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Abstract
This paper examines the properties of the Iterated Ensemble Smoother (IES) and the Multiple Data Assimilation Ensemble
Smoother (ES–MDA) for solving the history matching problem. The iterative methods are compared with the standard
Ensemble Smoother (ES) to improve the understanding of the similarities and differences between them. We derive the three
smoothers from Bayes’ theorem for a scalar case which allows us to compare the equations solved by the three methods, and
we can better understand which assumptions are applied and their consequences. When working with a scalar model, it is
possible to use a vast ensemble size, and we can construct the sample distributions for both priors and posteriors, as well as
intermediate iterates. For a linear model, all three methods give the same result. For a nonlinear model, the iterative methods
improve on the ES result, but the two iterative methods converge to different solutions, and it is not clear which should be
the preferred choice. It is clear that the ensemble of cost functions used to define the IES solution does not represent an exact
sampling of the posterior-Bayes’ probability density function. Also, the use of an ensemble representation for the gradient in
IES introduces an additional approximation compared to using an exact analytic gradient. For ES–MDA, the convergence,
as a function of increasing number of uniform update steps, is studied for a huge ensemble size. We illustrate that ES–MDA
converges to a solution that differs from the Bayesian posterior. The convergence is also examined using a realistic sample
size to study the impact of the number of realizations relative to the number of update steps. We have run multiple ES–MDA
experiments to examine the impact of using different schemes for choosing the lengths of the update steps, and we have tried
to understand which properties of the inverse problem imply that a non-uniform update step length is beneficial. Finally,
we have examined the smoother methods with a highly nonlinear model to examine their properties and limitations in more
extreme situations.
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1 Introduction

Ensemble methods for data assimilation and parameter
estimation [9, 11, 12] are now well established as a
standard tool in the reservoir-engineering community for
history matching reservoir models. Following the first
application of Ensemble Kalman Filter (EnKF) with a
reservoir simulation model by Nævdal et al. [19], there
is now a large number of publications that address the
estimation of parameters in reservoir simulation models
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using EnKF. We refer to the review by Aanonsen et al. [1]
and references therein.

Skjervheim et al. [24] introduced the use of Ensemble
Smoother (ES) as an alternative to the sequential EnKF for
history matching reservoir models and showed that similar
performance and results were obtained using ES and EnKF
in a reservoir test case.

van Leeuwen and Evensen [26] initially proposed ES
and also found that EnKF provides superior results to ES
in an application with an ocean circulation model. EnKF
and ES both solve the same Bayesian formulation, which
in the case of EnKF is written as a recursion in time
under the assumption of a Markov reservoir model and
measurements that are independent in time. Thus ES differs
from EnKF by computing a global update of the model
parameters using all the observations simultaneously rather
than using recursive updates in time. For linear dynamical
models and measurement operators, EnKF and ES provide
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identical solutions as is shown by Evensen [10]. However,
for nonlinear dynamical models, and in particular models
with chaotic dynamics, EnKF is shown to be superior to ES
[13, 26]. The reason is that the recursive updates keep the
model on track and close to the true solution represented
by the measurements. The acceptable performance of ES
with a reservoir model was attributed by Skjervheim et al.
[24] to the relatively “weakly nonlinear” nature of reservoir
models.

In ES one integrates the whole ensemble of model realiza-
tions once to generate a prediction. Then the prior ensemble
of uncertain parameters is updated using the “Kalman Fil-
ter” equations with all data assimilated simultaneously.

Finally, the model is rerun using the updated parameters
to create the final history-matched ensemble of model pre-
dictions. Thus, ES solves a parameter-estimation problem
that is easy to grasp by reservoir engineers since it is very
similar to the concept used in most other software developed
for history matching.

Following the introduction of ES for use in history
matching by Skjervheim et al. [24], two iterative variants
of the smoother formulation were introduced. Chen and
Oliver [4, 5] published Iterative ES (IES) which was initially
named Ensemble Randomized Likelihood (EnRML) [16,
21]. Emerick and Reynolds [7, 8] developed Multiple-Data-
Assimilation ES (ES–MDA). The iterations of the smoother
update turn out to partly resolve issues with nonlinearity
and lead to better results than what is obtained by ES.
There is now a range of new smoother developments and
applications based on the original iterative variants, e.g.,
Bocquet and Sakov [2], Luo et al. [18], Iglesias [14, 15], Le
et al. [17], and Rafiee and Reynolds [22].

In Evensen and Eikrem [Strategies for conditioning
reservoir models on rate data using ensemble smoothers,
under review] ES, ES–MDA, and IES were used with a real
reservoir model. They observed that IES and ES–MDAwith
a different number of update steps gave slightly different
results. In particular, the variance obtained from IES was
lower than the one from ES–MDA with 16 MDA steps,
which again was smaller than the one from ES–MDA with
eight MDA steps. It was also challenging to determine
which is the preferred scheme of IES and ES–MDA, the
number of update steps to use in ES–MDA, and whether
there was any point in using non-uniform step lengths in
ES–MDA.

In this paper, we will discuss the data-assimilation
methods ES, ES–MDA, and IES for a simple scalar problem
and try to explain the similarities and differences between
these smoothers to understand better what to expect when
we use them. We start by restating the history matching
problem in the next section and present a set of equations
and their assumptions and illustrate how they can be used
to derive ES, ES–MDA, and IES. Then, in Section 3, we

present a detailed derivation of ES, ES–MDA, and IES
for the scalar case while discussing the approximations
and simplifications used. In Section 4, we run several
experiments with the different smoothers to illustrate and
discuss their properties with a weakly nonlinear and
monotonic scalar model. Finally, in Section 5, we study the
highly nonlinear case to establish limits of applicability of
the methods and to better understand their limitations.

2 History matching problem

We start by formally restating the history matching problem
as usually formulated in the petroleum industry. A first
fundamental assumption is that we have a perfect forward
model

y = g(x). (1)

From evaluating the model operator g(x), given a
realization of the model parameters x ∈ �n, we
uniquely determine the predicted measurements y ∈ �m

(corresponding to the real measurements d ∈ �m). Here
n is the number of parameters and m the number of
measurements. We have measurements d of y, and we want
to use the measurements to estimate the variable x, i.e., we
are solving a standard inverse problem.

