>Voltage difference of bases in <span class="html-italic">x</span>-direction MF.</p> "> Figure 6
<p>Voltage difference of collectors in the <span class="html-italic">z</span>-direction MF.</p> "> Figure 7
<p>Amplifier circuitry.</p> "> Figure 8
<p>Evaluated output voltage in the <span class="html-italic">x</span>-direction MF.</p> "> Figure 9
<p>Evaluated output voltage in the <span class="html-italic">z</span>-direction MF.</p> "> Figure 10
<p>The MF microsensor image: (<b>a</b>) chip; (<b>b</b>) magnification; (<b>c</b>) packaging.</p> "> Figure 11
<p>Measured output voltage in the <span class="html-italic">x</span>-direction MF.</p> "> Figure 12
<p>Measured output voltage in the <span class="html-italic">y</span>-direction MF.</p> "> Figure 13
<p>Measured output voltage in the <span class="html-italic">z</span>-direction MF.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. The Design of Magnetic Field Sensors
3. Fabrication of Magnetic Field Sensor
4. Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bouvier, B.; Duprey, S.; Claudon, L.; Dumas, R.; Savescu, A. Upper Limb kinematics using inertial and magnetic sensors: Comparison of sensor-to-segment calibrations. Sensors 2015, 15, 18813–18833. [Google Scholar] [CrossRef] [PubMed]
- Brugger, S.; Paul, O. Field-concentrator-based resonant magnetic sensor with integrated planar coils. J. Microelectromech. Syst. 2009, 18, 1432–1443. [Google Scholar] [CrossRef]
- García, A.; Morón, C.; Tremps, E. Magnetic sensor for building structural vibrations. Sensors 2014, 14, 2468–2475. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.; Memari, A.R. Effects of Magnetic Field of Power Lines and Household Appliances on Human and Animals and Its Mitigation. In Proceedings of the 2010 IEEE Middle East Conference on Antennas and Propagation (MECAP), Cairo, Egypt, 20–22 October 2010; pp. 1–7. [Google Scholar]
- Lu, C.C.; Huang, J. A 3-axis miniature magnetic sensor based on a planar fluxgate magnetometer with an orthogonal fluxguide. Sensors 2015, 15, 14727–14744. [Google Scholar] [CrossRef] [PubMed]
- Kao, P.H.; Dai, C.L.; Hsu, C.C.; Lee, C.Y. Fabrication and characterization of a tunable In-plane resonator with low driving voltage. Sensors 2009, 9, 2062–2075. [Google Scholar] [CrossRef]
- Dai, C.L.; Peng, H.J.; Liu, M.C.; Wu, C.C.; Hsu, H.M.; Yang, L.J. A micromachined microwave switch fabricated by the complementary metal-oxide semiconductor post-process of etching silicon dioxide. Jpn. J. Appl. Phys. 2005, 44, 6804–6809. [Google Scholar] [CrossRef]
- Dennis, J.O.; Ahmad, F.; Khir, M.H.B.M.; Hamid, N.H.B. Optical characterization of Lorentz force based CMOS-MEMS magnetic field sensor. Sensors 2015, 15, 18256–18269. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W.; Varadan, V.K.; Awadelkarim, O.O. Microsensors MEMS and Smart Devices; John Wiley & Son Ltd.: Chichester, UK, 2001. [Google Scholar]
- Tseng, J.Z.; Wu, C.C.; Dai, C.L. Modeling and manufacturing of a micromachined magnetic sensor using the CMOS process without any post-process. Sensors 2014, 14, 6722–6733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wattanasarn, S.; Matsumoto, K.; Shimoyama, I. 3D Lorentz force Magnetic Sensor Using Ultra-Thin Piezoresistive Cantilevers. In Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 693–696. [Google Scholar]
- Dai, C.L.; Tai, Y.W.; Kao, P.H. Modeling and fabrication of micro FET pressure sensor with Circuits. Sensors 2007, 7, 3386–3398. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Jiao, Q.; Yuan, L. MEMS torsion oscillator magnetic field sensor. IEEE Trans. Magn. 2013, 49, 3890–3892. [Google Scholar] [CrossRef]
- Zhang, W.; Lee, J.E.Y. Characterization and model validation of a micromechanical resonant magnetic field sensor. In Proceedings of the 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, Spain, 16–20 June 2013; pp. 1859–1862. [Google Scholar]
