Acute Effects of a High-Intensity Interval Training Protocol on Pain Sensitivity and Inflammatory Markers in Persons with Chronic Nonspecific Low Back Pain: A Controlled Clinical Trial
<p>Study design. Abbreviations: HCs: healthy controls; CNSLBP: chronic nonspecific low back pain; CPET: cardiorespiratory exercise test; HIIT: high-intensity interval training; MICT: moderate-intensity continuous training.</p> "> Figure 2
<p>Content of a session. Abbreviations: IL-6: interleukin-6; TNF-α: cytokine tumor necrosis factor alpha; HIIT: high-intensity interval training; MICT: moderate-intensity continuous training.</p> "> Figure 3
<p>Overview of the inflammation outcomes (panels <b>A</b>–<b>D</b>). Abbreviations: IL-6: interleukin-6; TNF-α: cytokine tumor necrosis factor alpha; HCs: healthy controls; CNSLBP: chronic nonspecific low back pain; HIIT: high-intensity interval training; MICT: moderate-intensity continuous training; ns: non-significant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Hypotheses
2.2. Study Design
2.3. Participants
2.4. Inclusion/Exclusion Criteria
2.4.1. Inclusion Criteria for Persons with CNSLBP
- Primary complaint: CNSLBP, i.e., low back pain defined as pain in the area between the lower ribs and upper buttock crease, with or without radiation in the leg [43], chronic: current episode >12 weeks, mean pain intensity between 3 and 8/10, nonspecific: the main pain cannot be traced back to a known pathology;
- No other diagnosed acute or chronic disorders;
- Age: 18–65 years;
- Understanding of the Dutch language (written and spoken).
2.4.2. Inclusion Criteria for HCs
- No diagnosed acute or chronic disorders;
- No current musculoskeletal complaints;
- Age: 18–65 years;
- Understanding of the Dutch language (written and spoken).
2.4.3. Exclusion Criteria for CNSLBP and HCs
- Spinal surgery within last 18 months;
- Radiculopathy or sensory disturbances in lower extremities;
- Pregnancy;
- Ongoing compensation complaints >6 months;
- Previous ET for CNSLBP in last 6 months.
2.5. Contents of the Assessment
2.6. Research Parameters
2.6.1. Pain Sensitivity
2.6.2. Venous Blood Samples
2.6.3. Brief Pain Inventory Short Form (BPI-sf)
2.6.4. Modified Oswestry Disability Index (MODI)
2.6.5. International Physical Activity Questionnaire Short Form (IPAQ)
2.6.6. Fear Avoidance Beliefs Questionnaire (FABQ)
2.6.7. Depression Anxiety Stress Scale (DASS-21)
2.6.8. Pittsburg Sleep Quality Index (PSQI)
2.6.9. Exercise Capacity
2.7. Intervention
2.7.1. HIIT Protocol
2.7.2. MICT Protocol
2.8. Data Analysis
3. Results
3.1. Demographics
3.2. Pain Processing
3.3. Inflammation
3.4. Relationship Between Pain Processing and Inflammation
4. Discussion
4.1. Interpretation and Implications
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meucci, R.D.; Fassa, A.G.; Faria, N.M.X. Prevalence of chronic low back pain: Systematic review. Rev. Saude Publica 2015, 49, 73. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.K.; Mittinty, M.M.; March, L.M.; Steinmetz, J.D.; Culbreth, G.T.; Cross, M.; Kopec, J.A.; Woolf, A.D.; Haile, L.M.; Hagins, H.; et al. Global, regional, and national burden of other musculoskeletal disorders, 1990–2020, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e670–e682. [Google Scholar] [CrossRef]
- Woolf, A.D.; Erwin, J.; March, L. The need to address the burden of musculoskeletal conditions. Best Pract. Res. Clin. Rheumatol. 2012, 26, 183–224. [Google Scholar] [CrossRef] [PubMed]
- March, L.; Smith, E.U.; Hoy, D.G.; Cross, M.J.; Sanchez-Riera, L.; Blyth, F.; Buchbinder, R.; Vos, T.; Woolf, A.D. Burden of disability due to musculoskeletal (MSK) disorders. Best Pract. Res. Clin. Rheumatol. 2014, 28, 353–366. [Google Scholar] [CrossRef]