In history matching, it is common to define a prior for
the parameters since we usually will have more degrees
of freedom in the parameters than we have independent
information in the measurements. Bayes’ theorem with a
perfect model gives the joint posterior pdf for x and y as

f (x, y|d) ∝ f (x, y)f (d|y)
= f (x)f (y|x)f (d|y)
= f (x)δ(y − g(x))f (d|y),

(2)

where the transition density f (y|x) becomes the Dirac delta
function in the case with no model errors. We are interested
in the marginal pdf for x, which we obtain by integrating
Eq. 2 over y, giving

f (x|d) ∝ ∫
f (x)δ(y − g(x))f (d|y)dy

= f (x)f (d|g(x)). (3)

To be able to solve for the posterior pdf of x, we need
to impose another assumption. In the ensemble methods,
the approach is to assume a Gaussian prior f (x) and
likelihood f (d|g(x)). The marginal posterior pdf in Eq. 3
then becomes

f (x|d) ∝ exp− 1
2

((
x − xf

)TC−1
xx

(
x − xf

)

+(
g(x) − d

)TC−1
dd

(
g(x) − d

))
,

(4)

where xf is the prior estimate for x, Cxx ∈ �n×n is the error
covariance of xf, and Cdd ∈ �m×m is the error covariance
of the measurements d. We have dropped a superscript
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“f” which is often used on Cxx . Maximizing f (x|d) is
equivalent to minimizing the cost function

J (x) = (
x − xf

)TC−1
xx

(
x − xf

)

+(
g(x) − d

)TC−1
dd

(
g(x) − d

)
.

(5)

Most methods for history matching are based on the
assumptions of a perfect model and Gaussian priors. The
posterior is still nonlinear and non-Gaussian due to the
non-linear model g(x). In cases with, e.g., channelized
reservoirs, the prior for x becomes non-Gaussian; however,
in most cases we can represent non-Gaussian parameters
by underlying Gaussian parameters, so the assumption of
Gaussian priors holds.

In the case of a linear model y = Gx, we can derive a
direct solution for the minimum of the cost function (5), and
this corresponds to the Kalman-Filter update equations

xa = xf + K(d − Gx), (6)

Ca
xx = (I − KG)Cxx, (7)

K = CxxG
(
GCxxGT + Cdd

)−1
, (8)

where the superscript “a” denote the analysis update. Here
K is the standard Kalman gain matrix.

Continuing in the linear case, we can use an ensemble
representation of the error covariancesCe

xx = AAT/(ne−1)
as in the EnKF where A ∈ �n×ne contains the ensemble
anomalies (ensemble members with the ensemble average
subtracted), and ne is the number of ensemble members. We
can then rewrite the Kalman-Filter equations as

xaj = xfj + Ke(dj − Gxj ), (9)

Ke = Ce
xxG

(
GCe

xxG
T + Cdd

)−1
, (10)

and it is shown by Evensen [11] that with an infinite
ensemble size, the update in Eq. 9 implies Eq. 7. Here,
dj = d + εj denotes perturbed observations [3]. It is also
easy to show that Eqs. 9 and 10 can be derived by minimi-
zing the following cost function for each of xj , i.e.,

J (xj ) = (
xj − xfj

)TC−1
xx

(
xj − xfj

)

+(
Gxj − dj

)TC−1
dd

(
Gxj − dj

)
.

(11)

In the linear case, ES and any method that minimizes
the cost function (11) will correctly sample the posterior
Gaussian pdf f (x|d).

In the nonlinear case, we may write the cost function (11)
as

J (xj ) = (
xj − xfj

)TC−1
xx

(
xj − xfj

)

+(
g(xj ) − dj

)TC−1
dd

(
g(xj ) − dj

)
,

(12)

which is the cost function being approximately minimized
using the IES, but as will be seen below, the minimizing
solutions will no longer exactly sample the posterior non-
Gaussian distribution.

The ES update equations can in the nonlinear case be
derived from Eq. 5 to get the nonlinear analogs of Eqs. 6–8.
Then, we introduce the ensemble approximation to obtain

xaj = xfj + Ke
(
dj − g

(
xfj

))
, (13)

Ke = Ce
xxg

′(xf)
(
g′(xf)Ce

xxg
′(xf)T + Cdd

)−1
, (14)

where the tangent-linear operator g′ is evaluated at the mean
of the prior ensemble. Note that these equations can also be
derived directly from the cost function (12), which is the
starting point for IES. We will show how to obtain these
equations in the scalar case, and how we in the ensemble
formulation can replace the tangent-linear operator g′(xf)
with an ensemble representation.

The purpose of this discussion is to show that ES, and
also ES–MDA, can be derived from the same cost function
that is minimized using IES. Furthermore, we formally link
ES and ES–MDA to Bayes. We have also established a link
between ES, ES–MDA, and IES that can be used to explain
the methods. For now, we note that they all sample the
posterior distribution in the Gauss-linear case.

Direct minimization of the cost function (5) is possible
using a gradient method where we usually compute the
gradient from an adjoint model. Alternatively, genetic
sampling algorithms can be used to sample the posterior
pdf in Eq. 4. However, a problem with such methods is that
they require very many model predictions to converge, and
they can only be used to estimate a few, O(10), parameters
due to the size of the parameter space. It will be shown
below how the ensemble methods replace the tangent-linear
operator or gradient with an ensemble representation and
thereby eliminate the need for adjoint calculations.

Note also that the Iterative EnKF (IEnKF) as discussed
by Sakov et al. [23] and Bocquet and Sakov [2] solves the
same kind of problem as given by the marginal conditional
pdf in Eq. 3 or the cost function in Eq. 5. Sakov et al. [23]
derived IEnKF for state estimation where the model state
at the time ti is updated using measurements of the state at
time ti+1. The purpose was to handle nonlinear dynamical
models and observation operators better. However, the
approach used in IEnKF is similar to IES and ES–MDA
where we estimate parameters x using measurements of the
nonlinear model prediction in Eq. 1. IEnKF solves for the
update of the mean in the ensemble subspace spanned by
the ensemble anomalies as

xa = xf + Aw. (15)

Thus, the problem is reduced to compute a vector of
coefficients w ∈ �ne by minimizing the cost function (5)
where Eq. 15 is used to write it as a cost function for w.
Finally, one computes the updated ensemble anomalies by
sampling perturbations utilizing an estimate of the error
covariance of the analysis obtained from approximating the
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inverse of the Hessian of the cost function. The IEnKF is an
exciting method for solving the history matching problem,
but it is not practical in its standard form with the vast
ensemble size used in this paper.

3 Derivation of the smoothers

We will from now on, for clarity, consider a scalar case with
a single measurement. The posterior marginal pdf in Eq. 3
is written as

f (x|d) ∝ f (x)f (d|g(x))

∝ exp− 1
2

((
x − xf

)
C−1

xx

(
x − xf

))

× exp− 1
2

((
g(x) − d

)
C−1

dd

(
g(x) − d

))
.

(16)

The prior pdf and likelihood are assumed to be Gaussian,
and we represent the Gaussian priors by ensembles of
realizations

f (x) = N
(
xf, Cxx

) →
{
xf
j

}
,

f (d|g(x)) = N
(
d, Cdd

) →
{
dj

}
.

(17)

Then, corresponding to each pair of realizations xf
j and

dj we can compute a posterior realization xj by minimizing
the cost function

J (xj ) = (
xj − xf

j

)
C−1

xx

(
xj − xf

j

)

+(
g(xj ) − dj

)
C−1

dd

(
g(xj ) − dj

)
,

(18)

which measures the distance between xj and a prior value
xf
j and the distance between the prediction yj = g(xj )

and a measurement dj . The two terms are weighted by the
variances of the prior and the measurement, respectively,
and Eq. 18 defines a least-squares solution for xj .

