A Scheme for Controlled Cyclic Asymmetric Remote State Preparation in Noisy Environment
<p>The schematic of the four-party cyclic asymmetric remote state preparation (RSP) protocol. The black arrow points out the direction of the communications and the dashed line represents the control information.</p> "> Figure 2
<p>The construction of the target channel. (<b>a</b>) Quantum circuit illustrating the construction of target channel. (<b>b</b>) The histogram shows theoretical and experimental results of the quantum state’s mean probability distribution. The x-axis of this histogram is arranged in the order of <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mi>c</mi> <msup> <mrow/> <mrow> <mo>′</mo> <mo>′</mo> <mo>′</mo> </mrow> </msup> </msup> <mo>,</mo> <msup> <mi>b</mi> <msup> <mrow/> <mrow> <mo>′</mo> <mo>′</mo> </mrow> </msup> </msup> <mo>,</mo> <mo>⋯</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> from the bottom to the top, showing the average probability and percentage error of each state in the target channel of 13 qubits.</p> "> Figure 3
<p>Diagram of four-party controlled cyclic asymmetrical RSP protocol, where SM is short for single-qubit measurement.</p> "> Figure 4
<p>Quantum circuit illustrating four-party controlled cyclic asymmetrical RSP protocol.</p> "> Figure 5
<p>Histogram of output results. (<b>a</b>) Histogram of output results after running once in the ’ibmq_qasm_simulator’ quantum processor. The x-axis of this histogram is arranged in the order of <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>8</mn> <mo>,</mo> <mo>⋯</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> from the bottom to the top. (<b>b</b>) Histogram of output results after running ten times in Jupyter Notebook. The x-axis of this histogram is arranged in the order of <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mi>c</mi> <msup> <mrow/> <mrow> <mo>′</mo> <mo>′</mo> <mo>′</mo> </mrow> </msup> </msup> <mo>,</mo> <msup> <mi>b</mi> <msup> <mrow/> <mrow> <mo>′</mo> <mo>′</mo> </mrow> </msup> </msup> <mo>,</mo> <mo>⋯</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> from the bottom to the top.</p> "> Figure 6
<p>The trend of the fidelity of the output state with the change of the decoherence rate(P) in four types of noisy environments, where different types of lines represent different noise environments. Suppose the coefficient of the desired state <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </semantics></math>.</p> "> Figure 7
<p>The variations of the fidelity in different noise with different coefficients of the initiated state and decoherence rate, where P(D) is short for the decoherence rate of the depolarized noise, P(A) is short for the decoherence rate of the Amplitude damping noise, P(p) is short for the decoherence rate of the phase damping noise, P(S) is short for the decoherence rate of the bit-phase flip noise. Suppose the coefficient of the desired state is <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>∈</mo> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Four-Party Controlled Cyclic Asymmetrical RSP Protocol of Sequentially Increasing Qubits States
2.1. Preparation of Quantum Channel
2.2. Description of Four-Party Controlled Cyclic Asymmetrical RSP Protocol
2.3. Experimental Realization in IBM QE
3. Multi-Party Controlled Cyclic Asymmetrical RSP Protocol of Sequentially Increasing Qubits States
4. Four-Party Controlled Cyclic Asymmetrical RSP Protocol in Noisy Environments
4.1. Depolarized Noise
4.2. Amplitude Damping Noise
4.3. Phase Damping Noise
4.4. Bit-Phase Flip Noise
4.5. Analysis of the Effect of the Scheme in Four Noisy Environments
5. Comparison and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aspect, A.; Dalibard, J.; Roger, G. Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: A new violation of bell’s inequalities. Phys. Rev. Lett. 1982, 49, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 1993, 70, 13–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, H.-K. Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A 2000, 62, 012313. [Google Scholar] [CrossRef] [Green Version]