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.; et al. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef]
- Moore, G.; Durstine, J.L.; Painter, P.; American College of Sports Medicine. ACSM’s Exercise Management for Persons with Chronic Diseases and Disabilities, 4E; Human Kinetics: Champaign, IL, USA, 2016. [Google Scholar]
- Manley, A.F. Physical Activity and Health: A Report of the Surgeon General; Diane Publishing: Collingdale, PA, USA, 1996. [Google Scholar]
- Booth, J.; Moseley, G.L.; Schiltenwolf, M.; Cashin, A.; Davies, M.; Hübscher, M. Exercise for chronic musculoskeletal pain: A biopsychosocial approach. Musculoskelet. Care 2017, 15, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.E.; Hendrick, P.; Bateman, M.; Holden, S.; Littlewood, C.; Smith, T.O.; Logan, P. Musculoskeletal pain and exercise—Challenging existing paradigms and introducing new. Br. J. Sports Med. 2019, 53, 907–912. [Google Scholar] [CrossRef]
- Wilson, F.; Gormley, J.; Hussey, J. Exercise Therapy in the Management of Musculoskeletal Disorders; Wiley Online Library: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lima, L.V.; Abner, T.S.; Sluka, K.A. Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena. J. Physiol. 2017, 595, 4141–4150. [Google Scholar] [CrossRef]
- Hayden, J.A.; Ellis, J.; Ogilvie, R.; Malmivaara, A.; van Tulder, M.W. Exercise therapy for chronic low back pain. Cochrane Database Syst. Rev. 2021, 9, CD009790. [Google Scholar] [CrossRef]
- Rice, D.; Nijs, J.; Kosek, E.; Wideman, T.; Hasenbring, M.I.; Koltyn, K.; Graven-Nielsen, T.; Polli, A. Exercise-induced hypoalgesia in pain-free and chronic pain populations: State of the art and future directions. J. Pain 2019, 20, 1249–1266. [Google Scholar] [CrossRef]
- Naugle, K.M.; Fillingim, R.B.; Riley, J.L., III. A meta-analytic review of the hypoalgesic effects of exercise. J. Pain 2012, 13, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.; Vaegter, H.B.; Petersen, K.K. Pretreatment exercise-induced hypoalgesia is associated with change in pain and function after standardized exercise therapy in painful knee osteoarthritis. Clin. J. Pain 2020, 36, 16–24. [Google Scholar] [CrossRef]
- Naugle, K.M.; Naugle, K.E.; Fillingim, R.B.; Samuels, B.; Riley, J.L., III. Intensity thresholds for aerobic exercise-induced hypoalgesia. Med. Sci. Sports Exerc. 2014, 46, 817–825. [Google Scholar] [CrossRef]
- Polaski, A.M.; Phelps, A.L.; Kostek, M.C.; Szucs, K.A.; Kolber, B.J. Exercise-induced hypoalgesia: A meta-analysis of exercise dosing for the treatment of chronic pain. PLoS ONE 2019, 14, e0210418. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulos, V.; Akin-Akinyosoye, K.; Zhang, W.; McWilliams, D.F.; Hendrick, P.; Walsh, D.A. Quantitative Sensory Testing (QST) and predicting outcomes for musculoskeletal pain, disability and negative affect: A systematic review and meta-analysis. Pain 2019, 160, 1920–1932. [Google Scholar] [CrossRef]
- Wewege, M.A.; Jones, M.D. Exercise-induced hypoalgesia in healthy individuals and people with chronic musculoskeletal pain: A systematic review and meta-analysis. J. Pain 2021, 22, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Vaegter, H.B.; Jones, M.D. Exercise-induced hypoalgesia after acute and regular exercise: Experimental and clinical manifestations and possible mechanisms in individuals with and without pain. Pain Rep. 2020, 5, e823. [Google Scholar] [CrossRef]