In the nonlinear case, the posterior ensemble obtained by
minimizing the cost function (18) for xj , j = 1, ne, will
not precisely sample the posterior, but it will provide an
approximation of it. ES, ES–MDA, and IES will then lead to
three different answers: IES attempts to give the distribution
of minima of the cost functions as long as the method
converges and there are no local minima (although we will
see below that the use of an ensemble representation for
the gradient introduces an approximation). ES uses a single
linear update step and only finds an estimate of the minima
of the cost function, but ES also solves for an approximate
variance minimizing solution of the marginal pdf. ES–MDA
has a similar interpretation as ES, but we will show how ES–
MDA uses a sequence of linear steps, that leads to a more
accurate solution than ES.

To minimize J (xj ), we need the gradient of J (xj ), i.e.,

∂J (xj )

∂xj
= 2C−1

xx

(
xj − xf

j

)

+2g′(xj )C
−1
dd

(
g(xj ) − dj

)
.

(19)

In iterative schemes, we also need the second derivative,
or Hessian, of J (xj ) which becomes

∂2J (xj )

∂xj
2 = 2C−1

xx + 2g′(xj )C
−1
dd g′(xj )

+2g′′(xj )C
−1
dd

(
g(xj ) − dj

)
.

(20)

3.1 ES

We can easily derive ES from the cost function (18). By
setting the gradient (19) equal to zero, we obtain an equation
for each updated (or analyzed) ensemble member xa

j as

C−1
xx

(
xa
j − xf

j

)
+ g′(xa

j

)
C−1

dd

(
g
(
xa
j

) − dj

)
= 0. (21)

We start by defining the linearizations around xf
j

g
(
xa
j

) ≈ g
(
xf
j

) + g′(xf
j

)(
xa
j − xf

j

)
, (22)

g′(xa
j

) ≈ g′(xf
j

) + g′′(xf
j

)(
xa
j − xf

j

)
, (23)

where we will neglect the second derivative g′′(xf
j )

restricting our self to modest nonlinearity. We use these
linearizations in the gradient (21) and multiply with CxxCdd

to get

Cdd

(
xa
j − xf

j

)

+Cxx

(
g
(
xf
j

) + g′(xf
j

)(
xa
j − xf

j

) − dj

)
g′(xf

j

) = 0.
(24)

Rearranging gives
(
g′(xf

j

)
Cxxg

′(xf
j

) + Cdd

) (
xa
j − xf

j

)

= g′(xf
j

)
Cxx

(
dj − g

(
xf
j

))
,

(25)

and we can now solve for xa
j to get

ES with analytic gradient

xa
j = xf

j + g′(xf
j

)
Cxx

×
(
g′(xf

j

)
Cxxg

′(xf
j

) + Cdd

)−1 (
dj − g

(
xf
j

))
,

ya
j = g

(
xa
j

)
. (26)

The covariances Cxx , Cyy , and Cyx , are defined as the

covariances around an ensemble means xf = xf
j and yf =

yf
j , with the overline denoting ensemble average, and we can

write

Ce
xx =

(
xf
j − xf

)2
. (27)

We will also need to use an expansion of g(x) around the
ensemble mean

g
(
xf
j

) ≈ g
(
xf) + g′(xf)(xf

j − xf). (28)
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We can then write the following

Ce
xy =

(
xf
j − xf

)(
yf
j − yf

)

=
(
xf
j − xf

)(
g
(
xf
j

) − g
(
xf
j

))

≈
(
xf
j − xf

)(
g
(
xf

) + g′(xf
)(

xf
j − xf

))

−
(
xf
j − xf

)(
g
(
xf

) + g′(xf
)(

xf
j − xf

))

= g′(xf
)(

xf
j − xf

)2

= g′(xf
)
Ce

xx,

(29)

and

Ce
yy =

(
yf
j − yf

)2

=
(
g
(
xf
j

) − g
(
xf
j

))2

≈
(

g
(
xf

) + g′(xf
)(

xf
j − xf

)

−g
(
xf

) + g′(xf
)
(xf

j − xf)

)2

= g′(xf
)(

xf
j − xf

)2
g′(xf

)

= g′(xf
)
Ce

xxg
′(xf

)
.

(30)

When using these expressions, the update equation (26)
becomes

ES with ensemble gradient

xa
j = xf

j + Ce
xy

(
Ce

yy + Ce
dd

)−1(
dj − g

(
xf
j

))
,

ya
j = g

(
xa
j

)
.

(31)

Note that dj = d + εj , where we sample εj from
the Gaussian distribution N (0, Cdd), and we can use εj to
compute and represent Ce

dd .

3.2 IES

We can write a simple Gauss-Newton iteration as

xi+1 = xi − γ

∂J (x)
∂x

∣
∣
∣
x=xi

∂2J (x)

∂x2

∣
∣
∣
x=xi

. (32)

Now we can use the gradient and Hessian from Eqs. 19
and 20 in this iteration. Note that the g′′(x) is normally
assumed to be zero, since the term is anyway small when the
nonlinearity is not too large and it does not impact the value
of the gradient. Thus, we solve the quasi-Newton iteration

xj,i+1 = xj,i

− γ
C−1

xx

(
xj,i − xf

j

) + g′(xj,i)C
−1
dd

(
g(xj,i) − dj

)

C−1
xx + g′(xj,i)C

−1
dd g′(xj,i)

.

(33)

In the scalar case, we obtain a simler form by multiplying
Eq. 33 with 1 = (CxxCdd)/(CxxCdd), and by replacing the
covariances with their ensemble representations, i.e.,

IES with analytic gradient

xj,i+1 = xj,i

−γ
Ce

dd

(
xj,i −xf

j

)+g′(xj,i)C
e
xx

(
g(xj,i)− dj

)

g′(xj,i)Ce
xxg

′(xj,i) + Ce
dd

,

yj,i+1 = g(xj,i+1). (34)

The IES minimization problem as defined in Eq. 34
correctly minimizes the cost functions (18) as long as
the iterations converge to the global minimum for each
realization.

In Eq. 34 we still need to compute g′(xj,i) evaluated at
the current iterate i. However, we can rewrite as follows

g′(xj,i)C
e
xx = g′(xj,i)C

e,i
xx

(
C
e,i
xx

)−1
Ce

xx

≈ g′(xi)C
e,i
xx

(
C
e,i
xx

)−1
Ce

xx

≈ C
e,i
xy

(
C
e,i
xx

)−1
Ce

xx,

(35)

where we assume that the inverse of the covariance C
e,i
xx

exists, and we as in ES evaluate g′ at the ensemble mean.
Then using the definition of the covariance (29) we can
rewrite the “analytic” IES equation utilizing an ensemble
approximation of the gradient.

