Optimizing CuFeS2 Chalcopyrite Thin Film Synthesis: A Comprehensive Three-Step Approach Using Ball-Milling, Thermal Evaporation, and Sulfurization Applied for Thermoelectric Generation
<p>(<b>a</b>) TEG dimensions and layout. (<b>b</b>) Homemade setup for the I-V-P measurements, circuit diagram, and real-size comparison of the TEG with a one-euro coin for scale.</p> "> Figure 2
<p>(<b>a</b>) Diffractogram of Samples 1 to 8. The tick markers represent the Bragg position of the phases, where the corresponding labeling is in the top-right corner. Sample 8-S represents sulfurized Sample 8, where the process described in <a href="#sec2dot3-applsci-13-10172" class="html-sec">Section 2.3</a> was employed. The inset shows the crystal structure of CFS talnakhite. The Rietveld refinements are available in <a href="#app1-applsci-13-10172" class="html-app">Supplementary Note S4</a>. (<b>b</b>) Diagram with the main synthesis parameters used for the non-milled powder optimization and main results, such as element material used, current employed (A), evaporation time (h), target distance (cm), and mass of powder (g). Please refer to <a href="#app1-applsci-13-10172" class="html-app">Table S2</a> for further details.</p> "> Figure 3
<p>Ternary contour plot of the phase diagram of Cu, Fe, and S obtained through DFT calculations.</p> "> Figure 4
<p>Diffractograms of the FeCu-01, Fe<sub>1.76</sub>Cu-02, and FeCu-03 ball-milled powders. Rietveld refinements are available in <a href="#app1-applsci-13-10172" class="html-app">Figures S18–S20</a>. The tick markers indicate the Bragg 2θ positions of the Fe<sub>x</sub>Cu<sub>100−x</sub> fcc phase (black, PDF4+ database entry #40031453), Fe bcc (red, PDF4+ database entry #40079753), and WC (green, PDF4+ database entry #40045823).</p> "> Figure 5
<p>(<b>a</b>) Diffractograms for 9 to 11. Samples 9-S and 11-S correspond to the patterns of the sulfurized samples 8 and 11, respectively. The tick markers correspond to the Bragg peaks of the phases identified in the top-right corner, and the Rietveld refinements are available in <a href="#app1-applsci-13-10172" class="html-app">Supplementary Note S4</a>. (<b>b</b>) Diagram with the main synthesis parameters used for the non-milled powder optimization, such as element material used, current employed (A), evaporation time (h), target distance (cm), and mass of powder (g). Please refer to <a href="#app1-applsci-13-10172" class="html-app">Table S2</a> for further details.</p> "> Figure 5 Cont.
<p>(<b>a</b>) Diffractograms for 9 to 11. Samples 9-S and 11-S correspond to the patterns of the sulfurized samples 8 and 11, respectively. The tick markers correspond to the Bragg peaks of the phases identified in the top-right corner, and the Rietveld refinements are available in <a href="#app1-applsci-13-10172" class="html-app">Supplementary Note S4</a>. (<b>b</b>) Diagram with the main synthesis parameters used for the non-milled powder optimization, such as element material used, current employed (A), evaporation time (h), target distance (cm), and mass of powder (g). Please refer to <a href="#app1-applsci-13-10172" class="html-app">Table S2</a> for further details.</p> "> Figure 6