- den Bandt, H.L.; Paulis, W.D.; Beckwée, D.; Ickmans, K.; Nijs, J.; Voogt, L. Pain mechanisms in low back pain: A systematic review with meta-analysis of mechanical quantitative sensory testing outcomes in people with nonspecific low back pain. J. Orthop. Sports Phys. Ther. 2019, 49, 698–715. [Google Scholar] [CrossRef]
- Morris, P.; Ali, K.; Merritt, M.; Pelletier, J.; Macedo, L.G. A systematic review of the role of inflammatory biomarkers in acute, subacute and chronic non-specific low back pain. BMC Musculoskelet. Disord. 2020, 21, 1–12. [Google Scholar] [CrossRef]
- Lim, Y.Z.; Wang, Y.; Cicuttini, F.M.; Hughes, H.J.; Chou, L.; Urquhart, D.M.; Ong, P.X.; Hussain, S.M. Association between inflammatory biomarkers and nonspecific low back pain: A systematic review. Clin. J. Pain 2020, 36, 379–389. [Google Scholar] [CrossRef]
- Svensson, C.I. Interleukin-6: A local pain trigger? Arthritis Res. Ther. 2010, 12, 145. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.; Cahill, C.M. TNF-α and neuropathic pain—A review. J. Neuroinflammation 2010, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Vanderwall, A.G.; Milligan, E.D. Cytokines in pain: Harnessing endogenous anti-inflammatory signaling for improved pain management. Front. Immunol. 2019, 10, 3009. [Google Scholar] [CrossRef]
- Van den Berg, R.; Jongbloed, E.; de Schepper, E.; Bierma-Zeinstra, S.; Koes, B.; Luijsterburg, P. The association between pro-inflammatory biomarkers and nonspecific low back pain: A systematic review. Spine J. 2018, 18, 2140–2151. [Google Scholar] [CrossRef]
- Kawi, J.; Lukkahatai, N.; Inouye, J.; Thomason, D.; Connelly, K. Effects of exercise on select biomarkers and associated outcomes in chronic pain conditions: Systematic review. Biol. Res. Nurs. 2016, 18, 147–159. [Google Scholar] [CrossRef]
- Puerto Valencia, L.M.; He, Y.; Wippert, P.-M. The changes of blood-based inflammatory biomarkers after non-pharmacologic interventions for chronic low back pain: A systematic review. BMC Musculoskelet. Disord. 2024, 25, 209. [Google Scholar] [CrossRef]
- Munneke, W.; Ickmans, K.; Voogt, L. The Association of Psychosocial Factors and Exercise-Induced Hypoalgesia in Healthy People and People with Musculoskeletal Pain: A Systematic Review. Pain Pract. 2020, 20, 676–694. [Google Scholar] [CrossRef]
- Lazaridou, A.; Martel, M.O.; Cahalan, C.M.; Cornelius, M.C.; Franceschelli, O.; Campbell, C.M.; Haythornthwaite, J.; Smith, M.; Riley, J.; Edwards, R.R. The impact of anxiety and catastrophizing on interleukin-6 responses to acute painful stress. J. Pain Res. 2018, 11, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Shimura, Y.; Kurosawa, H.; Tsuchiya, M.; Sawa, M.; Kaneko, H.; Liu, L.; Makino, Y.; Nojiri, H.; Iwase, Y.; Kaneko, K.; et al. Serum interleukin 6 levels are associated with depressive state of the patients with knee osteoarthritis irrespective of disease severity. Clin. Rheumatol. 2017, 36, 2781–2787. [Google Scholar] [CrossRef]
- Heffner, K.L.; France, C.R.; Trost, Z.; Ng, H.M.; Pigeon, W.R. Chronic low back pain, sleep disturbance, and interleukin-6. Clin. J. Pain 2011, 27, 35–41. [Google Scholar] [CrossRef]
- Atakan, M.M.; Li, Y.; Koşar, Ş.N.; Turnagöl, H.H.; Yan, X. Evidence-based effects of high-intensity interval training on exercise capacity and health: A review with historical perspective. Int. J. Environ. Res. Public Health 2021, 18, 7201. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, M.W.; Jung, M.E.; Little, J.P. High-intensity interval training: A review of physiological and psychological responses. ACSM’s Health Fit. J. 2014, 18, 11–16. [Google Scholar] [CrossRef]
