Horizontal Loading Performance of Offshore Wind Turbine Pile Foundation Based on DPP-BOTDA
<p>Experiment setup of the differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA). EOM, electro-optic modulator; MG, microwave generator; FBG, fiber Bragg grating; PS, polarization scrambler; OI, optical isolator; AFG, arbitrary function generator; EDFA, erbium-doped fiber amplifier; PD, photodetector; DAQ, data acquisition.</p> "> Figure 2
<p>DEW-G5000 wind turbine in position Y14.</p> "> Figure 3
<p>Test pile and geological survey data at different elevations.</p> "> Figure 4
<p>The detailed arrangement of optical fiber. (<b>a</b>) Arrangement and naming of distributed optical fiber sensors (DOFS) in the test pile; (<b>b</b>) adhering the DOFS with epoxy resin; (<b>c</b>) installation of angle steel for protective fiber.</p> "> Figure 5
<p>Entire experimental device.</p> "> Figure 6
<p>Strain values of the corresponding elevation from 0 kN to 900 kN.</p> "> Figure 7
<p>Load and maximum strain (<span class="html-italic">F-ε</span><sub>max</sub>) curve at −19.63 m.</p> "> Figure 8
<p>Pure curved structure deformation.</p> "> Figure 9
<p>The simplified model of the steel pipe pile.</p> "> Figure 10
<p>Distributed displacement values at FUT1 direction.</p> "> Figure 11
<p>Displacement data at +10.5 m elevation collected by the dial indicators during the test.</p> "> Figure 12
<p>Displacement data at +10 m elevation collected by the dial indicators compared with displacement data obtained by the distributed strain calculation under horizontal loads.</p> ">
Abstract
:1. Introduction
2. Field Experiment
2.1. DPP Measurement System
2.2. Engineering Profile
2.3. Fiber-Optic Installation
2.4. Experimental System
3. Results and Discussion
3.1. Distributed Strain Data
3.2. Distributed Displacement Data
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aziz, H.; Hanifah, K.; Kai, L. Innovation in instrumented test piles in Malaysia: Application of global strain extensometer (GloStrExt) method for bored piles in Malaysia. Bull. Inst. Eng. Malays. 2005, 11, 10–19. [Google Scholar]
- Battista, N.; Kechavarzi, C.; Seo, H.; Soga, H.; Pennington, S. Distributed fibre optic sensors for measuring strain and temperature of cast-in-situ concrete test piles. In Proceedings of the International Conference on Smart Infrastructure and Construction (ICSIC), Cambridge, UK, 27–29 June 2016. [Google Scholar]
- Mohamad, H.; Bennett, P.J.; Soga, K.; Mair, R.J.; Bowers, K. Behaviour of an old masonry tunnel due to tunnelling-induced ground settlement. Geotechnique 2010, 60, 927–938. [Google Scholar] [CrossRef]
- Horvat, M.; Jambrosic, K.; Domitrovic, H. Monitoring Twin Tunnel Interaction Using Distributed Optical Fiber Strain Measurements. J. Geotech. Geoenviron. Eng. 2012, 138, 957–967. [Google Scholar]
- Xu, J.; Dong, Y.; Zhang, Z.; Li, S.; He, S.; Li, H. Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors. Meas. Sci. Technol. 2016, 27, 124017. [Google Scholar] [CrossRef]
- Minardo, A.; Bernini, R.; Amato, L.; Zeni, L. Bridge monitoring using Brillouin fiber-optic sensors. IEEE Sens. J. 2011, 12, 145–150. [Google Scholar] [CrossRef]
- Yoon, H.J.; Song, K.Y.; Choi, C.; Na, H.S.; Kim, J.S. Real-Time Distributed Strain Monitoring of a Railway Bridge during Train Passage by Using a Distributed Optical Fiber Sensor Based on Brillouin Optical Correlation Domain Analysis. J. Sens. 2016, 2016, 9137531. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, Y.; Lu, Y.; Wei, J.; Kanungo, D.P. Application of Distributed Optical Fiber Sensing Technique in Monitoring the Ground Deformation. J. Sens. 2017, 2017, 6310197. [Google Scholar] [CrossRef]
- Pelecanos, L.; Soga, K.; Elshafie, M.; Battista, N.; Kechavarzi, C.; Gue, C.; Ouyang, Y.; Seo, H. Distributed Fibre Optic Sensing of Axially Loaded Bored Piles. J. Geotech. Geoenviron. Eng. 2018, 144, 04017122. [Google Scholar] [CrossRef] [Green Version]