<p>(<b>a</b>) Diffractograms of Samples 12 to 17. The P index in the sample ID represents the polishing procedure. The markers identify the main Bragg peaks of the chalcopyrite (yellow) and bornite phases (orange). The inset shows the crystalline structure of CFS-chalcopyrite. In blue are displayed the phase percentages of chalcopyrite in the film. (<b>b</b>) Diagram with the syntheses parameters, including the milled powder employed, the strategy of polishing (rough surface), the crystalline phases obtained, and the phase purity of the chalcopyrite phase after sulfurization.</p> "> Figure 7
<p>XRD pattern of the CFS-18 sample. Black dots stand for the experimentally obtained data in square root scale, while the red line represents the profile fitting. The grey line shows the residual (difference between the experimental and fitted model). The tick markers represent the Bragg reflections shown in the caption. (1 1 2) is the preferred orientation of CFS chalcopyrite.</p> "> Figure 8
<p>SEM and EDXS analysis of Sample 18. (<b>a</b>) Surface scan (<b>left</b>), EDXS and chemical mapping (<b>right</b>). The table contains information on EDXS analysis of the atomic proportion of each element. (<b>b</b>) Cross section of the thin film.</p> "> Figure 9
<p>Electronic characterization of the CFS-18 samples with increasing temperature. The electrical conductivity is displayed in black squares (left axis), charge carrier concentration (CCC) in red, and electron mobility in blue, both in the right axis.</p> "> Figure 10
<p>(<b>a</b>) I-V plots and (<b>b</b>) I-V-P output measurements for the CFS TEG. The temperature depicted in the figure corresponds to the hot side, while a passive cooler was employed on the cold side to maintain a temperature of approximately 20 °C.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ball-Milling of the Metal Precursors
2.2. Cu-Fe Thin-Film Deposition by Evaporation
2.3. Sulfurization Processes
2.4. X-ray Diffraction
2.5. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy
2.6. Computational Methods
2.7. Hall Measurements
2.8. Thin Film Thermoelectric Generators
3. Results
3.1. Evaporation Optimization
3.1.1. Non-Milled Cu-Fe Powder Evaporation
3.1.2. Optimization of the Ball-Milled Cu-Fe
3.2. Optimized CFS Thin Film
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elalfy, L.; Music, D.; Hu, M. Metavalent bonding induced abnormal phonon transport in diamondlike structures: Beyond conventional theory. Phys. Rev. B 2021, 103, 75203. [Google Scholar] [CrossRef]
- Yu, H.; Chen, L.-C.; Pang, H.-J.; Qiu, P.-F.; Peng, Q.; Chen, X.-J. Temperature-dependent phonon anharmonicity and thermal transport in CuInTe. Phys. Rev. B 2022, 105, 245204. [Google Scholar] [CrossRef]
- Wang, C.; Ma, Q.; Xue, H.; Wang, Q.; Luo, P.; Yang, J.; Zhang, W.; Luo, J. Tetrahedral distortion and thermoelectric performance of the Ag-substituted CuInTe2 chalcopyrite compound. ACS Appl. Energy Mater. 2020, 3, 11015–11023. [Google Scholar] [CrossRef]
- Wang, K.; Qin, P.; Ge, Z.H.; Feng, J. Highly enhanced thermoelectric properties of p-type CuInSe2 alloys by the Vacancy Doping. Scr. Mater. 2018, 149, 88–92. [Google Scholar] [CrossRef]
- Minerals, R. Chalcopyrite—CuFeS2. Dev. Econ. Geol. 1975, 4, 242–253. [Google Scholar] [CrossRef]