- Cuenca-Martínez, F.; Sempere-Rubio, N.; Varangot-Reille, C.; Fernández-Carnero, J.; Suso-Martí, L.; Alba-Quesada, P.; La Touche, R. Effects of high-intensity interval training (HIIT) on patients with musculoskeletal disorders: A systematic review and meta-analysis with a meta-regression and mapping report. Diagnostics 2022, 12, 2532. [Google Scholar] [CrossRef] [PubMed]
- Botta, R.M.; Palermi, S.; Tarantino, D. High-intensity interval training for chronic pain conditions: A narrative review. J. Exerc. Rehabil. 2022, 18, 10–19. [Google Scholar] [CrossRef]
- Verbrugghe, J.; Agten, A.; Stevens, S.; Vandenabeele, F.; Roussel, N.; Verbunt, J.; Goossens, N.; Timmermans, A. High intensity training improves symptoms of central sensitization at six-month follow-up in persons with chronic nonspecific low back pain: Secondary analysis of a randomized controlled trial. Braz. J. Phys. Ther. 2023, 27, 100496. [Google Scholar] [CrossRef] [PubMed]
- da Cruz Fernandes, I.M.; Pinto, R.Z.; Ferreira, P.; Lira, F.S. Low back pain, obesity, and inflammatory markers: Exercise as potential treatment. J. Exerc. Rehabil. 2018, 14, 168–174. [Google Scholar] [CrossRef]
- Tarabeih, N.; Kalinkovich, A.; Shalata, A.; Cherny, S.S.; Livshits, G. Deciphering the causal relationships between low back pain complications, metabolic factors, and comorbidities. J. Pain Res. 2022, 15, 215–227. [Google Scholar] [CrossRef]
- Nilsonne, G.; Lekander, M.; Åkerstedt, T.; Axelsson, J.; Ingre, M. Diurnal variation of circulating interleukin-6 in humans: A meta-analysis. PLoS ONE 2016, 11, e0165799. [Google Scholar] [CrossRef]
- Ertosun, M.G.; Kocak, G.; Ozes, O.N. The regulation of circadian clock by tumor necrosis factor alpha. Cytokine Growth Factor Rev. 2019, 46, 10–16. [Google Scholar] [CrossRef]
- Airaksinen, O.; Brox, J.I.; Cedraschi, C.; Hildebrandt, J.; Klaber-Moffett, J.; Kovacs, F.; Mannion, A.F.; Reis, S.; Staal, J.B.; Ursin, H.; et al. Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur. Spine J. 2006, 15 (Suppl. S2), S192–S300. [Google Scholar] [CrossRef]
- Graven-Nielsen, T.; Vaegter, H.B.; Finocchietti, S.; Handberg, G.; Arendt-Nielsen, L. Assessment of musculoskeletal pain sensitivity and temporal summation by cuff pressure algometry: A reliability study. Pain 2015, 156, 2193–2202. [Google Scholar] [CrossRef]
- Vaegter, H.B.; Petersen, K.K.; Mørch, C.D.; Imai, Y.; Arendt-Nielsen, L. Assessment of CPM reliability: Quantification of the within-subject reliability of 10 different protocols. Scand. J. Pain 2018, 18, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Linsen, L.; Vanhees, K.; Vanoppen, E.; Ulenaers, K.; Driessens, S.; Penders, J.; Somers, V.; Stinissen, P.; Rummens, J.-L. Raising to the Challenge: Building a Federated Biobank to Accelerate Translational Research-The University Biobank Limburg. Front. Med. 2019, 6, 224. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, J. Brief pain inventory review. Occup. Med. 2016, 66, 496–497. [Google Scholar] [CrossRef]
- Denteneer, L.; Van Daele, U.; Truijen, S.; De Hertogh, W.; Meirte, J.; Deckers, K.; Stassijns, G. The Modified Low Back Pain Disability Questionnaire: Reliability, Validity, and Responsiveness of a Dutch Language Version. Spine 2018, 43, E292–E298. [Google Scholar] [CrossRef]
- Carvalho, F.A.; Morelhão, P.K.; Franco, M.R.; Maher, C.G.; Smeets, R.J.; Oliveira, C.B.; Júnior, I.F.F.; Pinto, R.Z. Reliability and validisty of two multidimensional self-reported physical activity questionnaires in people with chronic low back pain. Musculoskelet. Sci. Pract. 2017, 27, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Waddell, G.; Newton, M.; Henderson, I.; Somerville, D.; Main, C.J. A Fear-Avoidance Beliefs Questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain 1993, 52, 157–168. [Google Scholar] [CrossRef]