IES with ensemble gradient

xj,i+1 =xj,i − γ
Ce

dd

(
xj,i − xf

j

)

C
e,i
yy + Ce

dd

− γ
C
e,i
xy

(
C
e,i
xx

)−1
Ce

xx

(
g(xj,i) − dj

)

C
e,i
yy + Ce

dd

yj,i+1 =g(xj,i+1)

(36)

Note that we change the expression for the gradient by
introducing the ensemble representation given by Eq. 35,
and thereby also alter the minimizing solutions defined by
the gradient being equal to zero for each realization.

Here we also used the local iterate of the ensemble C
e,i
yy

in the denominator, but we could equally well use Ce
yy from

the prior ensemble, since these choices do not change the
gradient which defines the final solution, they only impact
the step length used in the quasi-Newton iteration. Note also
that the form of the equation requires the inversion of the
covariance C

e,i
xx , which has a dimension equal to the number

of parameters. However, in practical cases, the ensemble
size is much smaller than the number of parameters and
a pseudo-inversion can be computed from a singular-value
decomposition of the ensemble. We must evaluate the
gradient (and Hessian) in each iteration step. Thus, we
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must also integrate the ensemble in each iteration, and the
total cost becomes equal to Nies + 1 ensemble integrations
with Nies being the required number of iterations to reach
convergence.

3.3 ES–MDA

We can formally derive ES–MDA from the Bayesian
formulation using a tempering procedure by [20, 25]. We
rewrite the likelihood function for the measurements as

f (d|y) = f (d|y)

(∑Nmda
i=1

1
αi

)

=
Nmda∏

i=1

f (d|y)
1
αi , (37)

where

Nmda∑

i=1

1

αi

= 1. (38)

For a Gaussian likelihood, we then get

f (d|y) ∝ exp

(

− 1
2 (y − d)C−1

dd (y − d)

)

= ∏Nmda
i=1 exp

(

− 1
2αi

(y − d)C−1
dd (y − d)

)

.
(39)

Using Eq. 37 in Bayes’ theorem (16), we obtain

f (x|d) ∝ f (x)

Nmda∏

i=1

f
(
d|g(xi−1)

) 1
αi . (40)

This expression can be rewritten as a recursion starting
with the prior x = x0 leading to the posterior x = xNmda .

f (x1|d) ∝ f (x0)f (d|g(x0))
1
α1 ,

f (x2|d) ∝ f (x1|d)f (d|g(x1))
1
α2 ,

...

f (xNmda |d) ∝ f (xNmda−1|d)f (d|g(xNmda−1))
1

αNmda .

(41)

Maximizing each of the recursions corresponds to
minimizing a cost function for each recursive step.
Thus, ES–MDA solves a predefined sequence of Nmda

minimization problems similar to the cost functions (18),
written as

J (xj,i+1) = (xj,i+1 − xj,i)
(
C
e,i
xx

)−1
(xj,i+1 − xj,i)

+ (
g(xj,i+1) − d − √

αiε
)

× (
αiC

e
dd

)−1 (
g(xj,i+1) − d − √

αiε
)
,

(42)

where the initial xj,i=1 = xf
j and (Ce

xx)i=1 = Ce
xx . In

each step, we inflate the measurement errors by a factor√
αi , which satisfies Eq. 38. There is no approximation

introduced in this recursion, and this choice of αi ensures
that the Nmda recursive steps become precisely the ES
solution in the linear case.

The sequence of cost functions (42) is in each step solved
using the standard ES equations, which, with the inflated
measurement errors, becomes when using the formulation
with the “analytic gradient,”

ES–MDA with analytic gradient

xj,i+1 = xj,i

+g′(xj,i

)
Ce,i

xx

(
g′(xj,i)C

e,i
xx g′(xj,i) + αiC

e
dd

)−1

×
(
d + √

αiεj − g(xj,i)
)
,

yj,i+1 = g(xj,i+1), (43)

and with the ensemble gradient, we obtain

ES–MDA with ensemble gradient

xj,i+1 = xj,i + Ce,i
xy

(
Ce,i

yy + αiC
e
dd

)−1

×
(
d + √

αiεj − g(xj,i)
)
,

yj,i+1 = g(xj,i+1).

(44)

The final result after Nmda steps is xa
j = xj,Nmda .

Note that the error covariances C
e,i
xy and C

e,i
yy are computed

from the ensemble at step i, and are thus being updated
recursively during the sequence of update steps. The benefit
of this stepwise approach is that it uses many short linear
steps with local linearization around xi rather than one long
ES step with linearization around xf. The expectation is that
this stepwise approach will lead to a better result than what
is found using ES.

3.4 Remarks about ES, ES–MDA, and IES

It is clear that the ES, ES–MDA, and IES algorithms are
similar in many aspects. ES is equivalent to ES–MDA with
one step, and in the linear case the methods only differ in
the choice of step lengths and the number of steps, and they
converge to the same solution.

In the nonlinear case, there is, in addition to the use
of different step lengths, also a difference related to a
linearization of the nonlinear model and the evaluation of
ensemble gradients.

– In the IES–analytic, there are no approximations
introduced during the derivation starting from the
cost function (18). Thus, by evaluating the gradient
analytically, the iteration converges exactly to the
minimum of the cost function for each realization.
Unfortunately, as will be illustrated below the posterior
IES ensemble is not sampling the posterior pdf defined
by Bayes’ in Eq. 16.

– In IES–ensemble, we replace the analytic expression for
the gradient with an ensemble approximation. By using
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an approximation for the gradient, we also change the
minimizing solution for each realization. Thus, we will
now sample another posterior pdf than the one obtained
using IES–analytic.

– In the ES update scheme, we linearize the model
around the first guess xf and one single update step
is computed using an approximate ensemble gradient.
Thus, with a large update, it is likely that the solution
will suffer from both an approximate direction and
magnitude of the update. On the other hand, only two
ensemble integrations are needed, one to generate the
prior ensemble prediction, and one to compute the
posterior ensemble.

– It is worth noting that the sequential EnKF computes
many small recursive updates in time and the solution
stays close to the measured state at each update step.
Each local linearization is then likely to have less
impact in EnKF than ES, and this property may explain
the previous success when using non-iterative EnKF for
reservoir history matching.

– In ES–MDA, we use the ES update equation with
inflated measurement errors defined by the choices of
αi . Thus, we apply a local linearization of the update
equations at each step (which is why we need to rerun
the ensemble prediction at each step). The consistency
and convergence to ES are proven for the linear case by
Emerick and Reynolds [8]. However, for the nonlinear
case, there is no proof of the convergence of ES–MDA.
From the examples below, we will see that ES–MDA
reduces the error in the final update compared to ES.

– The similarity of ES, ES–MDA, and IES, can be further
illustrated by considering the IES iteration in Eq. 36,
which for the first step with γ = 1 and xj,1 = xf

j ,
becomes identical to the ES update equation (31).

– Although none of the methods considered in this
paper correctly samples the true posterior pdf from
Bayes’, the posterior ensembles can be used as proposal
densities in a particle filter algorithm, and by assigning
proper weights to the realizations, it is possible to
sample the true posterior pdf.

