Data Assimilation in Spatio-Temporal Models with Non-Gaussian Initial States—The Selection Ensemble Kalman Model
<p>Graph of the hidden Markov model.</p> "> Figure 2
<p>Initial log-diffusivity field with observation locations <math display="inline"><semantics> <mrow> <mspace width="0.166667em"/> <mo>·</mo> <mspace width="0.166667em"/> </mrow> </semantics></math>, monitoring locations ×, and heat source ∆.</p> "> Figure 3
<p>True temperature (<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C) field evolution over time.</p> "> Figure 4
<p>Data collected over time (<math display="inline"><semantics> <mrow> <mspace width="0.166667em"/> <mo>·</mo> <mspace width="0.166667em"/> </mrow> </semantics></math>) and true temperature evolution (line) at the data collection points.</p> "> Figure 5
<p>Realizations from the initial selection-Gaussian distribution of the log diffusivity <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mo form="prefix">log</mo> <mo stretchy="false">(</mo> <mi mathvariant="bold-italic">λ</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </semantics></math> at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (upper panels) and associated spatial histogram (lower panels). Lower panels: the horizontal axes represent the log-diffusivity, the vertical axes represent the relative prevalence of each log-diffusivity value for the realization in the panel right above.</p> "> Figure 6
<p>SEnKF approach: Marginal posterior distribution of the log diffusivity <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mo form="prefix">log</mo> <mrow> <mo stretchy="false">(</mo> <msub> <mi>λ</mi> <mi>i</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> <msub> <mi mathvariant="bold-italic">d</mi> <mrow> <mn>0</mn> <mo>:</mo> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>50</mn> <mo>,</mo> <mn>80</mn> <mo>,</mo> <mn>100</mn> </mrow> </semantics></math> at the monitoring locations (<math display="inline"><semantics> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>) denoted (<math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>4</mn> </msub> </mrow> </semantics></math>).</p> "> Figure 7
<p>EnKF approach: Marginal posterior distribution of the log diffusivity <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mo form="prefix">log</mo> <mrow> <mo stretchy="false">(</mo> <msub> <mi>λ</mi> <mi>i</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> <msub> <mi mathvariant="bold-italic">d</mi> <mrow> <mn>0</mn> <mo>:</mo> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>50</mn> <mo>,</mo> <mn>80</mn> <mo>,</mo> <mn>100</mn> </mrow> </semantics></math> at the monitoring locations (<math display="inline"><semantics> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>) denoted (<math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>4</mn> </msub> </mrow> </semantics></math>).</p> "> Figure 8
<p>MMAP predictions of the log diffusivity field <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mo form="prefix">log</mo> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="bold-italic">λ</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> <msub> <mi mathvariant="bold-italic">d</mi> <mrow> <mn>0</mn> <mo>:</mo> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>50</mn> <mo>,</mo> <mn>80</mn> <mo>,</mo> <mn>100</mn> </mrow> </semantics></math> (upper panels—SEnKF approach, lower panels—EnKF approach).</p> "> Figure 9
<p>MMAP predictions of the log diffusivity field with <math display="inline"><semantics> <mrow> <mn>80</mn> <mo>%</mo> </mrow> </semantics></math> HDI in cross section B-B’ at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> with SEnKF (<b>left</b>) and with EnKF (<b>right</b>).</p> "> Figure 10
<p>SEnKF approach: Realizations of the posterior distribution of the log diffusivity <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mo form="prefix">log</mo> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="bold-italic">λ</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> <msub> <mi mathvariant="bold-italic">d</mi> <mrow> <mn>0</mn> <mo>:</mo> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> (<b>upper</b> panels) and associated spatial histogram (<b>lower</b> panels). Lower panels: the horizontal axes represent the log-diffusivity, the vertical axes represent the relative prevalence of each log-diffusivity value for the realization in the panel right above.</p> "> Figure 11
<p>EnKF approach: Realizations of the posterior distribution of the log diffusivity <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mo form="prefix">log</mo> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="bold-italic">λ</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> <msub> <mi mathvariant="bold-italic">d</mi> <mrow> <mn>0</mn> <mo>:</mo> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> (<b>upper</b> panels) and associated spatial histogram (<b>lower</b> panels). Lower panels: the horizontal axes represent the log-diffusivity, the vertical axes represent the relative prevalence of each log-diffusivity value for the realization in the panel right above.</p> "> Figure 12
<p>Initial temperature (<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C) field (<b>left</b>) with data collection points <math display="inline"><semantics> <mrow> <mspace width="0.166667em"/> <mo>·</mo> <mspace width="0.166667em"/> </mrow> </semantics></math> and monitoring locations × and reference log-diffusivity field (<b>right</b>).</p> "> Figure 13
<p>True temperature (<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C) field evolution over time.</p> "> Figure 14