- Coker, A.O.; Coker, O.; Sanni, D. Psychometric properties of the 21-item depression anxiety stress scale (DASS-21). Afr. Res. Rev. 2018, 12, 135–142. [Google Scholar] [CrossRef]
- Mollayeva, T.; Thurairajah, P.; Burton, K.; Mollayeva, S.; Shapiro, C.M.; Colantonio, A. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: A systematic review and meta-analysis. Sleep Med. Rev. 2016, 25, 52–73. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Verbrugghe, J.; Agten, A.; Stevens, S.; Hansen, D.; Demoulin, C.; Eijnde, B.O.; Vandenabeele, F.; Timmermans, A. Exercise Intensity Matters in Chronic Nonspecific Low Back Pain Rehabilitation. Med. Sci. Sports Exerc. 2019, 51, 2434–2442. [Google Scholar] [CrossRef]
- Verbrugghe, J.; Agten, A.; Eijnde, B.O.; Olivieri, E.; Huybrechts, X.; Seelen, H.; Vandenabeele, F.; Timmermans, A. Feasibility of high intensity training in nonspecific chronic low back pain: A clinical trial. J. Back Musculoskelet. Rehabil. 2018, 31, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.; Buchheit, M. Science and Application of High-Intensity Interval Training; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Vaegter, H.; Hoeger Bement, M.; Madsen, A.; Fridriksson, J.; Dasa, M.; Graven-Nielsen, T. Exercise increases pressure pain tolerance but not pressure and heat pain thresholds in healthy young men. Eur. J. Pain 2017, 21, 73–81. [Google Scholar] [CrossRef]
- Kuithan, P.; Heneghan, N.R.; Rushton, A.; Sanderson, A.; Falla, D. Lack of Exercise-Induced Hypoalgesia to Repetitive Back Movement in People with Chronic Low Back Pain. Pain Pract. 2019, 19, 740–750. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Biolegend. LEGENDplex™ Mul-Analyte Flow Assay Kit Cat. No. 740808/9 Human Inflammation Panel 1 MANUAL; Biolegend: San Diego, CA, USA, 2024. [Google Scholar]
- McPhee, M.E.; Graven-Nielsen, T. Recurrent low back pain patients demonstrate facilitated pronociceptive mechanisms when in pain, and impaired antinociceptive mechanisms with and without pain. Pain 2019, 160, 2866–2876. [Google Scholar] [CrossRef] [PubMed]
- McPhee, M.E.; Vaegter, H.B.; Graven-Nielsen, T. Alterations in pronociceptive and antinociceptive mechanisms in patients with low back pain: A systematic review with meta-analysis. Pain 2020, 161, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Pinho, H.; Neves, M.; Costa, F.; Silva, A.G. Pain intensity and pain sensitivity are not increased by a single session of high-intensity interval aerobic exercise in individuals with chronic low back pain: A randomized and controlled trial. Musculoskelet. Sci. Pract. 2023, 66, 102824. [Google Scholar] [CrossRef] [PubMed]
- Meeus, M.; Roussel, N.A.; Truijen, S.; Nijs, J. Reduced pressure pain thresholds in response to exercise in chronic fatigue syndrome but not in chronic low back pain: An experimental study. J. Rehabil. Med. 2010, 42, 884–890. [Google Scholar] [CrossRef]
- Tomschi, F.; Zschunke, A.; Hilberg, T. Ten Minutes of Core Stabilisation Exercise Result in Local Exercise-Induced Hypoalgesia in Patients With Chronic Unspecific Low Back Pain. Eur. J. Pain 2025, 29, e4794. [Google Scholar] [CrossRef]
- Patricio, P.; Mailloux, C.; Wideman, T.H.; Langevin, P.; Descarreaux, M.; Beaulieu, L.D.; Massé-Alarie, H. Assessment of exercise-induced hypoalgesia in chronic low back pain and potential associations with psychological factors and central sensitization symptoms: A case–control study. Pain Pract. 2023, 23, 264–276. [Google Scholar] [CrossRef]