4 Scalar example

We will use a simple scalar model to illustrate in some more
detail the properties of the ES, ES–MDA, and IES methods.
The example resembles the use of conditioning methods in
history matching, i.e., there is a parameter x that serves as
an input to a forward model to predict y = g(x). We then
observe y and try to estimate x, and then predict an updated
y.

Ensemble methods are known to perform very well
for weakly nonlinear dynamical models. However, it is

more precise to say that the methods perform well with
weakly nonlinear and monotonic models. By monotonic
we mean that the derivative of the model with respect to
the input parameter does not change its sign. Thus, for
a model with a positive derivative, an increase in x will
always lead to an increase in y. A monotonic model cannot
support the multimodal behavior that is often associated
with strongly nonlinear dynamics. Also, as was illustrated
by Evensen [11, Chap. 10, Fig. 7], ES cannot consistently
handle multimodal behavior. Reservoir models often exhibit
a monotonic response, e.g., an increase in permeability leads
to an associated increase in production and this property
is mainly responsible for the success of ensemble methods
in history matching. Thus, the discussion below considers
a monotonic and weakly nonlinear scalar model, while we
will study the highly nonlinear case in Section 5.

4.1 Scalar model

We assume an initial state x and a prediction y given by the
model

y = g(x) + q

= x(1 + βx2) + q.
(45)

Here, β is a parameter that determines the nonlinearity of
the model. In the current example, we have used β = 0.0
for the linear case and β = 0.2 for the nonlinear case.

The model error variance is Cqq and q is a random
variable sampled from N (0, Cqq). We have assumed the
model error to be zero although it would still be interesting
to examine the impact of model errors on the inverse
problem.

We sample the prior ensemble for x from a Gaussian
distribution N (xf = 1, Cxx = 1) and the observation of
y has the distribution N (d = −1, Cdd = 1). Thus, in the
current example, x represents the initial state or the model
parameter, while y is the prediction which is observed. The
goal is to estimate x given an observation of y.

In this example, we use a sufficiently large number
of samples, i.e., 107, to generate accurate estimates of
the probability density functions, and this allows us to
work directly with the pdfs and to examine the sampling
properties of the methods.

The pdf for the model is given by the transition density

f (y|x) ∝ exp

(

− (y − x(1 + βx2))2

2Cqq

)

, (46)

which in the limit of zero model errors becomes

f (y|x) ∝ δ
(
y − x(1 + βx2)

)
. (47)
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4.2 Base-case experiments

In Fig. 1 we show the joint pdf f (x, y) and joint conditional
pdf f (x, y|d) for the linear case with β = 0 and
nonlinear case with β = 0.2 in the upper and middle plots
respectively. Since we have set the model errors to zero, the
joint pdfs have zero probability outside the curve defined by
the model. In the linear case, the joint pdf has its probability
mapped onto a line, with the highest probability around
x = 1 as defined by the initial pdf for x. The conditioning
on the datum d = −1 shifts the high probability towards
y = −1 and on the same line. The same happens in the
nonlinear case, but now the nonlinearity of the model is
obvious in the mapping. For illustration, we also show the
joint pdfs for the case when we include model errors in the
bottom plots of Fig. 1. Then the joint pdf will be smooth
in the y-direction taking into account that one value of x

may be mapped to different values of y as defined by the
stochastic forcing from the model errors.

4.2.1 ES–MDA scheme for αi

We have defined a scheme for αi , where we start by
selecting any nonzero value for α′

1. Then α′
i is computed as

α′
i+1 = α′

i/αgeo, (48)

where αgeo is a constant defining the change of step lengths
from one step to the next. The final values for αi are
obtained by scaling the values from Eq. (48) as

αi = α′
i

⎛

⎝
Nmda∑

i=1

1

α′
i

⎞

⎠ . (49)

With this scheme, αgeo = 1.0 results in uniform step
lengths. A positive αgeo < 1.0 leads to increasing values
for αi and decreasing step lengths, and αgeo > 1.0 leads
to decreasing values for αi and increasing step lengths. The
scaling used in Eq. 49 ensures that the constraint on the sum
of 1/αi in Eq. 38 is satisfied.

4.2.2 Definition of line legends

The line legends refer to different cases and are defined
as follows: for ES and IES experiments we use typically
IES L 7 ENS where L denote linear case, 7 defines
the ensemble size as 107, and ANA and ENS defines
respectively an exact analytic gradient and an approximate
ensemble gradient. For ES–MDA experiments we add the
number of MDA steps e.g., 008 and the value used for αgeo,
and an example is MDA L 7 ENS 008 1.0 were we for the
nonlinear cases just drop the L.

4.2.3 Linear-model results

In Fig. 2, we show the marginal pdfs from the linear
case, where we compare ES, ES–MDA, and IES, using the
ensemble gradients, with the exact Bayesian solution. We
have used 8 ES–MDA steps with equal weights α = 8, and
the IES iterations used a step length of γ = 0.5.

The plots should be read as follows:

1. Start in the left plots with the red initial Gaussian pdf
of x. We represent this prior pdf by a large ensemble
of samples. Each realization of the prior ensemble
is used as input to the model (45) and an ensemble
of predictions, representing the distribution of y, is
obtained and plotted as the red Gaussian pdf in the right
plots.

2. We now compute the ES update of x to obtain the
cyan ES posterior pdf for x in the left plots. Using the
updated samples of the ES posterior pdf for x, we can
compute the model prediction of the posterior for y,
which we show in the right plots.

3. We then repeat this process for ES–MDA and IES by
stepwise incremental updates of x followed by updates
of y using the model.

The results from this experiment can be summarized as
follows: In the linear case both ES–MDA and IES converges
precisely to the ES solution, which also equals the true
solution defined by the Bayesian update (black pdf),
illustrating the consistency of the methods in the linear case.
We will next discuss the methods in more detail for the
nonlinear case.

4.3 ES experiments

In Fig. 3, we have plotted the ES solutions from the ES with
an analytic gradient as defined by Eq. 26 and ES with an
ensemble gradient as defined by Eq. 31. From these plots, it
is clear that the use of the gradient to determine the update
will only lead to an approximate solution in the nonlinear
case. The introduction of an ensemble gradient introduces
an additional approximation as seen from the differences
in the two pdfs. Thus, ES is likely to give better results in
cases with nearly linear models or when the updates are
small.