- Xie, H.; Su, X.; Hao, S.; Zhang, C.; Zhang, Z.; Liu, W.; Yan, Y.; Wolverton, C.; Tang, X.; Kanatzidis, M.G. Large Thermal Conductivity Drops in the Diamondoid Lattice of CuFeS2 by Discordant Atom Doping. J. Am. Chem. Soc. 2019, 141, 18900–18909. [Google Scholar] [CrossRef]
- Sato, N.; Gan, P.S.; Tsujii, N.; Mori, T. Effect of microstructure on lattice thermal conductivity of thermoelectric chalcopyrite CuFeS2: Experimental and computational studies. Appl. Phys. Express 2021, 14, 087002. [Google Scholar] [CrossRef]
- Long, S.O.J.; Powell, A.V.; Vaqueiro, P.; Hull, S. High Thermoelectric Performance of Bornite through Control of the Cu(II) Content and Vacancy Concentration. Chem. Mater. 2018, 30, 456–464. [Google Scholar] [CrossRef]
- Qiu, P.; Zhang, T.; Qiu, Y.; Shi, X.; Chen, L. Sulfide bornite thermoelectric material: A natural mineral with ultralow thermal conductivity. Energy Environ. Sci. 2014, 7, 4000–4006. [Google Scholar] [CrossRef]
- Mukherjee, S.; Powell, A.V.; Voneshen, D.J.; Vaqueiro, P. Talnakhite: A potential n-type thermoelectric sulphide with low thermal conductivity. J. Solid State Chem. 2022, 314, 123425. [Google Scholar] [CrossRef]
- Pang, H.; Bourgès, C.; Jha, R.; Baba, T.; Sato, N.; Kawamoto, N.; Baba, T.; Tsujii, N.; Mori, T. Revealing an elusive metastable wurtzite CuFeS2 and the phase switching between wurtzite and chalcopyrite for thermoelectric thin films. Acta Mater. 2022, 235, 118090. [Google Scholar] [CrossRef]
- Li, J.; Tan, Q.; Li, J.-F. Synthesis and property evaluation of CuFeS2−x as earth-abundant and environmentally-friendly thermoelectric materials. J. Alloy. Compd. 2013, 551, 143–149. [Google Scholar] [CrossRef]
- Liang, D.; Ma, R.; Jiao, S.; Pang, G.; Feng, S. A facile synthetic approach for copper iron sulfide nanocrystals with enhanced thermoelectric performance. Nanoscale 2012, 4, 6265–6268. [Google Scholar] [CrossRef]
- Vaure, L.; Liu, Y.; Cadavid, D.; Agnese, F.; Aldakov, D.; Pouget, S.; Cabot, A.; Reiss, P.; Chenevier, P. Doping and Surface Effects of CuFeS2 Nanocrystals Used in Thermoelectric Nanocomposites. ChemNanoMat 2018, 4, 982–991. [Google Scholar] [CrossRef]
- Tsujii, N.; Mori, T. High Thermoelectric Power Factor in a Carrier-Doped Magnetic Semiconductor CuFeS2. Appl. Phys. Express 2013, 6, 043001. [Google Scholar] [CrossRef]
- Tsujii, N. Possible enhancement of thermoelectric properties by use of a magnetic semiconductor: Carrier-doped chalcopyrite Cu1−xFe1+xS2. J. Electron. Mater. 2013, 42, 1974–1977. [Google Scholar] [CrossRef]
- Xie, H.; Su, X.; Zheng, G.; Zhu, T.; Yin, K.; Yan, Y.; Uher, C.; Kanatzidis, M.G.; Tang, X. The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1−xZnxFeS2 with In Situ Nanoprecipitates. Adv. Energy Mater. 2017, 7, 1601299. [Google Scholar] [CrossRef]
- Nolas, G.S.; Sharp, J.; Goldsmid, H.J. The Phonon—Glass Electron-Crystal Approach to Thermoelectric Materials Research. In Thermoelectrics; Springer: Berlin/Heidelberg, Germany, 2001; pp. 177–207. [Google Scholar] [CrossRef]
- Isotta, E.; Andrade-Arvizu, J.; Syafiq, U.; Jiménez-Arguijo, A.; Navarro-Güell, A.; Guc, M.; Saucedo, E.; Scardi, P. Towards Low Cost and Sustainable Thin Film Thermoelectric Devices Based on Quaternary Chalcogenides. Adv. Funct. Mater. 2022, 32, 2202157. [Google Scholar] [CrossRef]