- Slade, S.C.; Dionne, C.E.; Underwood, M.; Buchbinder, R. Consensus on exercise reporting template (CERT): Explanation and elaboration statement. Br. J. Sports Med. 2016, 50, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Deegan, O.; Fullen, B.M.; Segurado, R.; Doody, C. The effectiveness of a combined exercise and psychological treatment programme on measures of nervous system sensitisation in adults with chronic musculoskeletal pain-a systematic review and meta-analysis. BMC Musculoskelet. Disord. 2024, 25, 140. [Google Scholar] [CrossRef]
- O’leary, T.J.; Collett, J.; Howells, K.; Morris, M.G. High but not moderate-intensity endurance training increases pain tolerance: A randomised trial. Eur. J. Appl. Physiol. 2017, 117, 2201–2210. [Google Scholar] [CrossRef] [PubMed]
- Song, J.S.; Seffrin, A.; Yamada, Y.; Kataoka, R.; Hammert, W.B.; Spitz, R.W.; Wong, V.; Kang, A.; Loenneke, J.P. Can we improve exercise-induced hypoalgesia with exercise training? An overview and suggestions for future studies. Phys. Ther. Sport 2023, 63, 67–72. [Google Scholar] [CrossRef]
- Pinto, E.M.; Neves, J.R.; Laranjeira, M.; Reis, J. The importance of inflammatory biomarkers in non-specific acute and chronic low back pain: A systematic review. Eur. Spine J. 2023, 32, 3230–3244. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.B.S.; Meng, J.; Zhang, J. Does low grade systemic inflammation have a role in chronic pain? Front. Mol. Neurosci. 2021, 14, 785214. [Google Scholar] [CrossRef]
- Hassett, A.L.; Williams, D.A.; Harris, R.E.; Harte, S.E.; Kaplan, C.M.; Schrepf, A.; Kratz, A.L.; Brummett, C.M.; Kidwell, K.M.; Tsodikov, A.; et al. An interventional response phenotyping study in chronic low back pain: Protocol for a mechanistic randomized controlled trial. Pain Med. 2023, 24 (Suppl. S1), S126–S138. [Google Scholar] [CrossRef]
- Siebuhr, A.; Petersen, K.K.; Arendt-Nielsen, L.; Egsgaard, L.L.; Eskehave, T.; Christiansen, C.; Simonsen, O.; Hoeck, H.; Karsdal, M.; Bay-Jensen, A. Identification and characterisation of osteoarthritis patients with inflammation derived tissue turnover. Osteoarthr. Cartil. 2014, 22, 44–50. [Google Scholar] [CrossRef]
- Giordano, R.; Capriotti, C.; Gerra, M.C.; Kappel, A.; Østgaard, S.E.; Dallabona, C.; Arendt-Nielsen, L.; Petersen, K.K.-S. A potential link between inflammatory profiles, clinical pain, pain catastrophizing and long-term outcomes after total knee arthroplasty surgery. Eur. J. Pain 2024, 28, 1202–1212. [Google Scholar] [CrossRef]
- Giordano, R.; Ghafouri, B.; Arendt-Nielsen, L.; Petersen, K.K.-S. Inflammatory biomarkers in patients with painful knee osteoarthritis: Exploring the potential link to chronic postoperative pain after total knee arthroplasty—A secondary analysis. Pain 2024, 165, 337–346. [Google Scholar] [CrossRef]
- Sima, S.; Chen, X.; Diwan, A.D. The association between inflammatory biomarkers and low back disorder: A systematic review and meta-analysis. Biomark 2024, 29, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, M.A.; Pedersen, B.K. Muscle-derived interleukin-6: Mechanisms for activation and possible biological roles. FASEB J. 2002, 16, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.P. Interleukin-6 in acute exercise and training: What is the biological relevance? Exerc. Immunol. Rev. 2002, 12, 6–33. [Google Scholar]
- Ostrowski, K.; Schjerling, P.; Pedersen, B.K. Physical activity and plasma interleukin-6 in humans–effect of intensity of exercise. Eur. J. Appl. Physiol. 2000, 83, 512–515. [Google Scholar] [CrossRef] [PubMed]
- Cullen, T.; Thomas, A.W.; Webb, R.; Hughes, M.G. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: The effect of exercise intensity and volume. Appl. Physiol. Nutr. Metab. 2016, 41, 803–808. [Google Scholar] [CrossRef]