4.4 IES experiments

In Fig. 4, we have plotted the IES solutions from the IES
with an analytic gradient as defined by Eq. 34, and IES
with an ensemble gradient as defined by Eq. 36. We exit
the iterations for a realization as soon as the ratio between
the gradient and Hessian is less than 0.0001. It is clear
that there is a significant difference between the Bayesian
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Fig. 1 The joint pdfs f (x, y) (left) and joint conditional pdfs f (x, y|d) from Bayes’ (right), for the linear case (top), nonlinear case (middle),
nonlinear case with finite model errors drawn fromN (0, Cqq = 0.25) (bottom)



894 Comput Geosci (2018) 22:885–908

x

M
ar

g
in

al
 P

D
F

-3 -2 -1 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Prior
Bayes
ES_L_7_ENS
IES_L_7_ENS
MDA steps
MDA_L_7_ENS_008_1.0

y

M
ar

g
in

al
 P

D
F

-3 -2 -1 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Datum
Prediction
Bayes
ES_L_7_ENS
IES_L_7_ENS
MDA steps
MDA_L_7_ENS_008_1.0
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Fig. 3 The figure shows the marginal pdfs for x (left) and y (right) when using ES with the analytic gradient from Eq. 26 and the ensemble
gradient from Eq. 31
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posterior and the approximate solutions found by IES with
both analytic and ensemble gradients. It is unfortunate that
the cost functions we minimize do not sample the Bayesian
posterior in the nonlinear case, which means we are solving
the wrong problem. Still, we observe that the IES estimate is
a rather good approximation to the Bayesian posterior, and
significantly better than ES.

In Fig. 5 we plot the first four moments of the
distributions for x and y, i.e., the mean, variance, skewness,
and kurtosis, as computed from the ensemble. Note that we
plot a kurtosis where we have subtracted the value 3, to
center it around zero. We have also included the results of
an experiment with 100 realizations, to examine the impact
of using a small ensemble size since this leads to a further
approximation of the gradient. It is clear that for the mean
the results from using an ensemble of 100 realizations are
converging to a slightly larger value for x while the use of
an analytic versus ensemble gradient does not make a big
difference.

For the skewness and kurtosis, we observe that the
initial prediction of y indicates strong deviations from
Gaussianity, while during the iterations the skewness and
kurtosis for y is significantly reduced and we converge
towards a more Gaussian distribution. On the other hand,
we also observe that the skewness and kurtosis for x,
which were initially equal to zero, slowly deviate from
the initial value, indicating that the distribution for the
estimate of x is slightly non-Gaussian. This non-Gaussianity
is clearly seen from the plots in Fig. 4. IES seems to
work well for estimation of the posterior mean and variance
even using only 100 realizations, while the plotting of
higher order moments makes less sense with such a small
ensemble.

Compared with ES–MDA, IES is relatively easy to
analyze as long as the method converges to the global
minimum of the cost function (18). The focus has therefore
been more on the parameters of the iteration scheme to
ensure fast convergence, rather than trying to understand
precisely, which distribution IES is sampling.

4.5 ES–MDA experiments

ES–MDA has some parameters that actually will change the
final solution. The solution will depend on the number of
MDA steps used, and the sequence of values used for αi .
Thus, it is not apparent what ES–MDA should converge to,
or how we should determine a converged result.

4.5.1 ES–MDA convergence with number of step lengths

To start, we will examine the convergence of ES–MDAwith
the number of MDA steps. We have run ES–MDA with 1,
2, 4, 8, 16, 32, 64 and 128 steps using a constant uniform

value of αi that equals the total number of steps in each
case (αgeo = 1.0). In Fig. 6, we plot the estimates of the
pdfs for x and y. We see how ES–MDA with only one step
(i.e., ES) is rather far from the correct Bayesian posterior.
Then, using ES–MDA with 2, 4, 8, and 16 MDA steps gives
a significant stepwise improvement, while when using 32,
64, and 128 MDA steps we needed to zoom the plots to
see any difference, so we did not plot these results. It is
also amazing how close the converged ES–MDA solution
is to the Bayesian posterior in this case. However, we must
run additional experiments with different nonlinear models,
before we conclude anything about the general quality of
the converged ES–MDA result.

In Fig. 7, we plot the statistical moments for the ES–
MDA steps as a function of the sum

∑
i 1/αi . Thus, we can

analyze how the step lengths and number of steps influence
the convergence of the statistical moments. We see that, as
soon as we use a certain number of steps (above 16 here),
it is difficult to distinguish the results. Thus, we conclude
that 16 or more steps, in this case, may be needed for
ES–MDA to converge with infinite sample size. On the
other hand, even ES–MDA with only two steps provides an
improvement compared to ES.

Like for the IES, we also ran a case using only 100
realizations with ES–MDA, and we plot the results for
mean and variance in Fig. 8. We see that for more than 16
iterations, the estimated means will contain sampling errors
that are larger than the error reduction due to an increase
in the number of steps. Thus, with a small ensemble size,
there is no benefit of running very many steps, which is an
essential result concerning practical use of ES–MDA.

4.5.2 ES–MDA convergence with non-uniform step lengths

Some publications (e.g., [6, 14, 15, 17, 18, 22]) have
suggested the use of small initial steps to regularize the
problem, and have referred to the Discrepancy Principle
when deriving new optimal schemes for the sequence of αi .

We initially believed that the use of small initial steps
in ES–MDA (corresponding to large values of α) would
lead to reduced errors, since the non-Gaussianity of the
distribution for y is the largest in the early steps, and
then the corresponding approximations in the linear update
equations would be the largest. However, from the plots in
Fig. 9, we note that the use of a geometrical reduction of α

where αi+1 = αi/2 does not result in a significant change
of the results.

One could also suggest that the improvement with
reduced step length is an effect of reducing truncation
errors in the ES–MDA scheme, which is based on a
linearization (22) and (23) around the local estimate of x,
and a linearization (28) around the ensemble mean. We
can also interpret the ES–MDA scheme as a time-stepping
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Fig. 5 Here, we illustrate the IES convergence of ensemble mean, variance, skewness, and kurtosis for x (left plots) and y (right plots). For the
mean and variance, we also plot a solution using only 100 realizations. The dashed black lines are the theoretical values computed from the
Bayesian posterior
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Fig. 6 The figure shows the marginal pdfs for x (left) and y (right) when using ES–MDA with 2, 4, 8, 16, and 128 steps

scheme in the pseudo-time Tn = ∑n
i=1 1/αi . Then it is not

clear how to implement a changing step length since it will
depend on the truncated terms in the linearizations as well as
the approximation resulting from introducing the ensemble
covariance between x and y.

The use of a scalar example allowed for running very
many experiments using a different number of update steps
in ES–MDA and different geometrical factors αgeo. In
Fig. 10 we have plotted statistics for cases with two steps
in the left column and four steps in the right column,
comparing geometrical factors αgeo = (0.5, 1.0, . . . , 9.0).
When evaluating the results, it is natural to compare with the
solution that ES–MDA converges to as represented by ES–
MDA with 128 uniform steps. We also plot the moments of
the true Bayesian solution. We expect that an improvement
of using a non-uniform sequence of MDA step lengths is
best visualized using a small number of steps. Thus, we
should probably not conclude from the case with eight steps
shown in Fig. 9.