<p>Data collected over time (points) and true temperature (<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C) evolution at the data collection points (line).</p> "> Figure 15
<p>Realizations from the selection-Gaussian initial distribution of the initial temperature field <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="bold-italic">r</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (upper panels) and associated spatial histogram (lower panels). Upper panels: the colorbar gives the temperature in <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C. Lower panels: the horizontal axes represent the temperature (<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C), the vertical axes represent the relative prevalence of each temperature value for the realization right above.</p> "> Figure 16
<p>SEnKS approach: Marginal posterior distributions of the initial temperature <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="bold-italic">r</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>|</mo> <msub> <mi mathvariant="bold-italic">d</mi> <mrow> <mn>0</mn> <mo>:</mo> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> at monitoring locations (<math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>) denoted (<math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>4</mn> </msub> </mrow> </semantics></math>). The horizontal axes representing temperature are expressed in <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C.</p> "> Figure 17
<p>EnKS approach: Marginal posterior distributions of the initial temperature <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="bold-italic">r</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>|</mo> <msub> <mi mathvariant="bold-italic">d</mi> <mrow> <mn>0</mn> <mo>:</mo> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> at monitoring locations (<math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>) denoted (<math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>4</mn> </msub> </mrow> </semantics></math>). The horizontal axes representing temperature are expressed in <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C.</p> "> Figure 18
<p>MMAP predictions of the initial temperature (<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C) field at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> for the SEnKS approach (<b>upper</b>) and the EnKS approach (<b>lower</b>).</p> "> Figure 19
<p>MMAP predictions of the initial temperature (<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C) field <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="bold-italic">r</mi> <mn>0</mn> </msub> <mo>|</mo> <msub> <mi mathvariant="bold-italic">d</mi> <mrow> <mn>0</mn> <mo>:</mo> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mn>80</mn> <mo>%</mo> </mrow> </semantics></math> HDI in cross section A-A’ at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> with SEnKS (<b>left</b>) and with EnKS (<b>right</b>).</p> "> Figure 20
<p>SEnKS approach: Realizations from the posterior distribution <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="bold-italic">r</mi> <mn>0</mn> </msub> <mo>|</mo> <msub> <mi mathvariant="bold-italic">d</mi> <mrow> <mn>0</mn> <mo>:</mo> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> of the initial temperature field at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>. Upper panels: the colorbar gives the temperature in <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C. Lower panels: the horizontal axes represent the temperature (<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C), the vertical axes represent the relative prevalence of each temperature value for the realization right above.</p> "> Figure 21
<p>EnKS approach: Realizations from the posterior distribution of the initial temperature field <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="bold-italic">r</mi> <mn>0</mn> </msub> <mo>|</mo> <msub> <mi mathvariant="bold-italic">d</mi> <mrow> <mn>0</mn> <mo>:</mo> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> at time <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>. Upper panels: the colorbar gives the temperature in <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C. Lower panels: the horizontal axes represent the temperature (<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C), the vertical axes represent the relative prevalence of each temperature value for the realization right above.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Model
3.2. Test Case 1: Predicting the Parameter Field
- The marginal posterior distributions of the log-diffusivity field at four monitoring locations denoted on Figure 2, at time .
- The marginal maximum a posteriori (MMAP) prediction of the log-diffusivity field at time at time .
- Realizations from the posterior distribution at time .
- The root mean square errors (RMSE) of the MMAP prediction of the log-diffusivity field relative to the true log-diffusivity field at time .
3.3. Test Case 2: Reconstructing the Initial Field
- The marginal posterior distributions of the initial temperature field at four monitoring locations denoted on Figure 12, at time .
- The marginal maximum a posteriori (MMAP) prediction of the initial temperature field at time at time .
- Realizations from the posterior distribution of the initial temperature field at time .
- The root mean square errors (RMSE) of the MMAP prediction of the initial temperature field relative to the true initial temperature field at time .