- Syafiq, U.; Isotta, E.; Ataollahi, N.; Lohani, K.; Luong, S.; Trifiletti, V.; Fenwick, O.; Scardi, P. Facile and Low-Cost Fabrication of Cu/Zn/Sn-Based Ternary and Quaternary Chalcogenides Thermoelectric Generators. ACS Appl. Energy Mater. 2022, 5, 5909–5918. [Google Scholar] [CrossRef]
- Tsujii, N.; Mori, T.; Isoda, Y. Phase stability and thermoelectric properties of CuFeS2-based magnetic semiconductor. J. Electron. Mater. 2014, 43, 2371–2375. [Google Scholar] [CrossRef]
- Sato, K.; Teranishi, T. Optical absorption of a thin CuFeS2 film. J. Phys. Soc. Jpn. 1976, 40, 197–298. [Google Scholar] [CrossRef]
- Korzun, B.; Galyas, A. Thin Films of CuFeS2 Prepared by Flash Evaporation Technique and Their Structural Properties. J. Electron. Mater. 2019, 48, 3351–3354. [Google Scholar] [CrossRef]
- Khalid, M.A.; Salim, I.K. Optical and DC Electrical Investigations of CuFeS2 Thin Films Prepared by Spray Pyrolysis Technique. J. Basrah Res. 2007, 33, 43–53. [Google Scholar]
- Rouchdi, M.; Mamori, H.; Salmani, E.; Ait Syad, B.; Mounkachi, O.; Essajai, R.; Ez-zahraouy, H.; Chakchak, H.; Hassanain, N.; Benyoussef, A.; et al. Physicochemical characterization and catalytic performance of Fe doped CuS thin films deposited by the chemical spray pyrolysis technique. Appl. Phys. A Mater. Sci. Process. 2021, 127, 441. [Google Scholar] [CrossRef]
- Rana, T.R.; Khadka, D.B.; Kim, J. Sulfur stoichiometry driven chalcopyrite and pyrite structure of spray pyrolyzed Cu-alloyed FeS2 thin films. Mater. Sci. Semicond. Process. 2015, 40, 325–330. [Google Scholar] [CrossRef]
- Barkat, L.; Hamdadou, N.; Morsli, M.; Khelil, A.; Bernède, J.C. Growth and characterization of CuFeS2 thin films. J. Cryst. Growth 2006, 297, 426–431. [Google Scholar] [CrossRef]
- Levin, I. NIST Inorganic Crystal Structure Database (ICSD); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [CrossRef]
- Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Black, D.R.; Mendenhall, M.H.; Brown, C.M.; Henins, A.; Filliben, J.; Cline, J.P. Certification of Standard Reference Material 660c for Powder Diffraction. Powder Diffr. 2020, 35, 17–22. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Raghavan, V. Cu-Fe-S (Copper-Iron-Sulfur). J. Phase Equilibria Diffus. 2004, 25, 450–454. [Google Scholar] [CrossRef]
- Ueno, T.; Kitakaze, A.; Sugaki, A. Phase Relations in the CuFeS2-FeS Join. Sci. Rep. Tohuku Univ. Ser. 1980, 16, 283–293. [Google Scholar]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar]
- Rabiee, M.; Mirzadeh, H.; Ataie, A. Processing of Cu-Fe and Cu-Fe-SiC nanocomposites by mechanical alloying. Adv. Powder Technol. 2017, 28, 1882–1887. [Google Scholar] [CrossRef]
- Mazzone, G.; Antisari, M.V. Structural and magnetic properties of metastable fcc Cu-Fe alloys. Phys. Rev. B 1996, 54, 441–446. [Google Scholar] [CrossRef]
- Xu, J.; Collins, G.S.; Peng, L.S.J.; Atzmon, M. Deformation-assisted decomposition of unstable Fe50Cu50 solid solution during low-energy ball milling. Acta Mater. 1999, 47, 1241–1253. [Google Scholar] [CrossRef]
- Wanderka, N.; Czubayko, U.; Naundorf, V.; Ivchenko, V.A.; Yermakov, A.Y.; Uimin, M.A.; Wollenberger, H. Characterization of nanoscaled heterogeneities in mechanically alloyed and compacted CuFe. Ultramicroscopy 2001, 89, 189–194. [Google Scholar] [CrossRef]