- Pelecanos, L.; Soga, K.; Chunge, M.; Ouyang, Y.; Kwan, V.; Kechavarzi, C.; Nicholson, D. Distributed fibre-optic monitoring of an Osterberg-cell pile test in London. Geotech. Lett. 2017, 7, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Shi, B.; Wei, G.; Chen, S.; Zhang, D. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles. Smart Mater. Struct. 2012, 21, 115011. [Google Scholar] [CrossRef]
- Acikgoz, S.; Pelecanos, L.; Giardina, G.; Aitken, J.; Soga, K. Distributed sensing of masonry vault during nearby piling. Struct. Control Health Monit. 2016, 24, e1872. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y.; Hayashi, N.; Fukuda, H.; Song, K.Y.; Nakamura, K. Ultrahigh-speed distributed Brillouin reflectometry. Light Sci. Appl. 2016, 5, 16184. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.; Zhang, Y.; Liu, L. Application of distributed optical fiber sensor for monitoring the mechanical performance of a driven pile. Measurement 2016, 88, 186–193. [Google Scholar] [CrossRef]
- Zhou, D.; Dong, Y.; Wang, B.; Pang, C.; Ba, D.; Zhang, H.; Lu, Z.; Li, H.; Bao, X. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement. Light Sci. Appl. 2018, 7, 32. [Google Scholar] [CrossRef]
- Bersan, S.; Bergamo, O.; Palmieri, L.; Schenato, L.; Simonini, P. Distributed strain measurements in a CFA pile using high spatial resolution fibre optic sensors. Eng. Struct. 2018, 160, 554–565. [Google Scholar] [CrossRef]
- Monsberger, C.; Woschitz, H.; Hayden, M. Deformation measurement of a driven pile using distributed fibre-optic sensing. J. Appl. Geod. 2016, 10, 61–69. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, H.; Chen, L.; Bao, X. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair. Appl. Opt. 2012, 51, 1229–1235. [Google Scholar] [CrossRef]
- Kishida, K.; Li, C.H. Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system. Struct. Health Monit. Intell. Infrastruct. 2005, 1, 471–477. [Google Scholar]
- Brown, A.W.; Colpitts, B.G.; Brown, K. Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution. J. Lightwave Technol. 2007, 25, 381–386. [Google Scholar] [CrossRef]
- Foaleng, S.M.; Tur, M.; Beugnot, J.C.; Thévenaz, L. High spatial and spectral resolution long-range sensing using Brillouin echoes. J. Lightwave Technol. 2011, 28, 2993–3003. [Google Scholar] [CrossRef]
- Li, W.; Bao, X.; Li, Y.; Chen, L. Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt. Express. 2008, 16, 21616–21625. [Google Scholar] [CrossRef]
Class of Loading | Load (kN) | Data Acquisition Time |
---|---|---|
0 | 0 | 12:50 |
load1 | 60 | 13:30 |
load2 | 120 | 14:20 |
load3 | 180 | 15:10 |
load4 | 240 | 16:10 |
load5 | 300 | 18:10 |
load6 | 360 | 19:10 |
load7 | 420 | 20:10 |
load8 | 480 | 20:50 |
load9 | 540 | 23:20 |
load10 | 600 | 00:30 + 1 d |
load11 | 660 | 02:30 |
load12 | 720 | 03:30 |
load13 | 780 | 04:30 |
load14 | 840 | 06:00 |
load15 | 900 | 07:00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Guan, P.; Xu, J.; Wang, B.; Li, H.; Dong, Y. Horizontal Loading Performance of Offshore Wind Turbine Pile Foundation Based on DPP-BOTDA. Appl. Sci. 2020, 10, 492. https://doi.org/10.3390/app10020492
Zhang Z, Guan P, Xu J, Wang B, Li H, Dong Y. Horizontal Loading Performance of Offshore Wind Turbine Pile Foundation Based on DPP-BOTDA. Applied Sciences. 2020; 10(2):492. https://doi.org/10.3390/app10020492
Chicago/Turabian StyleZhang, Zhaohui, Peng Guan, Jinlong Xu, Benzhang Wang, Hui Li, and Yongkang Dong. 2020. "Horizontal Loading Performance of Offshore Wind Turbine Pile Foundation Based on DPP-BOTDA" Applied Sciences 10, no. 2: 492. https://doi.org/10.3390/app10020492
APA StyleZhang, Z., Guan, P., Xu, J., Wang, B., Li, H., & Dong, Y. (2020). Horizontal Loading Performance of Offshore Wind Turbine Pile Foundation Based on DPP-BOTDA. Applied Sciences, 10(2), 492. https://doi.org/10.3390/app10020492