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Glossary
discretized spatial variable at time t. | |
Gaussian variables; basis and auxiliary variables, at time t. | |
selection set. | |
selection Gaussian variable at time t. | |
expectation vector. | |
covariance matrix. | |
correlation matrix. | |
matrix cross-correlation | |
observation variable at time t. | |
forward function at time t. | |
observation function at time t. | |
spatial correlation function. |
Appendix A
Algorithm A1 Selection Ensemble Kalman Filter (SEnKF) |
A time series of ensembles is defined as and the -vector has the following covariance matrix: |
1. Initiate: |
2. No. of ensemble members |
3. Generate , |
4. Generate , |
5. , |
6. , |
7. Iterate: |
8. Conditioning: |
9. Estimate from |
10. , |
11. Forwarding: |
12. Generate , |
13. , |
14. If |
15. Generate , |
16. , |
17. |
18. Else |
19. |
20. End iterate |
21. Estimate from |
22. Assess |
23. |
24. End Algorithm |
The ensemble represents . To assess , the sampling algorithm specified in [21] requires and which are estimated using the ensemble . |
Algorithm A2 Selection Ensemble Kalman Smoother (SEnKS) |
Two time series of ensemble sets are defined as |
for |
and the accumulated ensemble set defined as
|
The -vector has covariance matrix |
The -vector has covariance matrix |
1. Initiate |
2. No. of ensemble members |
3. Generate , |
4. |
5. Generate , iid |
6. , |
7. |
8. Estimate from |
9. |
10. Iterate : |
11. Fowarding |
12. Generate , |
13. , |
14. |
15. Generate , iid |
16. , |
17. |
18. Estimate from |
19. |
20. End iterate |
21. |
22. Select |
23. For arbitrary , select corresponding ensemble from |
24. Estimate from |
25. Assess |
26. |
27. End Algorithm |
The ensemble represents . To assess , the sampling algorithm in [21] requires and , which are estimated using the sub-ensemble of . |
References
- Kalman, R.E. A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- McElhoe, B.A. An Assessment of the Navigation and Course Corrections for a Manned Flyby of Mars or Venus. IEEE Trans. Aerosp. Electron. Syst. 1966, AES-2, 613–623. [Google Scholar] [CrossRef]
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 1994, 99, 10143. [Google Scholar] [CrossRef]
- Myrseth, I.; Omre, H. The Ensemble Kalman Filter and Related Filters. In Large Scale Inverse Problems and Quantification of Uncertainty; John Wiley & Sons, Ltd.: London, UK, 2010; chapter 11; pp. 217–246. [Google Scholar]
- Houtekamer, P.L.; Mitchell, H.L.; Pellerin, G.; Buehner, M.; Charron, M.; Spacek, L.; Hansen, B. Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations. Mon. Weather. Rev. 2005, 133, 604–620. [Google Scholar] [CrossRef] [Green Version]
- Sakov, P.; Oliver, D.; Bertino, L. An Iterative EnKF for Strongly Nonlinear Systems. Mon. Weather. Rev. 2012, 140, 1988–2004. [Google Scholar] [CrossRef]
- Sklar, A. Random variables, joint distribution functions, and copulas. Kybernetika 1973, 9, 449–460. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Bertino, L.; Evensen, G.; Wackernagel, H. Sequential Data Assimilation Techniques in Oceanography. Int. Stat. Rev. 2003, 71, 223–241. [Google Scholar] [CrossRef]
- Simon, E.; Bertino, L. Application of the Gaussian anamorphosis to assimilation in a 3D coupled physical-ecosystem model of the North Atlantic with the EnKF: A twin experiment. Ocean. Sci. 2009, 5, 495–510. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Gomez-Hernandez, J. Characterization of non-Gaussian conductivities and porosities with hydraulic heads, solute concentrations, and water temperatures. Water Resour. Res. 2016, 52, 6111–6136. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Oliver, D. An Iterative Ensemble Kalman Filter for Multiphase Fluid Flow Data Assimilation. SPE J. 2007, 12, 438–446. [Google Scholar] [CrossRef]