- Huang, W.S.; Lu, C.C.; Jeng, J.T. A novel 3D CMOS micro-fluxgate magnetic sensor for low magnetic field detection. In Proceedings of the IEEE Sensors, Waikoloa, HI, USA, 1–4 November 2010; pp. 1791–1794. [Google Scholar]
- Avram, M.; Neagoe, O. Bipolar magnetic microsensor for longitudinal fields. Sens. Actuators A 2004, 110, 259–263. [Google Scholar] [CrossRef]
- Song, Y.G.; Ryu, J.G. Fabrication and characteristics of the suppressed sidewall injection magnetotransistor using a CMOS process. Sens. Actuators A 2006, 130–131, 99–104. [Google Scholar] [CrossRef]
- Yu, C.P.; Sung, G.M. Two-dimensional folded CMOS Hall device with interacting lateral magnetotransistor and magnetoresistor. Sens. Actuators A 2012, 182, 6–15. [Google Scholar] [CrossRef]
- Estrada, H.V. A MEMS-SOI 3D-magnetic field sensor. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), Cancun, Mexico, 23–27 January 2011; pp. 664–667. [Google Scholar]
- Wang, Y.T.; Hu, Y.C.; Chu, W.C.; Chang, P.Z. The fringe-capacitance of etching holes for CMOS-MEMS. Micromachines 2015, 6, 1617–1628. [Google Scholar] [CrossRef]
- Dai, C.L.; Chiou, J.H.; Lu, M.S.C. A maskless post-CMOS bulk micromachining process and its application. J. Micromech. Microeng. 2005, 15, 2366–2371. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Dai, C.L.; Lee, C.Y.; Chen, P.H.; Chang, P.Z. A circular micromirror array fabricated by a maskless post-CMOS process. Microsyst. Technol. 2005, 11, 444–451. [Google Scholar] [CrossRef]
- Huang, J.Q.; Li, F.; Zhao, M.; Wang, K. A surface micromachined CMOS MEMS humidity sensor. Micromachines 2015, 6, 1569–1576. [Google Scholar] [CrossRef]
- Yang, M.Z.; Dai, C.L.; Lin, W.Y. Fabrication and characterization of polyaniline/PVA humidity microsensors. Sensors 2011, 11, 8143–8151. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.L.; Chen, Y.C.; Wu, C.C.; Kuo, C.F. Cobalt oxide nanosheet and CNT micro carbon monoxide sensor integrated with readout circuit on chip. Sensors 2010, 10, 1753–1764. [Google Scholar] [CrossRef] [PubMed]
- Beroulle, V.; Bertrand, Y.; Latorre, L.; Nouet, P. Monolithic piezoresistive CMOS magnetic field sensors. Sens. Actuators A Phys. 2003, 103, 23–32. [Google Scholar] [CrossRef]
- Skucha, K.; Gambini, S.; Liu, P.; Megens, M.; Kim, J.; Boser, B.E. Design Considerations for CMOS-Integrated Hall-Effect Magnetic Bead Detectors for Biosensor Applications. J. Microelectromech. Syst. 2013, 22, 1327–1338. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.C.; Liu, Y.T.; Jhao, F.Y.; Jeng, J.T. Responsivity and noise of a wire-bonded CMOS micro-fluxgate sensor. Sens. Actuators A Phys. 2012, 179, 39–43. [Google Scholar] [CrossRef]
- Sedra, A.S.; Smith, K.C. Microelectronic Circuits; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Leepattarapongpan, C.; Penpondee, N.; Phetchakul, T.; Phengan, W.; Chaowicharat, E.; Hruanun, C.; Poyai, A. Merged Three-Terminal Magnetotransistor Based on the Carrier Recombination-Deflection Effect. In Proceedings of the 2008 IEEE Sensors, Lecce, Italy, 26–29 October 2008; pp. 399–402. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, J.-Z.; Shih, P.-J.; Hsu, C.-C.; Dai, C.-L. A Three-Axis Magnetic Field Microsensor Fabricated Utilizing a CMOS Process. Appl. Sci. 2017, 7, 1289. https://doi.org/10.3390/app7121289
Tseng J-Z, Shih P-J, Hsu C-C, Dai C-L. A Three-Axis Magnetic Field Microsensor Fabricated Utilizing a CMOS Process. Applied Sciences. 2017; 7(12):1289. https://doi.org/10.3390/app7121289
Chicago/Turabian StyleTseng, Jian-Zhi, Po-Jen Shih, Cheng-Chih Hsu, and Ching-Liang Dai. 2017. "A Three-Axis Magnetic Field Microsensor Fabricated Utilizing a CMOS Process" Applied Sciences 7, no. 12: 1289. https://doi.org/10.3390/app7121289
APA StyleTseng, J.-Z., Shih, P.-J., Hsu, C.-C., & Dai, C.-L. (2017). A Three-Axis Magnetic Field Microsensor Fabricated Utilizing a CMOS Process. Applied Sciences, 7(12), 1289. https://doi.org/10.3390/app7121289