- Pati, K.A. Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 2000, 63, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Divincenzo, D.P.; Shor, P.W.; Smolin, J.A.; Terhal, B.M.; Wootters, W.K. Remote state preparation. Phys. Rev. Lett. 2001, 87, 077902. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.G.M.; Cunha, M.M.; Parisio, F. Remote preparation of w states from imperfect bipartite sources. Quantum Inf. Process. 2016, 15, 3869–3879. [Google Scholar] [CrossRef] [Green Version]
- Devetak, I.; Berger, T. Low-entanglement remote state preparation. Phys. Rev. Lett. 2001, 87, 197901. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Gao, C.; Zhang, P.; Qu, Z.G. Deterministic remote preparation via the Brown state. Quantum Inf. Process. 2017, 16, 1–22. [Google Scholar] [CrossRef]
- Leung, D.W.; Shor, P.W. Oblivious remote state preparation. Phys. Rev. Lett. 2003, 90, 127905. [Google Scholar] [CrossRef] [Green Version]
- Xiang, G.; Li, J.; Guo, G.C. Remote State Preparation and Operation for Photons. Photonics Asia 2004 Inf. Process. Data Storage 2004, 5631, 13. [Google Scholar]
- Zhan, Y.-B. Remote State Preparation of a Greenberger-Horne-Zeilinger Class State. Commun. Theor. Phys. 2005, 43, 637–640. [Google Scholar]
- Wang, Z.-Y.; Liu, Y.-M.; Zuo, X.-Q.; Zhang, Z.-J. Controlled Remote State Preparation. Commun. Theor. Phys. 2009, 52, 235–240. [Google Scholar]
- Wang, C.; Zeng, Z.; Li, X.-H. Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 2015, 14, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.-Y.; Bai, M.-Q.; Mo, Z.-W. Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 2015, 14, 4263–4278. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Samanta, S. An optional remote state preparation protocol for a four-qubit entangled state. Quantum Inf. Process. 2019, 18, 118. [Google Scholar] [CrossRef]
- Chen, H.B.; Fu, H.; Li, X.W.; Ma, P.C.; Zhan, Y.B. Economic scheme for remote preparation of an arbitrary five-qubit brown-type state. Pramana 2016, 86, 783–788. [Google Scholar] [CrossRef]
- Ding, M.X.; Jiang, M.; Liu, Y.H. Deterministic joint remote preparation of an arbitrary six-qubit cluster-type state. Opt. Int. J. Light Electron Opt. 2016, 127, 10681–10686. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Samanta, S. Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. Process. 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Fang, S.; Jiang, M. A Novel Scheme for Bidirectional and Hybrid Quantum Information Transmission via a Seven-Qubit State. Int. J. Theor. Phys. 2018, 57, 523–532. [Google Scholar] [CrossRef]
- Wu, H.; Zha, X.-W.; Yang, Y.-Q. Controlled Bidirectional Hybrid of Remote State Preparation and Quantum Teleportation via Seven-Qubit Entangled State. Int. J. Theor. Phys. 2018, 57, 28–35. [Google Scholar] [CrossRef]
- Cao, L.Y.; Jiang, M.; Chen, C. Joint remote state preparation of an arbitrary eight-qubit cluster-type state. Pramana 2020, 94, 41. [Google Scholar] [CrossRef]
- Jiang, S.-X.; Zhou, R.-G.; Xu, R.; Luo, G. Cyclic Hybrid Double-channel Quantum Communication Via Bell-state and Ghz-state In Noisy Environments. IEEE Access 2019, 7, 80530–80541. [Google Scholar] [CrossRef]
- Wang, M.; Yang, C.; Mousoli, R. Controlled cyclic remote state preparation of arbitrary qubit states. Comput. Mater. Contin. 2018, 55, 321–329. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, Y.; Sang, M.; Nie, Y. Bidirectional Controlled Remote State Preparation of an Arbitrary Two-Qubit State. Int. J. Theor. Phys. 2019, 58, 2228–2234. [Google Scholar] [CrossRef]
- Sang, Z. Cyclic Controlled Joint Remote State Preparation by Using a Ten-Qubit Entangled State. Int. J. Theor. Phys. 2019, 58, 255–260. [Google Scholar] [CrossRef]
- Sun, L.; Wu, S.; Qu, Z.; Wang, M.; Wang, X. The effect of quantum noise on two different deterministic remote state preparation of an arbitrary three-particle state protocols. Quantum Inf. Process. 2018, 17, 1–18. [Google Scholar] [CrossRef]
- Espoukeh, P.; Pedram, P. Quantum teleportation through noisy channels with multi-qubit GHZ states. Quantum Inf. Process. 2014, 13, 1789–1811. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Shukla, C.; Banerjee, S.; Pathak, A. Controlled bidirectional remote state preparation in noisy environment: A generalized view. Quantum Inf. Process. 2015, 14, 3441–3464. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Huang, L. Effects of Noise on Joint Remote State Preparation of an Arbitrary Equatorial Two-Qubit State. Int. J. Theor. Phys. 2017, 56, 720–728. [Google Scholar] [CrossRef]