- Evensen, G. Analysis of iterative ensemble smoothers for solving inverse problems. Comput. Geosci. 2018, 22, 885–908. [Google Scholar] [CrossRef] [Green Version]
- Dovera, L.; Della Rossa, E. Multimodal ensemble Kalman filtering using Gaussian mixture models. Comput. Geosci. 2010, 15, 307–323. [Google Scholar] [CrossRef]
- Rimstad, K.; Omre, H. Approximate posterior distributions for convolutional two-level hidden Markov models. Comput. Stat. Data Anal. 2013, 58, 187–200. [Google Scholar] [CrossRef]
- Grana, D.; Fjeldstad, T.; Omre, H. Bayesian Gaussian Mixture Linear Inversion for Geophysical Inverse Problems. Math. Geosci. 2017, 49, 493–515. [Google Scholar] [CrossRef]
- Besag, J. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. 1974, 36, 192–236. [Google Scholar] [CrossRef]
- Le Loc’h, G.; Beucher, H.; Galli, A.; Doligez, B. Improvement In The Truncated Gaussian Method: Combining Several Gaussian Functions. In Proceedings of the ECMOR IV—4th European Conference on the Mathematics of Oil Recovery; European Association of Geoscientists & Engineers: Røros, Norway, 1994. [Google Scholar] [CrossRef]
- Oliver, D.; Chen, Y. Data Assimilation in Truncated Plurigaussian Models: Impact of the Truncation Map. Math. Geosci. 2018, 50, 867–893. [Google Scholar] [CrossRef]
- Arellano-Valle, R.B.; Branco, M.D.; Genton, M.G. A unified view on skewed distributions arising from selections. Can. J. Stat. 2006, 34, 581–601. [Google Scholar] [CrossRef]
- Omre, H.; Rimstad, K. Bayesian Spatial Inversion and Conjugate Selection Gaussian Prior Models. arXiv 2018, arXiv:1812.01882. [Google Scholar]
- Conjard, M.; Omre, H. Spatio-temporal Inversion using the Selection Kalman Model. arXiv 2020, arXiv:stat.ME/2006.14343. [Google Scholar]
- Cappé, O.; Moulines, E.; Ryden, T. Inference in Hidden Markov Models (Springer Series in Statistics); Springer-Verlag: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Moja, S.; Asfaw, Z.; Omre, H. Bayesian Inversion in Hidden Markov Models with Varying Marginal Proportions. Math. Geosci. 2018, 51, 463–484. [Google Scholar] [CrossRef]
- Evensen, G. Data Assimilation; Springer-Verlag: Berlin Heidelberg, Germany, 2006; Volume 307. [Google Scholar] [CrossRef]
- Evensen, G. The Ensemble Kalman filter: Theoretical Formulation and Practical Implementation. Ocean. Dyn. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- Burgers, G.; Van Leeuwen, P.J. On the Analysis Scheme in the Ensemble Kalman Filter. Mon. Weather. Rev. 1998, 126, 1719–1724. [Google Scholar] [CrossRef]
- Hyndman, R. Computing and Graphing Highest Density Regions. Am. Stat. 1996, 50, 120–126. [Google Scholar]
- Gaspari, G.; Cohn, S. Quarterly Journal of the Royal Meteorological Society. J. Comput. Graph. Stat. 1999, 125, 723–757. [Google Scholar]
Parameters | Values |
---|---|
0 | |
A |
SEnKF | ENKF | |
---|---|---|
2.72 | 3.76 |
Parameters | Values |
---|---|
0 | |
A |
SEnKS | ENKS | |
---|---|---|
2.92 | 3.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conjard, M.; Omre, H. Data Assimilation in Spatio-Temporal Models with Non-Gaussian Initial States—The Selection Ensemble Kalman Model. Appl. Sci. 2020, 10, 5742. https://doi.org/10.3390/app10175742
Conjard M, Omre H. Data Assimilation in Spatio-Temporal Models with Non-Gaussian Initial States—The Selection Ensemble Kalman Model. Applied Sciences. 2020; 10(17):5742. https://doi.org/10.3390/app10175742
Chicago/Turabian StyleConjard, Maxime, and Henning Omre. 2020. "Data Assimilation in Spatio-Temporal Models with Non-Gaussian Initial States—The Selection Ensemble Kalman Model" Applied Sciences 10, no. 17: 5742. https://doi.org/10.3390/app10175742
APA StyleConjard, M., & Omre, H. (2020). Data Assimilation in Spatio-Temporal Models with Non-Gaussian Initial States—The Selection Ensemble Kalman Model. Applied Sciences, 10(17), 5742. https://doi.org/10.3390/app10175742