- Leggate, M.; Nowell, M.A.; Jones, S.A.; Nimmo, M.A. The response of interleukin-6 and soluble interleukin-6 receptor isoforms following intermittent high intensity and continuous moderate intensity cycling. Cell Stress Chaperones 2010, 15, 827–833. [Google Scholar] [CrossRef]
- Said, E.A.; Al-Reesi, I.; Al-Shizawi, N.; Jaju, S.; Al-Balushi, M.S.; Koh, C.Y.; Al-Jabri, A.A.; Jeyaseelan, L. Defining IL-6 levels in healthy individuals: A meta-analysis. J. Med. Virol. 2021, 93, 3915–3924. [Google Scholar] [CrossRef]
- Gharamti, A.A.; Samara, O.; Monzon, A.; Montalbano, G.; Scherger, S.; DeSanto, K.; Chastain, D.B.; Sillau, S.; Montoya, J.G.; Franco-Paredes, C.; et al. Proinflammatory cytokines levels in sepsis and healthy volunteers, and tumor necrosis factor-alpha associated sepsis mortality: A systematic review and meta-analysis. Cytokine 2022, 158, 156006. [Google Scholar] [CrossRef]
- DeVon, H.A.; Piano, M.R.; Rosenfeld, A.G.; Hoppensteadt, D.A. The association of pain with protein inflammatory biomarkers: A review of the literature. Nurs. Res. 2014, 63, 51–62. [Google Scholar] [CrossRef]
- Schaible, H.-G. Nociceptive neurons detect cytokines in arthritis. Arthritis Res. Ther. 2014, 16, 1–9. [Google Scholar] [CrossRef]
- Giordano, R.; Arendt-Nielsen, L.; Gerra, M.C.; Kappel, A.; Østergaard, S.E.; Capriotti, C.; Dallabona, C.; Petersen, K.K.-S. Pain mechanistic networks: The development using supervised multivariate data analysis and implications for chronic pain. Pain 2022, 10, 1097. [Google Scholar] [CrossRef] [PubMed]
- Browner, W.S.; Newman, T.B.; Cummings, S.R.; Grady, D.G. Designing Clinical Research; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2022. [Google Scholar]
- Janse, R.J.; Hoekstra, T.; Jager, K.J.; Zoccali, C.; Tripepi, G.; Dekker, F.W.; van Diepen, M. Conducting correlation analysis: Important limitations and pitfalls. Clin. Kidney J. 2021, 14, 2332–2337. [Google Scholar] [CrossRef] [PubMed]
- Dalmaijer, E.S.; Nord, C.L.; Astle, D.E. Statistical power for cluster analysis. BMC Bioinform. 2022, 23, 205. [Google Scholar] [CrossRef]
- Smidowicz, A.; Regula, J. Effect of nutritional status and dietary patterns on human serum C-reactive protein and interleukin-6 concentrations. Adv. Nutr. 2015, 6, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
CNSLBP (n = 20) | HC (n = 20) | p-Value | |
---|---|---|---|
Sex (F/M, %) | 10/10 | 10/10 | 1.000 |
Age (years) | 44.5 ± 10.6 | 44.5 ± 10.3 | 1.000 |
BMI (kg/m2) | 26.3 ± 4.9 | 26.4 ± 4.0 | 0.695 ⸸ |
Working (yes/no) | 19/1 | 19/1 | 1.000 |
Diet (yes/no) | 0/20 | 1/19 | 1.000 |
Smoking (yes/no) | 20/0 | 20/0 | 1.000 |
LBP onset (years) | 12.7 ± 10.4 | / | - |
Pain intensity (NPRS, 0–10) | 5.2 ± 2.3 | / | - |
Disability level (MODI) | 10.3 ± 5.7 | / | - |
Fear avoidance (FABQ, 0–96) | 29.8 ± 14.2 | / | - |
Activity level (IPAQ, METS) | 4740 ± 2843 | 3413 ± 2666 | 0.185 |
Depression (DASS-21, 0–42) | 2.4 ± 3.5 | 1.6 ± 3.0 | 0.483 ⸸ |
Anxiety (DASS-21, 0–42) | 1.4 ± 1.3 | 2.0 ± 1.7 | 0.352 ⸸ |
Stress (DASS-21, 0–42) | 4.6 ± 4.7 | 3.1 ± 2.7 | 0.302 ⸸ |
General health (SF-36, %) | 66.6 ± 19.0 | 74.7 ± 15.0 | 0.151 |
Sleep quality (PSQI, 0–21) | 15.2 ± 6.1 | 8.0 ± 5.1 | >0.001 |
CRF (VO2max, mL/kg/min) | 30.6 ± 10.3 | 33.0 ± 9.1 | 0.457 ⸸ |
HIIT | MICT | ||||
---|---|---|---|---|---|
QST Variables | CNSLBP (n = 19) | HC (n = 18) | Between-Group CLBP–HC Δ [CI] (p) | CNSLBP (n = 19) | Between-Group HIIT–MICT Δ [CI] (p) |
PRE cPPT | 28.2 ± 7.1 | 33.7 ± 8.1 | 5.5 [0.3;10.8] (0.040) | 29.3 ± 9.1 | 1.0 [−2.2;4.2] (0.512) |