From the plots in Fig. 10, we observe that the estimate
for the mean is improving with increasing value of the
geometrical factor αgeo, and in particular in the case with
two MDA steps the best result is obtained using αgeo = 9.0
where the estimate is very close to the reference solution
where 128 steps were used. For the case with four MDA
steps, we find that any value of αgeo ≥ 2.0 gives equally
good results. For the variance, we observe that the best
result is obtained using a value of αgeo equal 5.0 in the case
with two MDA steps and a value of 2.0 when we use four
MDA steps. For the skewness the best result is obtained
with αgeo = 4.0 and αgeo = 2.0 respectively for the two
cases, while for the kurtosis the best result is obtained for
αgeo = 2.0, 3.0 in the two-step case and αgeo = 2.0 in the
four-step case.

In Fig. 11 we plot the statistics for the case with eight
update steps. Here it is seen that the optimal step lengths

follow a scheme αgeo = 2.0. In all the cases, starting with
a long step followed by shorter steps always lead to poorer
results.

We also see in Fig. 10, that the change in the statistical
moments is larger in the first step than the second step. By
increasing α1 we take a shorter first step and the relative
changes in steps one and two become approximately the
same. Thus, it seems that adjusting the αi’s such that the
relative magnitude of the updates in the different MDA steps
remains similar, may be beneficial.

To conclude, we are running ES–MDA in a clean setup
for a scalar model using a single datum and using a vast
ensemble size. The only factor that can have an implication
on the choice of step length is then the nonlinearity of
the model and possibly the number of update steps used.
The effect of the nonlinearity is probably influencing ES–
MDA through the linearizations (22) and (23) used in the
derivation of the ES–MDA equations and the linearizaion
(28) used when introducing the ensemble representation of
the covariances. Thus, the impact of these approximations
may be reduced by using smaller step lengths in the initial
update steps. From the examples, we see an improvement of
using a geometrical scheme for α, and the benefit is more
significant the fewer MDA steps are used. For the cases with
four and eight MDA steps, it seems like a value αgeo = 2.0
is close to optimal, but it is likely that this factor is also
model dependent.

5 Iterative smoothers with highly nonlinear
dynamics

We will now study the iterative smoothers with a highly
nonlinear and non-monotonic scalar model. The purpose is
to examine if the iterative methods can handle problems
with multimodal behavior. We use a simple model that leads
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Fig. 7 The plots show the ES–MDA convergence for x (left plots) and y (right plots) of ensemble mean, variance, skewness and kurtosis. We are
using 107 realizations and 2, 4, 8, 16, 32, 64, and 128 uniform steps. The dashed black lines are the theoretical values computed from the Bayesian
posterior. The line legends given in the upper plots also apply for the remainder of the plots in the respective columns
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Fig. 8 The plots show the ES–MDA convergence for x (left plots) and y (right plots) of ensemble mean, variance, skewness and kurtosis. We are
using 100 realizations and 2, 4, 8, 16, 32, 64, and 128 uniform steps. The dashed black lines are the theoretical values computed from the Bayesian
posterior. The line legends given in the upper plots also apply for the lower plots

to inverse problems with arbitrarily many modes dependent
on the width of the prior, i.e.,

y = 1 + sin(πx) + q. (50)

Depending on the prescribed width of the prior for x,
the sampled x values can be mapped to arbitrarily many
wavelengths of the sin(πx) function. We assume in all cases
a measurement of y, d = 1.0, with standard deviation equal
to 0.1. We then run ES, ES–MDA with 32 steps, and IES,
using both the analytic and the ensemble representations
of the gradient. We will consider three cases of increasing
nonlinearity induced by selecting priors of different widths.

In the plots of the joint pdfs in the Figs. 12, 13 and 14, we
have blanked values less than 0.1% of the maximum value
in the plots. To better visualize the joint pdfs, we have added
a small model error q ← N (0.0, Cqq = 0.0009) to the final
prediction of y.

5.1 Case 1: xfj ← N (0.0, Cxx = 0.01)

The first case has a prior for xf
j sampled fromN (0.0, Cxx =

0.01). Thus 99.7% of the samples will be located in the
interval [−0.3 : 0.3], which is 0.6 of a wavelength of the

functional mapping. Thus, the mapping of the prior model is
monotonic, and this example becomes similar to the weakly
nonlinear case studied in the previous section. In Fig. 12
we plot the prior joint pdf in the upper left plot and the
Bayesian posterior pdf in the upper right plot. Additionally,
we show the conditional pdfs from ES, ES–MDA, and IES,
using ensemble gradients in the left column and the analytic
expressions for the gradients in the right column. In this,
almost linear case, all methods provide nearly identical
results in good agreement with the Bayesian posterior,
which we can also see from the marginal pdfs in the upper
plot in Fig. 15. ES ANA and ES ENS match the Bayesian
nearly perfectly. IES ENS and IES ANA provide roughly
the same solutions, and together with ES–MDA ENS they
give slightly too low variance. Finally, ES–MDA ENS and
ES–MDA ANA differ with the analytic formulation being a
little better than the ensemble formulation.

5.2 Case 2: xfj ← N (0.0, Cxx = 0.09)

When we sample xf
j from N (0.0, Cxx = 0.09), the interval

[−0.9 : 0.9] will contain 99.7% of the samples and covers
almost a full wavelength of the functional mapping. With
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Fig. 9 The figure shows the marginal pdfs for x (left) and y (right) when using ES–MDA–8 with uniform α (upper plots) and geometrical αgeo = 2
(lower plots)

the measurement of y = 1.0, we can expect some issues
related to bimodality as is illustrated by some of the joint
conditional pdfs in Fig. 13 and the marginal pdfs in Fig. 15.

We see that ES–MDA ENS and IES ENS give solutions
very close to the Bayesian posterior. ES ENS and ES ANA
both result in weak updates with too large variance.
Thus, this case is too nonlinear for ES while the iterative
smoothers are capable of resolving the nonlinearity.

IES ANA and ES–MDA ANA over-estimate a probabil-
ity of x at x = ±1 corresponding to the two alternative
modes. The ensemble representations of the smoothers give
better results than the analytical versions, and it seems that
the use of the same ensemble gradient for all realizations
leads to a regularization that helps the methods converge
correctly to the Bayesian posterior. For ES–MDA, we also
made the same observation in the weakly nonlinear case in
the previous section.

It is also interesting to see that ES–MDA ANA does
significantly worse than ES in this case. It appears that
the inflated measurements with large values of α lead to
a diffusion of the updates. Using ES–MDA with 32 steps
and a uniform scheme for α, all measurement perturbations
will be multiplied by

√
32. A measurement perturbation

outside the interval [−1/
√
32 : 1/√32] leads to an inflated

measurement located outside the range for the nonlinear
mapping, i.e., y ∈ [0 : 2]. We used a standard deviation
for the measurements of 0.1, so 99.7% of the measurement
perturbations are located within the interval [−0.3 : 0.3].
Thus, with 1/

√
32 ≈ 0.176 a substantial fraction of the

realizations will be located outside the range of y. Also,
in ES–MDA ANA each realization will have its analytic
gradient, and together with the excessive perturbations, this
introduces a diffusion in the updates in the ES–MDA steps.
We noticed that ES-MDA ANA with four and eight update
steps improved on ES, but then with 16 and 32 number of
update steps, the results became worse. In fact, if we solve
for α from 0.3

√
α = 1.0 we obtain α ≈ 11 which is the

threshold where inflated measurements start exceeding the
range of y. We also notice that the methods with analytic
gradients have some realizations located in the secondary
minima.