- Eckert, J.; Holzer, J.C.; Krill, C.E.; Johnson, W.L. Reversible grain size changes in ball-milled nanocrystalline Fe-Cu alloys. J. Mater. Res. 1992, 7, 1980–1983. [Google Scholar] [CrossRef]
- Hong, L.B.; Fultz, B. Two-phase coexistence in Fe-Cu alloys synthesized by ball milling. Acta Mater. 1998, 46, 2937–2946. [Google Scholar] [CrossRef]
- Chien, C.L.; Liou, S.H.; Kofalt, D.; Yu, W.; Egami, T.; Watson, T.J.; McGuire, T.R. Magnetic properties of FexCu100−x solid solutions. Phys. Rev. B 1986, 33, 3247–3250. [Google Scholar] [CrossRef] [PubMed]
- Teranishi, T.; Sato, K. OPTICAL, ELECTRICAL AND MAGNETIC PROPERTIES OF CHALCOPYRITE, CuFeS2. Le J. Phys. Colloq. 1975, 36, C3-149–C3-153. [Google Scholar] [CrossRef]
- Syafiq, U.; Ataollahi, N.; Di Maggio, R.; Scardi, P. Solution-Based Synthesis and Characterization of Cu2ZnSnS4 (CZTS) Thin Films. Molecules 2019, 24, 3454. [Google Scholar] [CrossRef]
- Nautiyal, H.; Lohani, K.; Mukherjee, B.; Isotta, E.; Malagutti, M.A.; Ataollahi, N.; Pallecchi, I.; Putti, M.; Misture, S.T.; Rebuffi, L.; et al. Mechanochemical Synthesis of Sustainable Ternary and Quaternary Nanostructured Cu2SnS3, Cu2ZnSnS4, and Cu2ZnSnSe4 Chalcogenides for Thermoelectric Applications. Nanomaterials 2023, 13, 366. [Google Scholar] [CrossRef]
- Mukherjee, B.; Isotta, E.; Fanciulli, C.; Ataollahi, N.; Scardi, P. Topological Anderson Insulator in Cation-Disordered Cu2ZnSnS4. Nanomaterials 2021, 11, 2595. [Google Scholar] [CrossRef]
- Isotta, E.; Mukherjee, B.; Fanciulli, C.; Pugno, N.M.; Scardi, P. Order–Disorder Transition in Kesterite Cu2ZnSnS4: Thermopower Enhancement via Electronic Band Structure Modification. J. Phys. Chem. C 2020, 124, 7091–7096. [Google Scholar] [CrossRef]
- Lohani, K.; Isotta, E.; Ataollahi, N.; Fanciulli, C.; Chiappini, A.; Scardi, P. Ultra-low thermal conductivity and improved thermoelectric performance in disordered nanostructured copper tin sulphide (Cu2SnS3, CTS). J. Alloy. Compd. 2020, 830, 154604. [Google Scholar] [CrossRef]
- Nawaz, S.; Thebo, K.H.; Malik, A.Q. Deposition of CuFeS2 and Cu2FeSnS4 thin films and nanocrystals using diisobutyldithiophosphinato-metal precursors. In Proceedings of the 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 14–18 January 2020; pp. 2–8. [Google Scholar]
- ur Rehman, U.; Mahmood, K.; Ashfaq, A.; Ali, A.; Tahir, S.; Ikram, S.; Rehman, A.; ul Sahar, K.; Ahmad, W.; Amin, N. Enhanced thermoelectric performance of hydrothermally synthesized CuFeS2 nanostructures by controlling the Cu/Fe ratio. Mater. Chem. Phys. 2022, 279, 125765. [Google Scholar] [CrossRef]
- Wang, Y.H.A.; Bao, N.; Gupta, A. Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals. Solid State Sci. 2010, 12, 387–390. [Google Scholar] [CrossRef]
- Wang, M.X.; Wang, L.S.; Yue, G.H.; Wang, X.; Yan, P.X.; Peng, D.L. Single crystal of CuFeS2 nanowires synthesized through solventothermal process. Mater. Chem. Phys. 2009, 115, 147–150. [Google Scholar] [CrossRef]
- Bastola, E.; Bhandari, K.P.; Subedi, I.; Podraza, N.J.; Ellingson, R.J. Structural, optical, and hole transport properties of earth-abundant chalcopyrite (CuFeS2) nanocrystals. MRS Commun. 2018, 8, 970–978. [Google Scholar] [CrossRef]