- Sun, Y.-R.; Xu, G.; Chen, X.-B.; Yang, Y.; Yang, Y.-X. Asymmetric Controlled Bidirectional Remote Preparation of Single- and Three-Qubit Equatorial State in Noisy Environment. IEEE Access 2019, 7, 2811–2822. [Google Scholar] [CrossRef]
- Dash, T.; Sk, R.; Panigrahi, P.K. Deterministic joint remote state preparation of arbitrary two-qubit state through noisy cluster-GHZ channel. Opt. Commun. 2020, 464. [Google Scholar] [CrossRef]
- Wei, S.J.; Xin, T.; Long, G.L. Efficient universal quantum channel simulation in IBM’s cloud quantum computer. Sci. China (Phys. Mech. Astron.) 2018, 7, 48–57. [Google Scholar]
- Sisodia, M.; Shukla, A.; Pathak, A. Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 2017, 381, 3860–3874. [Google Scholar] [CrossRef] [Green Version]
- Rajiuddin, S.; Baishya, A.; Behera, B.K.; Panigrahi, P.K. Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state. Quantum Inf. Process. 2020, 19, 87. [Google Scholar] [CrossRef]
- Kalra, A.R.; Gupta, N.; Behera, B.K.; Prakash, S.; Panigrahi, P.K. Demonstration of the no-hiding theorem on the 5-Qubit IBM quantum computer in a category-theoretic framework. Quantum Inf. Process. 2019, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Joschka, R.; David, H.; Nicholas, C.; Dominic, H.; Viv, K. Protecting quantum memories using coherent parity check codes. Quantum Sci. Technol. 2018, 3, 035010. [Google Scholar]
- Alvarez-Rodriguez, U.; Sanz, M.; Lamata, L.; Solano, E. Quantum artificial life in an ibm quantum computer. Sci. Rep. 2018, 8, 14793. [Google Scholar] [CrossRef]
- Zhang, C.; Bai, M.; Zhou, S. Cyclic joint remote state preparation in noisy environment. Quantum Inf. Process. 2018, 17, 1–20. [Google Scholar] [CrossRef]
- Banerjee, A.; Pathak, A. Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 2012, 376, 2944–2950. [Google Scholar] [CrossRef]
SPM1(A) | SPM1(B) | SPM1(C) | SPM2(A) | SPM2(B) | SPM2(C) | SPM(D) | Transformations | ||
---|---|---|---|---|---|---|---|---|---|
Alice | Bob | Charlie | |||||||
. |
Runs | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.125 | 0.117 | 0.126 | 0.118 | 0.118 | 0.138 | 0.130 | 0.128 |
2 | 0.132 | 0.125 | 0.122 | 0.121 | 0.129 | 0.131 | 0.119 | 0.121 |
3 | 0.120 | 0.128 | 0.124 | 0.127 | 0.129 | 0.118 | 0.126 | 0.127 |
4 | 0.125 | 0.123 | 0.130 | 0.127 | 0.123 | 0.127 | 0.120 | 0,125 |
5 | 0.132 | 0.123 | 0.129 | 0.122 | 0.124 | 0.118 | 0.125 | 0.127 |
6 | 0.128 | 0.129 | 0.122 | 0.125 | 0.124 | 0.122 | 0.129 | 0.121 |
7 | 0.124 | 0.126 | 0.124 | 0.129 | 0.122 | 0.119 | 0.132 | 0.123 |
8 | 0.121 | 0.121 | 0.123 | 0.130 | 0.127 | 0.126 | 0.124 | 0.127 |
9 | 0.120 | 0.131 | 0.122 | 0.129 | 0.121 | 0.125 | 0.120 | 0.132 |
10 | 0.123 | 0.130 | 0.126 | 0.125 | 0.125 | 0.124 | 0.124 | 0.124 |
A | 0.125 | 0.1253 | 0.1248 | 0.1253 | 0.1242 | 0.1248 | 0.1249 | 0.1255 |
S | 0.0044 | 0.0044 | 0.0029 | 0.0039 | 0.0035 | 0.0063 | 0.0045 | 0.0039 |
Scheme | Type | Operation | Efficiency | |||
---|---|---|---|---|---|---|
[25] | CCJRSP | 3 (three arbitrary single-qubit) | 10 | 6 | 7 SM | 19% |
[32] | CJRSP | 3 (three arbitrary single-qubit) | 9 | 9 | 6 SM | 17% |
[30] | CCJRSP | 2 (An arbitrary two-qubit state) | 7 | 5 | 5 SM | 17% |
[24] | CBRSP | 4(Two arbitrary two-qubit ) | 9 | 8 | 9 SM | 24% |
[16] | CBRSP and QT | 2 (two arbitrary single-qubit) | 7 | 4 | 1 BSM,3 SM | 18% |
[23] | CCRSP | 3 (three arbitrary single-qubit) | 7 | 6 | 6 SM | 23% |
Ours | CCARSP | 6(A single-qubit, a two-qubit, a three-qubit) | 13 | 6 | 7 SM | 32% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Wu, T.; Yu, Y.; Pei, C. A Scheme for Controlled Cyclic Asymmetric Remote State Preparation in Noisy Environment. Appl. Sci. 2021, 11, 1405. https://doi.org/10.3390/app11041405
Zhao N, Wu T, Yu Y, Pei C. A Scheme for Controlled Cyclic Asymmetric Remote State Preparation in Noisy Environment. Applied Sciences. 2021; 11(4):1405. https://doi.org/10.3390/app11041405
Chicago/Turabian StyleZhao, Nan, Tingting Wu, Yan Yu, and Changxing Pei. 2021. "A Scheme for Controlled Cyclic Asymmetric Remote State Preparation in Noisy Environment" Applied Sciences 11, no. 4: 1405. https://doi.org/10.3390/app11041405
APA StyleZhao, N., Wu, T., Yu, Y., & Pei, C. (2021). A Scheme for Controlled Cyclic Asymmetric Remote State Preparation in Noisy Environment. Applied Sciences, 11(4), 1405. https://doi.org/10.3390/app11041405