POST cPPT | 28.9 ± 11.8 | 38.9 ± 12.6 | 9.9 [1.5;18.3] (0.022) | 30.5 ± 10.9 | 1.4 [−4.3;6.3] (0.690) |
Delta | 0.8 ± 8.4 | 5.2 ± 7.8 | 4.4 [−1.2;10.0] (0.119) | 1.3 ± 9.6 | 0.4 [−5.9;6.3] (0.601) |
Within-group PRE–POST (p) | 0.717 | 0.019 | 0.609 | ||
PRE TS | 1.11 ± 0.89 | 0.32 ± 1.23 | 0.79 [0.03;1.55] (0.042) | 0.75 ± 1.26 | 0.3 [−0.8;0.3] (0.322) |
POST TS | 0.70 ± 1.04 | 0.31 ± 1.62 | 0.39 [−1.36;0.58] (0.417) | 0.28 ± 0.97 | 0.0 [−0.6;0.3] (0.941) |
Delta | 0.41 ± 0.99 | 0.01 ± 1.67 | 0.40 [−0.58;1.38] (0.412) | 0.47 ± 0.74 | 0.2 [−0.8;0.3] (0.371) |
Within-group PRE–POST (p) | 0.121 | 0.980 | 0.023 | ||
PRE CPM cPPT | 36.2 ± 11.6 | 46.3 ± 13.3 | 10.0 [1.5;18.7] (0.023) | 36.4 ± 14.6 | 0.6 [−7.3;6.1] (0.844) |
POST CPM cPPT | 35.7 ± 13.9 | 45.6 ± 16.4 | 9.9 [0.3;21.6] (0.044) | 38.2 ± 15.5 | 2.4 [−4.6;3.3] (0.469) |
Delta | −0.5 ± 10.3 | −0.7 ± 14.8 | 0.1 [−9.0;8.7] (0.977) | 1.8 ± 7.1 | 3.1 [−2.9;3.1] (0.289) |
Within-group PRE–POST (p) | 0.831 | 0.850 | 0.330 |
Inflammatory Markers | ||||
---|---|---|---|---|
QST Variables | PRE IL-6 | Delta IL-6 ⸸ | PRE TNF-α | Delta TNF-α ⸸ |
PRE cPPT | 0.068 | 0.264 | 0.148 | −0.690 * |
Delta cPPT | 0.446 | 0.489 | 0.343 | 0.112 |
PRE TS | −0.011 | 0.046 | −0.298 | 0.120 |
Delta TS | 0.424 | −0.203 | 0.613 * | 0.182 |
PRE CPM | −0.147 | 0.060 | −0.100 | −0.459 |
Delta CPM | 0.724 * | 0.363 | 0.569 * | 0.536 |
Inflammatory Markers | ||||
---|---|---|---|---|
QST Variables | PRE IL-6 | Delta IL-6 ⸸ | PRE TNF-α | Delta TNF-α ⸸ |
PRE cPPT | −0.053 | 0.294 | 0.253 | −0.575 |
Delta cPPT | 0.756 * | 0.398 | 0.721 * | 0.171 |
PRE TS | −0.108 | 0.074 | −0.384 | 0.198 |
Delta TS | 0.646 | 0.108 | 0.838 * | 0.492 |
PRE CPM | −0.267 | −0.306 | 0.193 | −0.606 |
Delta CPM | 0.853 * | 0.306 | 0.668 | 0.556 |
Inflammatory Markers | ||||
---|---|---|---|---|
QST Variables | PRE IL-6 | Delta IL-6 ⸸ | PRE TNF-α | Delta TNF-α ⸸ |
PRE cPPT | 0.807 | −0.182 | 0.326 | −0.107 |
Delta cPPT | 0.846 | 0.358 | 0.737 | 0.486 |
PRE TS | −0.817 | 0.420 | −0.567 | −0.694 |
Delta TS | 0.234 | 0.042 | 0.750 | 0.221 |
PRE CPM | 0.726 | −0.213 | 0.058 | −0.713 |
Delta CPM | 0.705 | −0.014 | 0.809 | 0.304 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verbrugghe, J.; Klaps, S.; Verboven, K.; Meus, T.; Kempeneers, K.; Petersen, K.K.-S.; Timmermans, A. Acute Effects of a High-Intensity Interval Training Protocol on Pain Sensitivity and Inflammatory Markers in Persons with Chronic Nonspecific Low Back Pain: A Controlled Clinical Trial. Appl. Sci. 2025, 15, 2918. https://doi.org/10.3390/app15062918
Verbrugghe J, Klaps S, Verboven K, Meus T, Kempeneers K, Petersen KK-S, Timmermans A. Acute Effects of a High-Intensity Interval Training Protocol on Pain Sensitivity and Inflammatory Markers in Persons with Chronic Nonspecific Low Back Pain: A Controlled Clinical Trial. Applied Sciences. 2025; 15(6):2918. https://doi.org/10.3390/app15062918
Chicago/Turabian StyleVerbrugghe, Jonas, Sim Klaps, Kenneth Verboven, Timo Meus, Kristof Kempeneers, Kristian Kjaer-Staal Petersen, and Annick Timmermans. 2025. "Acute Effects of a High-Intensity Interval Training Protocol on Pain Sensitivity and Inflammatory Markers in Persons with Chronic Nonspecific Low Back Pain: A Controlled Clinical Trial" Applied Sciences 15, no. 6: 2918. https://doi.org/10.3390/app15062918
APA StyleVerbrugghe, J., Klaps, S., Verboven, K., Meus, T., Kempeneers, K., Petersen, K. K.-S., & Timmermans, A. (2025). Acute Effects of a High-Intensity Interval Training Protocol on Pain Sensitivity and Inflammatory Markers in Persons with Chronic Nonspecific Low Back Pain: A Controlled Clinical Trial. Applied Sciences, 15(6), 2918. https://doi.org/10.3390/app15062918