- Tonpe, D.; Gattu, K.; More, G.; Upadhye, D.; Mahajan, S.; Sharma, R. Synthesis of CuFeS2 thin films from acidic chemical baths. AIP Conf. Proc. 2016, 1728, 020676. [Google Scholar] [CrossRef]
- Vahidshad, Y.; Mirkazemi, S.M.; Tahir, M.N.; Ghasemzadeh, R.; Tremel, W. Synthesis of CuFeS2 Nanoparticles by One-pot Facile Method. J. Nanostruct. 2017, 7, 284–291. [Google Scholar] [CrossRef]
- Ramachandran, R.; Chen, T.W.; Veerakumar, P.; Anushya, G.; Chen, S.M.; Kannan, R.; Mariyappan, V.; Chitra, S.; Ponmurugaraj, N.; Boominathan, M. Recent development and challenges in fuel cells and water electrolyzer reactions: An overview. RSC Adv. 2022, 12, 28227–28244. [Google Scholar] [CrossRef]
- Ding, W.; Wang, X.; Peng, H.; Hu, L. Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium ion battery. Mater. Chem. Phys. 2013, 137, 872–876. [Google Scholar] [CrossRef]
- Senkale, S.; Indris, S.; Etter, M.; Bensch, W. CuFeS2 as a Very Stable High-Capacity Anode Material for Sodium-Ion Batteries: A Multimethod Approach for Elucidation of the Complex Reaction Mechanisms during Discharge and Charge Processes. ACS Appl. Mater. Interfaces 2021, 13, 26034–26045. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, B.; Yang, C.; Liao, S.; Zhang, W.H.; Li, C. CuFeS2 colloidal nanocrystals as an efficient electrocatalyst for dye sensitized solar cells. Chem. Commun. 2016, 52, 11488–11491. [Google Scholar] [CrossRef]
- Sathyaseelan, A.; Kesavan, D.; Manoharan, S.; Mariappan, V.K.; Krishnamoorthy, K.; Kim, S.J. Thermoelectric Driven Self-Powered Water Electrolyzer Using Nanostructured CuFeS2 Plates as Bifunctional Electrocatalyst. ACS Appl. Energy Mater. 2021, 4, 7020–7029. [Google Scholar] [CrossRef]
- Li, B.; Huang, L.; Zhong, M.; Wei, Z.; Li, J. Electrical and magnetic properties of FeS2 and CuFeS2 nanoplates. RSC Adv. 2015, 5, 91103–91107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malagutti, M.A.; Lohani, K.; D’Incau, M.; Nautiyal, H.; Ataollahi, N.; Scardi, P. Optimizing CuFeS2 Chalcopyrite Thin Film Synthesis: A Comprehensive Three-Step Approach Using Ball-Milling, Thermal Evaporation, and Sulfurization Applied for Thermoelectric Generation. Appl. Sci. 2023, 13, 10172. https://doi.org/10.3390/app131810172
Malagutti MA, Lohani K, D’Incau M, Nautiyal H, Ataollahi N, Scardi P. Optimizing CuFeS2 Chalcopyrite Thin Film Synthesis: A Comprehensive Three-Step Approach Using Ball-Milling, Thermal Evaporation, and Sulfurization Applied for Thermoelectric Generation. Applied Sciences. 2023; 13(18):10172. https://doi.org/10.3390/app131810172
Chicago/Turabian StyleMalagutti, Marcelo Augusto, Ketan Lohani, Mirco D’Incau, Himanshu Nautiyal, Narges Ataollahi, and Paolo Scardi. 2023. "Optimizing CuFeS2 Chalcopyrite Thin Film Synthesis: A Comprehensive Three-Step Approach Using Ball-Milling, Thermal Evaporation, and Sulfurization Applied for Thermoelectric Generation" Applied Sciences 13, no. 18: 10172. https://doi.org/10.3390/app131810172
APA StyleMalagutti, M. A., Lohani, K., D’Incau, M., Nautiyal, H., Ataollahi, N., & Scardi, P. (2023). Optimizing CuFeS2 Chalcopyrite Thin Film Synthesis: A Comprehensive Three-Step Approach Using Ball-Milling, Thermal Evaporation, and Sulfurization Applied for Thermoelectric Generation. Applied Sciences, 13(18), 10172. https://doi.org/10.3390/app131810172