5.3 Case 3: xfj ← N (0.0, Cxx = 0.36)

In this final case, we sample xf
j from N (0.0, Cxx = 0.36).

Thus 99.7% of the samples will be located in the interval
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Fig. 10 The plots show the ES–MDA convergence for x with different geometrical schemes for αi . We show results for the ensemble mean, variance,
skewness, and kurtosis from using ES–MDA with two update steps in the left plots and four update steps in the right plots. The dashed black lines
are the theoretical values computed from the Bayesian posterior. The line legends given in the upper plots also apply for the remainder of the plots
in the respective columns
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Fig. 11 The plots show ES–MDA Statistics for x with different geometrical schemes for αi and eight update steps. We show results for ensemble
mean, variance, skewness and kurtosis. The line legends given in the upper left plot applies to all the plots

[−1.8 : 1.8]which covers two wavelengths of the functional
mapping. The results are shown in in Figs. 14 and 15. Due
to the non-monotonic and oscillating behavior of the model,
there are five values of x that lead to a prediction of y = 1.
We see from the Bayesian joint conditional pdf in Fig. 14
that the true solution has five modes corresponding to x =
(−2, −1, 0, 1, 2). We also see the multimodal solution in
the marginal pdfs for x in Fig. 15.

It is clear that neither ES, ES–MDA or IES with ensemble
gradients can reproduce the multimodal posterior solution.
However, the methods with ensemble gradients recover the
mode at x = 0, although in this example ES gives the best
result, followed by ES–MDA and then IES.

On the other hand, IES ANA gives results in very well
agreement with the Bayesian posterior with realizations
sampling the five significant modes of the system. Also,
we noticed that IES ANA had some realizations sampling
additional modes at ±3 (not shown) that are not likely
according to the Bayesian posterior. These realizations were
probably trapped in local minima. We also observe similar
results from ES–MDA ANA although again with a diffusive
behavior as in the previous case.

6 Summary

We have discussed the derivation of the Ensemble Smoother
with Multiple Data Assimilation (ES–MDA) and the
Iterative Ensemble Smoother (IES) and analyzed their
performance with a simple nonlinear scalar model. The
derivation provides insight into the approximations that are
applied when deriving the two methods and this should
help the user to know what to expect from the two iterative
smoothers.

We have illustrated the connection between Bayes’
theorem and the minimization of an ensemble of cost
functions, one for each realization, which is exact in the
linear case, and we have thus proved that for a linear model
ES, ES–MDA, and IES give the same result and exactly
sample the posterior distribution. For a nonlinear model, this
connection is only approximate. We have illustrated that IES
with an analytic gradient exactly minimizes the ensemble
of cost functions and results in a solution that differs from
the posterior Bayes’ pdf. We have also illustrated how IES
is implementing an approximate ensemble-based gradient,
which changes the definition of the minima of the cost
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Fig. 12 The plots show joint pdfs for case 1 in the nearly linear case with a narrow prior
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Fig. 13 The plots show joint pdfs for case 2 in the weakly nonlinear case
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Fig. 14 The plots show joint pdfs for case 3 in the highly nonlinear case with a wide prior that includes multiple modes of the pdf
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Fig. 15 The plots show the marginal pdfs for x from the cases 1–3 with a different priors from top to bottom

functions minimized for each realization. Thus, the further
introduction of an ensemble gradient leads to an additional
approximation of the results, but ES and ES–MDA apply
similar approximations in the update equations.

We can derive ES–MDA as a direct solver for minimizing
the ensemble of cost functions under the assumption of

Gaussianity. In the nonlinear case, these equations will not
solve for the minima of the of cost functions but instead
result in a variance minimizing solution where the prior and
likelihood are both assumed to be Gaussian. On the other
hand, we can also derive ES–MDA as a solution method
for the standard Kalman filter update, which is derived
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directly from Bayes under the assumption of a Gaussian
likelihood.

It was shown that ES–MDA leads to better results with
increasing number of MDA steps. The ES–MDA solution
appears to converge at 16 to 32 MDA steps, furthermore,
with a limited ensemble size of 100 realizations, the
sampling errors are masking the improvement in accuracy
obtained by running more than about 16 MDA steps.

For low number of ES–MDA steps we could show a
benefit of changing the scheme for selecting values of
α. This result supports an interpretation of the ES–MDA
analysis as a time-stepping algorithm in the pseudo-time
defined as Tn = ∑n

i=1 1/αi , where the accuracy of the
pseudo-time stepping is dependent on the nonlinearity of the
model.

An additional highly nonlinear case, which exhibits
multiple modes, was also run to examine the range of
validity of smoother methods with nonlinearity, as well
as to study their properties with non-monotonic mappings.
An overall conclusion is that all the smoothers work well
with weakly nonlinear models. Furthermore, the use of
an ensemble gradient which is the same for all ensemble
members, prevents that different realizations may converge
to different modes of the pdf as is the case when we
use the analytic gradient (see also Section 2.5 in [4]).
For a highly nonlinear model with multiple modes, none
of the smoothers can correctly solve for the conditional
posterior. We noticed that using IES with an exact analytic
representation of the gradient; it is possible to obtain an
accurate representation of the posterior conditional pdf
also in the multimodal case. However, for a practical
implementation, the use of an analytic gradient will require
the use of adjoints models, and the computational problem
becomes immense. Also, when using ES–MDAwith models
that map the prior parameters into a bounded range of
values, the method will have difficulties when inflated
measurements exceed this range.

It is clear from the experiments that iterations in IES
or multiple update steps in ES–MDA reduce the impact
of weak nonlinearity and lead to better results than what
can be obtained from ES. So which method to choose?
For numerical efficiency, it is advised to use ES for all
preliminary experiments until a final production simulation
is ready to be run. Thereafter, we can use both ES–MDA
and IES. ES–MDA has the advantage (or disadvantage)
that one can predefine the number of steps, and also reuse
the numerical implementation from ES, and the method is
conceptually easy to understand and implement. However,
a large number of steps may be needed to obtain a con-
verged result. IES may require fewer iterations to converge,
but the method requires a separate implementation, and
convergence issues may show up if we choose poor val-
ues for the step length. For now, we conclude that neither

ES–MDA or IES precisely sample the posterior pdf from
Bayes’, but it appears that the optimal choice of method will
depend on the degree of nonlinearity and the properties of the
model used.We have previously seen several examples of both
methods giving consistent results, e.g., when history match-
ing reservoir simulation models in the study by Evensen
and Eikrem [Strategies for conditioning reservoir models
on rate data using ensemble smoothers, under review].
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